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Physics of baryonium is discussed within dual S-matrix framework. Some difficulties
within the context of Standard FESR are pointed out. The experimental situation concerning
the baryonium spectroscopy and phenomenology of baryonium exchange in two body and
inclusive reactions is reviewed. Phenomenological evidence for w-baryonium mixing is pre-
sented. A model for this mixing based on*tlual unitarisation.scheme is discussed.

Baryoniums are a set of mesons which couple: primarily to baryon-antibaryon
channels
B — bb -
-+ MM,

just as the charmoniums couple primarily to pairs of charmed particles
p - DD
+— MM,

or the ¢, f’ couple primarily to pairs of strange particles
¢ - KK
+ MM.

These baryoniums are fairly old objects -— they were invented by Dualists over a decade
back [1]. Only the christening is new. The name was inspired no doubt by their rich
cousins — the charmoniums, and following the same inspiration, the ¢, f' particles are
now called strangoniums.

How are the baryoniums related to charmoniums and strangoniums — why-are they
cousins ? In the S-Matrix framework, they all follow from the same pair of hypotheses,
Duality and No Exotics. Let us see how ? Here one does not have to invoke any underlying
quark structure, except that inherent in the assumption of No Exotics. This assumption
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means that there are no mesons outside the singlet and octet representation of SU(3) and
no baryons outside the singlet, octet and decuplet. In other words all mesons occur within
the quantum number of a qq system and all baryons within those of qqq. This seems to be
an experimental fact, which has no natural explanation within the S-Matrix framework
except that it is the minimal non-zero solution to the Duality constraints. The approach
in the past has been to take it as an experimental input and build up a phenomenological
S-Matrix framework. Lately it has been realised that the answer may come from the colour
dynamics of quarks. If true this would provide an important link between the fundamental
but invisible field theory of quarks and gluons and the phenomenological but visible
S-Matrix theory overlying it.

Strangonium and charmonium

Anyway, given the no exotics hypothesis duality implies not only exchange degen-
eracy but also the existence of strangoniums and charmoniums and the so called Zweig
rule [2]. We can see this from the following example [3]. Consider

K° A”
QR S
t
s 2 1
S
K 4% v 2 -1

where both the s and u channels arc exotic. Duality implies

z 7™ = (Res),, = 0,

TV
i.e. the vector contributions (, p, ¢) and the tensor contribution (f, A;, f’) have to sepa-
rately vanish and since each must vanish over a wide range of energy, the cancellation has
to occur amongst a set of degenerate trajectories. The minimal solution is of course the
null solution where the trajectories are not degenerate, in which case all the couplings
vanish and there is no scattering to talk of. But the minimal non-zero solution corre-
sponds to the physical situation, where p, ® are degenerate and ¢ is not. Hence p and ©
couplings are required to cancel and ¢ is required to decouple. These 2 constraints deter-
mine the 2 parameters — the singlet to octet coupling ratio and the singlet-octet mixing
angle in ® = V,cos 0+ Vgsin0;¢ = Vgcos 0—V,sin 0. Thus one has a completely
determined system apart from the overall normalization, which can not be determined
by the duality constraints, since they are linear.

Although no quarks were involved in deriving these results, these can be translated

into the quark language by defining

_ pp+nn+Al _ pp+nn—2AA

N N
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The mixing angle results (tan 6 = /1) implies ¢ = A1 i.e. a purely strange quark-anti-
quark state (or strangonium). The second results — the decoupling of ¢ from 44 — implies
the vanishing of the disconnected diagram

A
5

—...6___./

P =0

~—

which is the Zweig rule. Similarily one gets ¢ +» pr and p + pn.
Of course these decays are not completely forbidden. They can go through via the
higher orders diagram line

g ——>=-4¢
- <__.\

~ZT KT n

where the 2 halfs are Zweig allowed dual amplitudes and the stitching is done via unitarity.
There are, of course, unknown things like the relative phase of the 2 amplitudes and their
dependence on the pair of internal legs which is to be summed over, and the result will
depend on one’s model assumptions for these things. Nonetheless there are some general
predictions — e.g. the Zweig disalloweéd couplings are much smaller than the corresponding
allowed couplings (i.e. left half of the diagram); and this relative suppression increases
with the mass of the decaying particle.

Baryonium

The same duality constraints, when applied to baryon-antibaryon scattering, implies
the existence of baryoniums. We can again see this from a simple example [3]. Consider
the charge exchange process

+*+ -0

4 (4)

+* -

4 S (4)

Where again the s-channel is exotic (double charge) and the « channel is exotic (di-baryon).
But the vector and tensor exchange are only p and A, which cannot decouple — apart
from contradicting data, this would require via factorization that all the meson-baryon
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amplitudes vanish. Hence the only way out is to have meson resonances in exotic baryon-
-antibaryon channels!. Now for consistency with the earlier solution, these exotic mesons
must decouple from the meson-meson channels. Hence they are called baryoniums in
analogy with the strangoniums or charmoniums.

