Vol. B11 (1980) ACTA PHYSICA POLONICA No 2

JET ANALYSIS*
By P. Hoyer
Nordita, Copenhagen**

( Received September 25, 1979)

The various theoretical descriptions of jets are discussed, including lowest order and
leading logarithm calculations in QCD, as well as phenomenological models for non-per-
turbative fragmentation. Recent results concerning jet broadening, general branching equa-
tions and alternatives to the quark cascade model are emphasized.

1. Introduction

It is now about four years since experimental evidence for jet structure was first
presented in ete~ annihilations [1, 2]. The hadron momenta were found to be aligned with
a “jet axis”, distributed like 1+cos? 0 to the beam direction. This strongly suggested
a quark fragmentation picture, in which hadrons taking a fixed fraction of the quark
energy are produced with limited transverse momenta to the quark direction. Since then,
quark jets have been seen in other “hard” scattering processes, namely in deep inelastic
lepton-nucleon scattering and in large p; hadron scattering!.

Data from the new e*e~ machines PETRA and PEP will make it possible to study
15 ... 20 GeV jets. First results [4] already indicate that jets become more “pencil-like”
at high energies, thus simplifying phenomenological analyses of their properties. These
prospects, together with the profound theoretical insights that can be obtained, mean
that jet physics will be an active field in the near future.

The theoretical approaches to quark (and gluon) fragmentation can be characterized
by the kinematic region in which they are expected to apply:

A. Short time scales: Perturbative QCD.

1. Lowest order calculations.
2. Leading logarithm resummations.
B. Long time scales: Nonperturbative hadronization.

* Presented at the XIX Cracow School of Theoretical Physics, Zakopane, June 3-~17, 1979.
** Address: Nordita, Blegdamsvej 17, DK-2100 Copenhagen @, Denmark.
! Reviews on the experimental and theoretical status of jets can be found in Ref. [3].
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The physics at short time scales (large momentum transfers) offers exciting possibilities
for testing Quantum Chromodynamics [5] (QCD). Certain features of the predictions
at the parton level are expected [6] to be insensitive to details of the hadronization mechan-
ism. They can thus be tested directly using hadron distributions.

The hadronization models are more phenomenological, and build on experience
gained from the study of low-p; hadron collisions (which also involve long time scales).
It is of considerable interest to find whether there are some universal features that are
common to both these types of processes.

This is not intended to be a complete review of the subject. I shall discuss both QCD
and hadronization models, but the emphasis will in each case be on recent applications.
To make the lectures self-contained 1 shall, however, present the necessary background
and ideas. In Section 2 the general features of the data are recalled, together with their
interpretation in the parton model [7]. A qualitative discussion of QCD effects is then given
in Section 3.

Section 4 describes QCD jet broadening to O(x,). We find [8] that the increase in
{pry, the average transverse momentum, should begin around Ecy, =~ 15 GeV in efe”
annihilations, and be a sizeable (100%) effect by Ecy = 30 GeV.

A convenient way of formulating leading log calculations in terms of branching
equations is given [9] in Section 5. I derive a master equation for the generating functional
of parton distributions, and discuss its applications.

In Section 6, I discuss a model {10] for hadronization which is closely related to the
multiperipheral models of hadron collisions. This model can be solved analytically in the
region of the rapidity plateau. The solution has some non-trivial and interesting features,
such as a “‘phase transition” point at which long range correlations arise.

A summary and conclusions are given in Section 7.

2. Data and the parton model

Jet phenomena can be studied in all processes where energetic partons are produced.
The most common ones are ete~ annihilations, deep inelastic scattering of e, p or v on
nucleons, and hadron-hadron scattering involving high-p; particles in the final state.
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Fig. 1. Hard scattering processes. (a) e'e~ — hadrons. (b) Deep inelastic lepton scattering: Ip — 14+ X.
(¢) Large pt hadron scattering
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The e*e~ reaction (Fig. 1a) is simple to analyze, as the produced state is pure qq.
It does, however, have the draw-back {from our point of view) that all species of quark
q (which are above threshold) have comparable production cross-sections. It is usually
quite difficult to determine the quark species on an event-by-event basis [11]. Hence the
experimental fragmentation functions are averaged over the quark type, and the situation
is further complicated by weak decays of heavy quarks [12].