One can again translate the whole-thing into a quark language.
1. Since these mesons (or some of them at least) have exotic quantum numbers, they must
correspond to 4 quark lines

2. Their coupling to the baryon-antibaryon channel gocs through by the normal connected

graph
‘-%——/ b
——4—_\ E
like the ¢ coupling to KK.

3. Their decoupling from the meson-meson channels, i.c.

is ensured by a slight generalization of the Zweig rule which disallows both the disconnected
graphs and the splitting of the diquark boundarv®. (In the case of strangonium or charmo-
nium the boundary was a single quark line and hence the question of splitting did not
arise.)

! The other alternative of having dibaryen resonances is ruled out by the factorization constraints.
The meson-baryon scattering example considered earlier fixes the relative sign of the p and A, contribution
in KA scattering, and similar considerations for meson-meson scattering fixes the relative sign in KK.
By factorization, then, the relative sign of the p and A coupling to AA is fixed, which ensures that they
cancel in the AA channel and add up in AA.

2 More precisely one requires that each quark line is shared by 2 mesons and each pair of mesons
share at least one quark line (Freund, Rosner and Waltz, Nucl. Phys. B13, 237 '(1969)).3
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4. The baryonium can decay into ordinary mesonic channels via the higher order graphs

similar to the decay of strangoniums into nonstrange mesons. But again, such couplings
are expected to be much smaller than the Zweig allowed couplings, and the suppression
to increase with the baryonium mass.

5. In baryon-antibaryon scattering, the normal (qq) resonances are dual to the baryonium
exchange and vice versa,

S /
t N
T /*\\

analogous to the KK scattering case, where the o, p resonances are dual to strangonium
exchange and vice versa.

S NS ———
N /

A /

& A Y

N

/)

This means that knowing the resonance and Regge parameters of ordinary mesons
in baryon-antibaryon scattering provides significant constraints on the baryonium param-
eters. One cannot push their mass arbitrarily high or their couplings arbitrarily low, and
as we shall see later, the baryonium resonance data seems to have a serious quantitative
discrepency with such predictions.

Finally, the duality constraint applied to the baryonium-baryonium scattering has
been shown [3] to imply still higher exotics. These would correspond to 3q3qg-states and
their couplings to baryon-antibaryon and meson-meson channels would both be forbidden
in the lowest order. These. may be relevant for: describing some narrow meson states,
reportedly seen ‘way above the baryon-antibaryon threshold, as we shall discuss later.

Spectroscopy

Of course it is not possible to predict the precise mass of the baryonium states in specific
quantum number channels without going to a dynamical model like the various potential
models, which have been proposed both in the S-Matrix [12a] and the QCD {21] frame-
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works. Nonetheless one can predict some significant systematics in the baryonium spectros-
copy, from fairly general considerations coupled with the duality constraints [4].

Let us denote the diquark system by Q and let us first look at its isospin 7. In particular
one has

Io=1 ssince I, = Iy, = 3/2.
The corresponding baryoniums have isospin
IB = IQ6 = 2, 1, 0 (IM = Iqa = 0, 1),

i.e. they occur in both exotic and non-exotic quantum numbers. Moreover duality predicts
all the 3 isospin states to be degenerate, analogous to the p, ® degeneracy prediction for
ordinary (qq) mesons. Experimentally there seems to be some indications of at least I = 0
and 1 degeneracy for some of the baryonium states.

Let us next consider spin S. Again one expects a S, = 1 system, since S, = S, = 3/2
in the L = 0 state. Hence

Sp=Sqg=210 (S5=10),

i.e. the baryoniums are expected to occur in spin quintet, triplet and singlet states analogous
to the spin triplet and singlet states of the ordinary mesons. In analogy with the ordinary
mesons, one may expect the lowest mass states for L = 0. One then gets the following
pattern

QQ (L=0 qq
J =210 J=10
P = (—1)* = NUN P = —(-1F = NU.

Of course the different spin-parity states would not be degenerate and one does not
know the spacing between them. But again in analogy with the ordinary mesons one may
speculate the spacing between the adjacent spin state to be 3 GeV? in mass [2].

Finally the slope of the baryonium trajectory is expected to be similar to that of ordi-
nary meson (= 0.9 GeV-?) from the following duality argument [5]. Consider p exchange
in the meson-meson, meson-baryon and baryon-antibaryon scattering.

()X

(afys) %0 (abs)"e “laps

The p exchange contribution in a general Veneziano model is shown below each amplitude.
Factorization constraint for the p residue then implies

ap = (o) o,
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and since the ordinary meson and baryon slopes are both around 0.9 GeV-2, so should
be the baryonium slope.
Thus one expects the following Chew—Frautschi plot for the baryonium trajectory.

by

Lro o N W

Of course the trajectory intercept is still arbitrary, but assuming the favoured spin-
-parity assignment 2+ for the S(1936) state one expects a leading baryonium intercept of
~ —1, which seems to be consistent with the rough estimate one has from baryonium
exchange phenomenology.

Experimental Evidence — over the past 5 years there have been several experimental
evidences of baryonium type resonances and several phenomenological evidences for
baryonium exchange.

Baryonium resonarnces

The most reliable ones — i.e. those which have made their way to the Rosenfeld diary —
are the S, T and U resonances. They are all seen in the formation channel — pp scattering
(Fig. 1 and 2). The essential properties of these resonances are summarised in Table I.

Lab. momentum GeV/c
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Fig. 1. The S signal in elastic pp cross-section [7]
Fig. 2. The T and U signals in elastic pp cross-section {10}
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TABLE |
Properties of the S, T, U resonances
Total and Elastic _ _ _
Scatt. [6-10] | PP ETBL | Pp—==°[14] w7 ppn(15]
- M pp — KK~ [13] M) | M)
M(I )1 JPC . JPC : JP
o7, G (Mb) ¥ ‘ ‘I
e 4"‘4‘5* T
| 248030 (~ 280)1 | ’, T
: 5 i ‘ j
U: 2350415 (~ 160) i 2310430 (~ 200)0 T oalso I =( | .~ 2300 (>~ 250)
1,0,3,2 | 4014 | | | 4

T: 2190+10 (= 90)1 215030 (~ 200)1 | also /=0 | 2150+10 (= 210)0

~ 2100 (~ 250)

5,2.5 ; 3,02 | | 2++ l 3-
- e —— e ‘_.___*____,’, ! —_——— U,;_,_,.—_t — e ————— S . _ [
S: 1936+ 1(<10)1(0) | pp elastic data l |
10.6+24,7+1.4 | favours [12,13] | | I~ 1950 (= 250)
| 2++,0.15 | 1-

The S(1936) state has all the trappings of a textbook baryonium. It is narrow, being close
to the NN threshold, and has a large elasticity X (branching ratio into pp) — all the features
are in perfect analogy with the strangonium ¢. The T and U states are broad presumably
for the same reason as ' is broad — i.e. having a large phase space into the allowed channel
NN. Again like f’ they are characterised by a large elasticity.

The isospin assignments come from comparing the pp and pd total cross-sections.
Carrol et al. [6] find 7 = 1 for S, but do not rule out a 7 = 0 component®. Abrams et al. [9]
find 7 = 1 for T, and both 7/ = 0 and 1 in the U region. Spin parity assignment for S come
from fitting the elastic differential cross-section, which favours 2+ but cannot rule out
higher spins [12, 13]. From the phase shift analysis of pp = w*n~ Carter et al. [13] have
found a3~ and 4* resonances in the T and U region respectively, which can be tentatively
identified with these states*. They have also found a 5~ state at 2480 MeV. One may note
that the M? spacing between the adjacent spin states are roughly around 1 GeV?, which
makes their assignment on the same baryonium trajectory quite plausible.

Carter et al. have also found 7 = 0 components in their 3~ and 5 states by extending
their analysis. to pp = K+*K-, and from pp — n°n® Dulude et al. [14, 17], have found
4 2+ (I = 0) state at 2150, which may be a daughter (or a spin singlet state). Finally 3 broad

e i e i -

3 A recent deuteron bubble chamber experiment [11], does not seem to see an S signal in the annihila-
tion cross-section (pn — 1’s), which may cast some doubt on the [ = 1 assignment.

* With these spin assignments for S, T, U the elasticity X turn out to be smaller than those suggested
by the ratio gej/oT. This can be accounted for by interference between the resonance and a BG contribu-
tion [12]in the same channel. Similarily the non-observance of these resonance signals in the charge exchange
cross-section can be accourited for by interference between a resonance and a BG contribution [12] (or
between 2 resonance contributions) in opposite isospin channels.
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pp resonances have been seen by the CERN Omega spectrometer [15, 17] in n-p — ppn.
They are at 2300, 2100 and 1950 with spin parity 4%, 3~ and I-.

A number of narrow resonance candidates have been reported from the production
experiments.
1. In addition to the S, 2 narrow pp resonances have been observed at 2020 and 2200 MeV
by the CERN Omega spectrometer [16] in the backward production experiment (Fig. 3)

Pt pp
A, N* 2020,2200

np—

30+

Events /20 MeV

2000 2200 2400
@B invariant mass (Mev}

Fig. 3. Narrow peaks in the backward (pp) mass distribution in n7p — E_A?i pp at 9 and 12 GeV/c [16]

Some independent support for these 2 states have been presented at the Tokyo Con-
ference [17]. The Pittsburg-Massachusetts-Collaboration see a signal at 2200 in the annihi-
lation reaction

_ _nTKTK”

PP T 5200

and a signal at 2020 has been seen in the virtual photoproduction reaction

Tvp — 50_56 p

at Cornell. One should note that, since these 2 states have substantial phase space into
ahe pp channel there is no natural justification for their narrow width (I' ~ 20 MeV) in
- standard baryonium framework.

2t A narrow resonance signal (6¢) was seen at 2950 MeV by the CERN Omega spectro-
meter [18], in the forward production reaction

R X
s p -3
2950
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However a repeat of this experiment with higher statistics by the same group, does not
seem to show this signal [17].

3. Recently a narrow peak at 2460 MeV have been reported from the CERN Omega spectro-
meter [18a] in the forward production process

A +
K*p - I}Bn— n
2460

LAATY  or  Tp.