In deep inelastic scattering (Fig. 1b) the main scattering is off valence quarks in the
nucleon. Hence the quark species is well-defined. For charged current v interactions even
the charge of the quark is known. A disadvantage compared to e*e~ annihilations is the
presence of spectator particles from the nucleon wave function. The jet energies are also
lower than those soon to be achieved in PETRA and PEP (EJ™* =~ 19 GeV).

The situation in large-py hadron collisions (Fig. Ic) is complicated by the fact that
the hard scattering can involve gluons as well as quarks. If sufficient understanding can be
achieved, this will be a unique way of measuring quark-gluon and gluon-gluon scattering.
New calorimeter experiments at Fermilab and at the CERN ISR, as well as the huge ener-
gies to be achieved in the pp colliders should make jet studies particularly fruitful.

Because of confinement, the produced quarks and gluons fragment into a jet of observ-
able hadrons. In the parton model [7], the time-scale for this hadronization is assumed
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Fig. 2. Comparison of fragmentation functions in different hard processes. (a) ep — e+r+X and
ete” —» w+X (from Ref. (13]) (b) Model parametrization [14] of charged particle distributions in large
o1 pp events (solid and dashed lines) compared to e*e~ data
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to be much longer than that of hard scattering. Hence the two processes are effectively
factorized. It follows that hadronization should have several simple features:

(i) Universality: Jet fragmentation is independent of how the parton was produced.

(ii) Limited py: The natural scale is given by the Fermi motion of quarks inside hadrons
~350 MeV.

(iii) Scaling: The hadron energy distribution should depend only on the fraction x = E/E,
of the quark energy.

The data that has been obtained so far is indeed in qualitative agreement with (i) ... (iif).
Evidence [13, 14] for the universality of fragmentation functions in e*e~, deep inelastic
and hadron scattering is shown in Fig. 2. As I mentioned above, however, the experimental
definition of the “fragmentation function” is not identical in the three processes. This,
together with finite energy effects (choice of scaling variable), etc., means that one should
regard Fig. 2 only as a rough comparison.
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Fig. 3. Average longitudinal and transverse momentum in e*e~ collisions as a function of c.m. energy [4]

There is at present [4] no clear indication of a rise in {pry with increasing energy?
(Fig. 3). The slight increase in {pr) for ete~ annihilations at 13 and 17 GeV could be due
to bottom decays, for example.

Scaling appears to work well for x > 0.2 in e*e~ annihilations {4] (Fig. 4). The experi-
mental accuracy is not high, however, and could well hide moderate scale-breaking. Some
violation of scaling has been seen [16] in deep inelastic v scattering (but at low values of W).

2 Data reported [15] after this school from PETRA on e*e~ annihilations at 27.5 GeV apparently
do show such a rise, however.
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Fig. 4. Comparison [4] of x-distributions of charged particles at Q = 5,13 and 17 GeV

Jet phenomenology today is thus in a situation analogous to that for deep inelastic
scattering before violations of Bjorken scaling were discovered. As we shall next discuss,
scale-breaking is required by asymptotically free field theories such as QCD. It should
become manifest in the data as accuracy and/or energy increases.

3. QCD effects®

In the parton model one assumes that a nearly on-shell qq pair is produced at the
photon vertex in e"e~ — hadrons*. Since the quarks have high energies they live for a long
time before turning into hadrons. This is not usually the case in a field theory. One or both
of the quarks may be highly virtual and decay in a short time interval. Thus in QCD there
is to O(a) a state containing three nearly on-shell partons (Fig. 5), namely a qq pair plus
a gluon (g). If all momenta point in distinct directions we would expect the event to give
rise to three jets.

A 3-jet event has no preferred axis: p; and p, are of the same order. Since such events

3 Some good reviews are listed in Ref. [17].
* For definiteness, I shall in the following limit the discussion to e*e~ annihilations. Similar argu-
ments apply to the other processes.
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contribute a fixed fraction of the total cross-section, apart from the logarithmic decrease
of u,, it is clear that asymptotically,

{pr> ~ Qlog Q, 3.1

et

Fig. 5. An O(x,) diagram for the gluon bremsstrahlung process e*e~ — qqg

where Q@ = Eqy. This is a dramatic (power-law!) violation of the parton model assumption
{pry ~ const., and should be observable even with moderate statistics. In Section 4 we
discuss this and other O(z,) effects in more detail, and try in particular to estimate the
energy range at which (3.1) should start to apply.