This is the first resonance candidate with exotic quantum numbers, but there is again
no natural justification for the narrow width or for the forward production, within the
standard baryonium framework.

4. A narrow peak at 2600 was reported from BEBC [19]in K®n* n+n~ in the annihilation
reaction

pp = K’n*n*n*n"n 7" +neutrals.

1322 7Mev

1 maermev
183:7Me 420:17Mey

l 1 216 9Mav

100

Counts

YT T v T TV T T T

Energy (MeY)

Fig. 4. Narrow peaks in E, in the radiative decay of pp at rest [20]

But 2 other bubble chamber searches for this channel have drawn a blank [19a].
5. Finally 3 narrow peaks below the pp threshold have been reported [20] from the radiative
decay of pp at rest (Fig. 4)
Bp at rest
1870
7 X
=7 1684
1646

1395
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The first peak occuring at E, ~ 132 MeV is associated with the radiative capture of n-
coming from annihilation. The 3 other peaks at E, = 183, 216 and 420 MeV correspond
to peaks at 1684, 1686 and 1395 MeV in the recoiling system.

The resonances below the pp threshold are, of course, expected to be narrow from
duality arguments. But the narrow resonance candidates, occuring substantially above
the pp threshold, cannot be interpreted as standard dual baryonium. One interpretation
is in terms of a hidden colour state [21]

AN
Q /> 6
- yl —
Q - 6

where the diquark supposedly belongs to a colour sextet (3x3 = 6+3). As a result their
couplings to the baryon-antibaryon channels are inhibited since the latter are colour singlet

Alternatively they could be interpreted as the higher exotic (3q 3q) states implied by
duality, as discussed earlier. In the S-Matrix framework, at least, the latter interpretation
seems more natural. One should bear in mind, of course, that each of these candidates is
essentially based on a single experiment.

FESR constraint

Next let us look at the duality constraint for the couplings of the baryonium resonances
to the baryon-antibaryon channels, i.e.

"

= oy D (s
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Pennington [22] has drawn attention to a violert contradiction between the two sides, for
backward production of the 2020 and 2200 states, i.e. between

do

- and  yRaaYannd annsT N T (M0 2N

du n~p — A®B )

since the rough magnitudes of the Regge couplings (y's) and the triple Regge coupling
I’ on RHS are known one can estimate the RHS. This turns out to be roughly a factor of
100 larger than the production cross-section for the 2020 and 2200 states (LHS) measured
at the Omega spectrometer [16].

However these 2 narrow peaks, even if they are confirmed, may not have anything
to do with a normal dual baryonium resonance, as remarked earlier. A more appropriate
test of this duality constraint should therefore be the one involving the S, T, U resonances.
Since the only reliable signals for these resonances are in the formation channel, we have
to look at the old fashioned FESR for the elastic pp amplitude. This gives

sz
+1 a 4+ 1
st —glo

S:
Im A = g = QI+ DX = 2By
J' m Ag,e Res. 26],( )X ﬁ pp (%4‘1)

S i=$,T,U

where A4 is the kinematic singularity free amplitude,

P
N
ImA - q\/ G'T.
2n

2

Note that the individual resonance contribution to ¢r, quoted in Table I, is simply
n(2J;+ 1)x; n
( ) \ = *’5(2.];'!‘1)3(;.

E—EN
e {{—=) +1| a
r/z ‘max

The individual resonance contribution to the LHS, from Abrams et al. [9], are compared
in Table II against the w Regge contribution to the RHS?.

Ay
5 Change of variable from s to v<= —— ——2/n> makes ~ 59, diffcrence.
m
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TABLE 11
St

Baryonium Resonance and w Regge Contribution to the FESR jdslmA;,p (s1—52 = 3.5-6.7 GeV?;
S2

the error shown on the Reggeon Contribution comes from changing these limits by 0.5 GeV?)

2
Res. Cont. (GeV?) Regse
I ) ] o { o Cont. (GeV?)
S [ T ’ Uud =1 i U =0) | Total
e ] . IR _
0.05+0.04 0.52+0.17 0.7+0.24 0.840.27 207+£04 28.3+5.0
(1.67+0.33)

TABLE 111

52
Strangonium Resonance and o, ¢ Regge Contribution to the FESR j ds Im Agk (s, —s, = 1—2.5 GeV?;
5
the error shown on the Reggeon Contribution comes from changing these limits by 0.2 GeV?)

Res. Cont. (GeV?) Regge
T T o o i ) Cont. (GeV?)
[ ‘ 1’ | Total
0.102 +0.006 " 1.3+0.2 1.4+0.2 1.73+0.44

One first notes that the S contribution is negligible compared to T, U because of its
narrow width. This is analogous to the ¢ contribution to elastic KK being negligible com-
pared to the f’ (Table 1I). For the same reason, the other narrow states, even if they are
confirmed, would make negligible contribution to the FESR.

We see a yawning gap of an order of magnitude between the S, T, U. resonance contri-
butions and the » Regge exchange. This may be contrasted with the situation in KK scatter-
ing (Table III), where the strangonium (¢, f') resonance contributions seem to be roughly
equal to the w-Regge exchange. There are two possible explanations of this discrepancy:
1. The first involves pulling down the ®-Regge contribution — i.e. to assume a large re-
normalization of the planar ®NN Regge coupling (by a factor of 2-3, say) from unitarity
effects. The FESR supposedly builds up only the planar Regge coupling, since the renormal-
ization effects are negligible in the resonance region. Such a large renormalization for the
oNN Regge coupling has been suggested before in the context of a specific w-baryonium
mixing model [23]. However, the only phenomenological estimate of the planar @NN
coupling available is through the KN FESR, where two earlier analyses found the FESR
estimate smaller than the physical ® coupling by a factor 1.4-1.8 [24] and 2-2.4 [25],
depending on the choice of resonance parameters. In view of this large uncertainty, associ-
ated with the large resonance region below the KN threshold, it gives no significant con-
straint either in favour or against a large renormalization of the ®NN coupling. We shall
sec later however, that in the simplest (one parameter) mixing prescription a large renor-
malization of ®NN coupling (~2-3) would imply an even larger renormalization of
the ® AA coupling (~10-20) as measured from the inclusive cross-section difference. This
is certainly ruled out by the inclusive data, but of course the one parameter mixing pre-
scription may be totally wrong.
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II. The other alternative is to jack up the resonance contribution by an order of magni-
tude. This would mean that S, T, U peaks are only the tip of the ice-berg — there has to
be a very large number of other baryonium resonances hiding underneath. This may seem
inplausible in terms of our experience with the ordinary (qq) meson spectrum; but as
we have seen earlier, one expects a much higher density of baryonium states compared
to the ordinary (qq) mesons. These resonances have to be broad and highly elastic to make
a significant contribution to the FESR. It would be extremely interesting therefore, to search
for such states in the pp elastic differential cross-section over the S, T, U region, together
with the pp —» nn and KK phase shift analyses.

1 will simply state my personal prejudice, which is in favour of the second alternative.

Baryonium exchange

1. The first phenomenological evidence for baryonium exchange came from studying
the backward production cross-section of ordinary (qq) mesons which should be dual to
baryonium exchange.

70 AAZ .9

do
- 2 -
- ~ Gs**aT Y (M2 20,
U |g-p - pR

This is complimentary to the backward production case considered above where the pro-
duction of baryonium resonances was dual to ordinary meson exchange. Anyway, plotting
the backward production cross-section of the ordinary meson resonances (%, p, Ay, A, g)
against the resonance mass My, one found that the dual trajectory, indeed, has a low inter-
cept oy < —0.5. This was in striking contrast to the forward production cross-section of
the same set of resonances, which had shown that the dual trajectory has the normal inter-
cept ~ +0.5.

2. The second evidence came from comparing a set of exotic exchange reactions in baryon-
-baryon channels with the corresponding ones in meson baryon channels [27]. These are

a(pn = A~A* )2 550200, o(n"p » n* A7) E 50412,
o(pp » Y*'Y* ") = 843, o(n"p - KYY*T) & 1,

o(pp —» ') 611, oK p-nt27) £ 0.6+0.1,
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where all the cross-sections are in pb and the quantities in the middle refer to the incident
momenta in GeV/c. Apart from the baryonium, of course, there would be other exchanges
with exotic quantum numbers (e.g. Regge-Regge cuts) — but the latter ones have no partic-
ular reason to favour the baryon-baryon channel over the meson-baryon channel. The
fact that the baryon-baryon cross-sections seem to be systematically higher than the cor-
responding meson-baryon ones by an order of magnitude, therefore, suggests the baryonium
exchange to be the dominant mechanism at least for the baryon-baryon cross-sections.

One may also note that the strangeness exchange processes are significantly suppressed,
but there is no significant difference between octet and decuplet production. These
systematics are purely empirical but they should be of help in comparing different
baryonium exchange processes.

There is unfortunately very limited data on these exotic exchange processes, which
is restricted moreover to a very limited range of low energy. Consequently the estimate
of the baryonium trajectory is quite sensitive to the choice of variable. Comparing the
pn — A-A'+ cross-sections available at the two incident momenta 3.7 and 7 GeV/c, gives
a baryonium intercept anywhere in the range 0 to —1 depending on the choice of variable.
More precisely one gets [28]

as(0) = —=0.140.1 for P,
~0.340.4 y
—0.5+0.5 5.

It seems to me that the clearest estimate of the baryonium trajectory can come from the
measurement of these exotic exchange cross-sections over a reasonably wide energy range
(up to 20 GeV/c, say).