Because of the smallness of «, 3-jet events are not very frequent. However, it can be
easily seen® that o(qqg) is sizeable in the region where the gluon momentum is nearly
parallel to one of the quark momenta. Neglecting for a moment the quark mass m,, the
virtual quark propagator in Fig. 5 has the denominator

(Pa+De)? = 2py * Py = 2E,E(1—cos 0) ~ 0> for 0 - 0.

Hence the propagator diverges as 1/6% when 0, the angle between the quark and gluon
momenta, goes to zero. On the other hand, for transverse gluons the g —» q + g vertex
vanishes like 6 in the forward direction: the massless quarks conserve their helicity, forcing
all collinear gluons to be longitudinal. In a transverse gauge we can thus estimate the
contribution to a{qqg) from the diagram of Fig. 5 squared,

— 6\?
otate) ~ o | 040(3) ~ 108 O ~ o o8 O/ 6.

Omin

The extra logarithm in (3.2) compensates the decrease in «,. Consequently ¢(qqg)
remains a finite fraction of o(qq) even at asymptotic energies, and there is no reason to
believe in the usual perturbation expansion. There are two ways out of this dilemma:
(i) Consider sufficiently inclusive quantities, such as total cross-sections, “jet” cross-
-sections [6, 19] or the like. For these, it turns out that the logarithms cancel between the
contributing final states. Low order calculations in o, are then meaningful. This is case (Al)
mentioned in the Introduction, and we return to it in Section 4.

(i/) We may sum all contributions of order («, log @)", neglecting terms of higher powers

5 The following argument is taken from Ref. [18].
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of «, without compensating log’s. This is the leading logarithm approximation® (1.1.a.).
It is feasible to do this because the leading logarithms come from a very restricted region
of phase space, where all momenta are nearly collinear. Furthermore, interference terms
can be neglected in axial gauges. In our example this is clear since such terms have one less
power of 0/6% in (3.2).

Because of the absence of interference terms the Ll.a. has a very simple probabilistic
interpretation. The diagrams to be squared and summed are of the type shown in Fig. 6a
(together with vertex and propagator corrections, which transform the coupling constant

‘a) (b}

Fig. 6. (a) Diagram contributing to multi-parton production. (b) The corresponding branching process

a, into the running one «(Q?)). The corresponding physical process is shown in Fig. 6b:
The photon first fragments into q+q, subsequently the quarks independently emit gluons,
and so on. The fact (which of course must be established by explicit calculation) that all
fragments of a given generation decay independently makes this into a branching process
[21] (Fig. 6b). This is the starting point for our discussion in Section 5.

The leading logarithms come from the region where all momenta are nearly parallel:
We are looking at the structure of a single (fixed-angle) jet. The number of generations,
or “branching time”, is measured by the virtual mass of the partons. As seen in (3.2),
large logarithms imply that the ratio of fragment to parent masses in each decay must
be a small number, say of order §(<1):

108 Opmin ~ 108 (Mgi0a1/Miniviar) ~ 10g 8.
After t decays, the typical parton mass is
m, ~ §'Q. (3.3)

The magnitude of the virtual mass m determines the transverse spread of the decay
products through the kinematic relation

2, 2
m? = E mitp (3.4)
X;

i

¢ For reviews see Ref. [20].
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Here the sum is over all decay products of mass m;, transverse momentum p;r and energy
fraction x; (3.x; = 1). In this way the transverse momentum of a final particle labels the
i

“time” ¢ at which its parent parton was produced. This has been used to study the transverse
spread of jets [22], and also provides a simple way [23] of summing the leading logarithms
in the Sterman-Weinberg problem [6].

It follows from (3.3) and (3.4) that the spread of decay products from partons of late
generations ¢ will be small. We may think [24] of these partons as forming smaller jets
within the overall fixed-angle jet. It is still an open question whether, at sufficiently high
energy, such substructure within jets could actually be detected experimentally.