3. There also seems to be an evidence for baryonium exchange in the good old proton-
-antiproton cross-section difference 4,,,. In fact as soon as the first set of total cross-section
data came out from the Fermilab, it was realised that the 4, does not quite behave the
same way as Ay, or 4,,. Where as the latter two follow a single power law (characteristic
of ®, p exchange) from 250 down to 2 GeV/c, the 4, shows a distinct upward curvature
at the low energy end [29]. But since at that time the baryonium episode had been forgotten,
this was looked upon as somewhat of an embarrassment and accommodated through an
empirical change of variable. Following the revival of interest in the baryonium, we have
reanalysed these cross-section differences [28]. At least for the 3 conventional choices of
variables Py, v and s one finds that the 4,, and 4y, show a single power law behaviour
but 4,,, does not. This is illustrated in Fig. 5 for the Py, variable and in Fig. 6 for the s variable
(the situation for the v variable is inbetween these two). Instead of going into details
of the fit let me just mention the essential points. Although the departure from linearity
looks small, the low energy data points have so tiny errors that a simple o, p fit gives
a x%/v ~ 100 (even for the P, variable). Adding a single low lying trajectory brings down
¥3/v to =~ 1 in each case; although this trajectory parameter is sensitive to the choice of
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Fig. 5. The total cross-section difference a) 4(Kp), b) 4(pp) versus piap, showing a departure from linearity
for the latter. The fits are from Ref. [28], which also gives references to the data points

parameter. One gets
og(0) = —0.24 for P
—0.64 v
—1.1 s,

which agree with the corresponding estimates from the exotic exchange reaction
pn — A~A+. Moreover the baryonium residues estimated from the 2 reactions have
roughly similar magnitude as well.
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Fig. 6. Same quantities as Fig. 5, plotted against s. The fits are from Ref. [30]

4. By far the most convincing signal of baryonium exchange is seen in the difference of

inclusive cross-section [30].
4,,(n7) = a(p 5 n)—oa(p 5 ) = . z y:lyfA,s“"_l

i=p,0,B

p p
z'{;;‘;_g g‘g } o

AKp(Tc—) = X Z VIi(y‘i(n‘Sai_l,

i=p,0

let us recall that

A n:p(n —) = ')’2)’?@3“” -1 .

Moreover the p and © coupling to ‘A’ are degenerate
Yo = Vo
where as the 2-body couplings are related by
K=K =30 =7 =5

As a result one expects

dgp(n7) = 4,(n7),
and the 4,,(n”), minus the baryonium contribution,

ANV (n7) = 24,,(n7).
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It was realised quite early in the inclusive game that where as 4,,(n~) and Ay, (n~)
both fall like s-* and are roughly equal, the 4,,(n") neither falls like 5™* nor follows the
above systematics. But a meaningful quantitative analysis has become possible only after
the BNL-Pennsylvania data [31], which came out last year. It is an incredible piece of data
which covers both the BNL and Fermilab energy ranges (P; = 8—150 GeV/c) with the

Aap (£7) (mb.GeV)

dap (77 (ub)

1 | 1

00.0 o1 B 02 03
s (Gev)

Fig. 7. a) The inclusive cross-section difference App, np, kp(=™) plotted against s~%. b) The same plot for
a different kinematic cut. For details see the text and Ref. [30]

same spectrometer and the same kinematic cut. In fact, this is the only piece of data which
covers a large enough energy range with a low point-to-point systematic error to do
a quantitative Mueller Regge Analysis. Fig. 7 shows their result for 4,,(n~) and 4,,(rn")
against s-%. Unfortunately their Kp data has rather poor statistics — the Ag,(m~) shown are
interpolated from Bubble Chamber data for their kinematic cut.

One first notices that the 4, is approximately linear over the entire energy range — one
gets a,(0) =~ 0.4. The A, (n) is equal to 4,,(n") within the errors. Over the Fermilab
range (P > 30 GeV/c) the 4,,(n") is roughly twice the 4,,(n~). Over the low energy range
however there is a clear excess in 4,,,(n™). Fitting this excess in terms of a single baryonium
exchange gives

5(0) ~ —1.3.

In fact, the information content in this single figure is so large that one can get from this
a pretty tight bound on the o-baryonium mixing, which we shall discuss next.
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Phenomenological estimate of w-baryonium mixing at t = 0

If we have 2 states with the same quantum numbers like ® and B, then unitarity effects
will induce some amount of mixing between the 2. In a specific unitarization model, of
course, the magnitude of mixing can be predicted, and two such models have been studied
in detail by Chew and Rosenzweig [32] (CR) and Chan and Tsou [23] (CT).

But let us see first if we can estimate the mixing parameter from the data. For this we
have to assume that the w-B mixing is described by a single parameter

® = cos 0o’ +sin 6B, B = cos 6B —sin o',

where P refers to the pure quark (planar) state. This prescription is built into the CR model
through the assumption of a J independent kernel. On the other hand, in the CT model

® = g, cos ,0° +0, sin 0,B°, B = g cos 83BF — g sin B50°,

i.e. a priori there is no relation between the planar and the physical couplings, but even
in this model the output values of 8, and 6y are roughly equal and p,, ~ pg ~ 1. Therefore
the one parameter prescription given above may be reasonable. In any case since the data
can determine essentially a single quantity let us stick to this one parameter prescription.
We first note that the physical baryonium coupling to the KK channel is proportional
to sin 8. Since both the inclusive and the total cross-section data show a clear distinction
between the pp and Kp with respect to the baryonium signal, one expects the mixing angle
to be small®. Thus we can work to the first order in 6. Then the extraction of the mixing
angle is quite transparent.
L. Since y.§. = y% = y%y, the deviation of 4,,(n~) from 24,,(n~) at the high energy
end essentially measures the deviation of y.3, from its planar value. Taking account of
the errors in these 2 measurements and using the actual 2-body Regge couplings instead
of the approximate relation given earlier, we get
B

@ P s PAY
TATTE _ Gin gV = 0.15+0.39. W
Pea Va

1. The relative size of the baryonium contribution in Kp and pp gives

AR (n7) MK
=L = —sinf 5 = —0.05+0.15. (2
AT (n7) T

Since the 4¢ () data was available over a limited energy range, the limit on the baryonium
contribution was obtained from the difference of 4x,(n~) and 4,,(n~). There is also a contri-
bution to this difference from .5 — 98, which has been taken into account using Eq. (1).
Alternatively we can get this quantity from the total cross-section data

4% K
K» = _sing 'X = 0.054+0.01, @)
dpp e

S If the signal were comparable for the 2 cases, it would, in fact, be impossible to distinguish the ba-
ryonium from other low-lying exchanges like Regge-Regge cuts.
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where the baryonium contribution to 4y, is estimated from the energy dependence (all we
need of course is only an upper bound).
II1. Finally

i

@ 2
Yp

~ 10

= 1=
e

®)

which simply comes from the fact that the baryonium exchange signal relative to © exchange
is an order of magnitude stronger in the inclusive cross-section difference than in the total
cross-section difference.
Moreover

R

w J. (4)
7K

From equations (1), (2), (3) and (4) onc gets a 1 standard deviation bound 0 < 15° which
essentially comes from the inclusive data alone. If one uses the baryonium signal in the
total cross-section data as well —i.e. Eq. (2) in place of (2) — then one gets even a stronger
bound, 8 < 5°

I should add that although the ©—¢ mixing was ignored above its inclusion up to the
first order in mixing angle, would not affect our result, as we shall see later.

Models for o-baryonium mixing

Let us compare this phenomenological bound, with some of the modcl estimates of
®~B mixing. Chan and Tsou have estimated ©-B mixing in the SU(3) symmetry limit
(no w—¢ mixing). Their estimate of the mixing angle is ~45°, i.e. several times higher than
even the more liberal bound <15° following from inclusive data alone. Although the
bound was obtained in the l-parameter mixing prescription (i.c. g,5 = 1), substituting
the CT model values for ¢,5 pushes up the bound by only 50%;, which is still significantly
lower than the model value. Recently this model has been extended by Hansson {33] to
incorporate ¢ mixing as well — i.e. to describe ©-¢-B mixing. But the resulting w-B mixing
angle is still close to the CT estimate, i.e. several times higher than the phenomenological
bound. Of course, in obtaining the phenomenological bound, one has neglected things
like mixing in the Isospin 1 channel {p) and second order effects in w-¢ mixing. Each of
these would contribute to the difference y.5.—7.% along with the o-baryonium mixing
effects considered above. In case the former effects are not negligible one may possibly
arrange to cancel them with a large o-baryonium mixing contribution, so as to reproduce
a small breaking of w-p degeneracy, and hence small a effective angle 6. Barring such
accidental cancellation however, I do not see anyway of reconciling a large w-baryonium
mixing model with the above data. In particular it may be emphasised that there are only
2 places where the w-baryonium mixing effect shown up experimentally (1) o, p degeneracy
breaking (7.9 —7.2)/7.%, and (2) the relative size of the baryonium signal in Kp and pp
Ap(m)/45(n-), and both the effects seem to be rather small.



I shall not be able to describe the CT model. Let me just mention that it is a highly
ambitious scheme, with no free parameters. Not only are the physical ® and B trajectories
and the mixing parameters all determined in terms of the planar trajectories, but the planar
trajectories are also determined by the planar bootstrap constraints. In fact apart from
a single parameter, the meson-baryon-antibaryon triple Regge coupling

b

b

which is taken from phenomenological fits, all other parameters are determined by the
dynamical constraints. Of course the price you have to pay for such a zero parameter model
is that one has to make a number of detailed dynamical assumptions and approximations
on the way.

On the other hand the CR model is a less ambitious programme. But it is simpler
and more phenomenological. It was developed by Chew and Rosenzweig for m—¢ mixing.
Recently it has been extended by Gavai [34] to the w-¢-baryonium mixing case. Let me
summarize the essential feature. In the w—¢ mixing case the planar propagator is

I
MY (s

p?

[} 7
0
¥4 J-ay

where o, and «; are the planar o, f and ¢, f’ intercepts and the superscript refers to even
and odd charge conjugation. The mixing is done by a kernel C, which is assumed to be
SU(3) symmetric and J independent.

=L~
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i.e. it is specified at a given ¢, by a single parameter X. In the J plane the unitarity integral
equation can be written as

P' = P+PCP+PCPC+ ... = (P"' ()"

| W
<
U

and the renormalised pole position are obtained by solving the equation.
Det (P™'=C) = Det (JI-C') = 0,
where

r —p-1 _ aO 0
C'=C~P +JI—(C)+<0 a3>.
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Now the J independence of C implies C’ is also J independent, which makes life simple.
1t means firstly that the renormalised pole positions are simply the eigen values of the real
symmetric matrix C’ and hence real. Secondly it means that the mixing matrix i.e. the
diagonalising matrix of P’ is also the diagonalising matrix for C’, which is a J independent
real orthogonal matrix. In 2 dimension this can be written in terms of a single parameter, as

cos @ sinf
M = (—sin() cos 6)'

The renormalised poles and the mixing angle are, of course, functions of «,,; and the
kernel C. For the SU(3) symmetric kernel, they are

o, = L [oo+az+3K % {(ao—0ts + K)*>+8K?}'/2],
Ua,g = (K- —-K)
and

8 8K
Tan 26% = V8K , Tan20" = — V8

a0—0!3+K ao_a3—K )

Thus given the planar intercepts «g, %3 and one of the physical intercepts a; say, the
model predicts the remaining physical intercepts and the mixing angles. With a o, = 0.58
(taken from the phenomenological p intercept), and a physical f (which is the Pomeron)
intercept o = 0.96 they get a reasonable o, = 0.41. The resulting mixing angles are
0+ = 20.3° and 6~ = —33.7°.

However, there are 2 points where one may need to improve upon this model.

1. The physical « intercept is very sensitive to the choice of x,. Some authors {23, 33]
have preferred the value a, = 0.5, as obtained from the planar bootstrap condition or
also from the Chew-Frautschi plot to the value 0.58, in view of possible non-planar effects
in the 7 = 1 channel. If one accepts this then for the same «, the «, goes down to a rather
low value of 0.34. The mixing angles remain roughly unchanged.

II. The mixing angle 6~ = —34° seems to be too large for the K* production data. The
reason will be clear from the following relations

Yap = 28COs 07,

Yiks = g(cos 07 —/2sin 67),
g(cos 07 +./2sin 67).

Since the couplings are normalised to the ® production data (yg,), it is evident that
a large negative 6~ would enhance the Pomeron contribution and reduce the o contribu-
tion. The K* data shows very little Pomeron contribution; and from a detailed fit Tan
et al. [35] have concluded that it can at most accommodate a - < —15°.

It would be interesting therefore to see if the incorporation of baryonium mixing

within its phenomenological bound can give enough flexibility to the model to account
for the above discrepancies. This was the phenomenological motivation for Gavai’s work.

©
YKk
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I should emphasise that since we have only an upperbound on the @-baryonium mixing
but no lower bound, the general solution will contain the CR solution, but show what are

the maximal variations allowed.
For the ®-¢ baryonium mixing the planar propagator
0

N 1-0g)”
(7-03)7"

HH 0 t-eg)” |

where ag is the planar baryonium intercept. With some approximations the cylinder kernel
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where again SU(3) and J independence are assumed for the kernel C. The physical intercepts

S

are obtained by solving the cubic eigen value equation
Det[JI-C']=0, C =C-P 14JI,
and the mixing matrix M is the diagonalising matrix of C’. Being a real orthogonal matrix
in 3 dimension, M can be described in terms of the 3 Euler angles, i.e.
sin # sin ¢ :

cos & cos 7 sin &
cos & cos i cos { —sin 7 sin cos £ cos {sinpn+cosnsin|.
—cos ¢ sin g sin {+cos 1 cos {

M = | —sin écos{
sin£sin{ —cos & cos # sin { —sin 5 cos {

Without going into details let me discuss the essential features of this model. Where

as the original CR model had 3 parameters («q, o3, K) the present one has six (%o, @3, g, Ko,

K, K;). These are determined in terms of the 6 intercepts,
o, = 0.5 and 0.58,

a3 = 0.2,
o = —0.5+0.3,
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o, = 0.95+0.03,
%, = 0.43+0.03,
- = —140.5.

Here the planar baryonium intercept ay has been chosen from the analyses of Exotic
exchange reactions [27, 28] and from the duality analysis [26], where as the renormalised
baryonium intercept ap- has been chosen from those of the inclusive and the total cross-
-section differences. In terms of these all the mixing angles are fixed. Because of the large
uncertainties in the baryonium intercepts, of course, one gets a range of solutions. It is
remarkable, however, that the whole range of the ®w-B mixing angle is within the phenome-
nological bound both for a, = 0.50 and 0.58. The corresponding range for the ®—¢ mixing
angle is from —33° to —20°.

More precisely the quantity corresponding to the sin® 6 of reference 28] is’

S = Sin2 ‘0, = M13M31—‘\/2 M32

for oo = 0.58, 0 < 5S<0.04 (0 <0 <12°) and for ay = 0.50, 0.009 < § < 0.074
(5° < @ < 15°.

Thus it seems incorporation of ®-B mixing within the phenomenological bound can
give a reasonable © intercept for both o, = 0.58 and 0.5. Moreover it can bring down the
o-¢ mixing to a phenomenologically acceptable value.

I am indebted to R. V. Gavai for his invaluable help in preparing these lectures.
I gratefully acknowledge a number of very helpful suggestions from Prof. G. F. Chew.
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