The partons will presumably continue to branch until their masses reach some fixed
value of order 1 GeV, at which point non-perturbative phenomena take over. The total
branching time is thus, using (3.3),

t ~ log (Q/1 GeV). 3.5

As we shall see in Section 5, however, the running coupling constant implies that the
effective time increases only as log log Q.

With each decay, the virtual mass drops by a large factor 1/5, whereas the energy
is more or less evenly shared between the final particles. Hence the final, nearly on-shell
partons are still quite energetic. It is then reasonable to assume that the hadronization
of those partons bears some resemblance to soft hadron collisions.

Most of the work done on the hadronization aspect has so far been based on the
quark cascade model [11, 25], which was originally proposed [26] for hadron collisions.
New and higher energy data will make such studies even more important. One should
compare general features of the two types of processes, and see whether successful scattering
models can be applied to parton hadronization. In Section 6 we discuss a few such questions,
and investigate a specific, multiperipheral-type model for jets.

4. Jet broadening

I. Infra-red safe cross-sections

As we saw above (Eq. (3.2)), exclusive cross-sections in general have factors log (@/my)
that spoil the convergence of the perturbation‘expansi'on in the Q — oo limit. Alternati-
vely, we could say that the cross-section is singular as m, — 0. The origin of such singulari-
ties is well-known already from investigations [27] of QED. They can be eliminated by
summing over all energy-degenerate final (and initial) states. To O(x,) with m, = 0, these
are states where one quark is replaced by a quark plus a collinear or soft gluon (Fig. 7).

S > YT
._—a‘) 2%}‘ q q g
g
(a) (b) (c)

Fig. 7. The three energy-degenerate states occurring in lowest order. (a) Single quark. (b) Quark plus
soft gluon. (¢) Quark plus hard collinear gluon
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The simplest example of an “infra-red safe” cross-section, for which a sum over
degenerate states is implied, is that of the total ete~ annihilation rate

Ay 2
0101 = TBomn I+ —.TE— +O(as) .

It is indeed free of logarithms, and the reliability of the perturbation expansion is usually
taken for granted.

As was pointed out by Sterman and Weinberg [6], much “less inclusive” cross-sections
can be defined, which arc nonetheless infra-red safe. Their QCD jet cross-section com-
prised events having all but a fraction ¢ of the total CM energy within a cone of half-opening
angle J. Since soft gluons can be emitted in any direction, and a quark can be replaced by
a quark plus a gluon moving in the same direction, without changing the event classifica-
tion, the cross-section is infra-red finite. An explicit calculation [6] showed that the jet
cross-section indeed was free of infra-red singularities. Terms of O(e) and O(8), which were
neglected in the original calculation, have since been included [28]. A summation of all
leading log & teims has also been donc [23] (up to O(g)).

As Q - w, «, — 0 and the perturbation expansion for infra-red safe cross-scctions
converges rapidly. It is then plausible [6, 19] to assume that the QCD prediction, which
is calculated in terms of parton final states, holds also for the physical (hadron) cross-
-section. Thus we have an excellent possibility of testing QCD experimentally: These
predictions should be insensitive to the (so far) poorly understood non-perturbative effects.
Several alternative definitions of infra-red safe cross-sections have by now been sugges-
ted (17, 29, 30].

In practice, it may be difficult to do the tests at presently accessible energies. From
the measured opening angle of the jets [2, 30] and from the fact [4] that {p;) does not
increase with @ it appears that non-perturbative effects dominate jet production even in
the Q = 10 ... 15 GeV range. At upper PETRA/PEP energies perturbative effects could
become important. It is unlikely, however, that non-perturbative phenomena can be
neglected until considerably higher (LEP ?) energies.

With today’s data in mind it is therefore useful to study how and when the emerging
QCD effects manifest themselves above the non-perturbative ‘“background”. Such an
analysis will clearly be more model dependent than the jet predictions discussed above.
In the work [8] that I shall describe here, we tried three different ways of merging the per-
turbative and non-perturbative effects. Encouragingly, all three methods lead to consistent
results concerning py broadening and other QCD phenomena. We therefore believe that
they are reliable first estimates.

II. e*e~ - qqg

To facilitate the following discussion, let me begin by reminding [19, 31] you of the
kinematics and dynamics of the O(x,) QCD process ete~ — qqg (Fig. 5). I shall use massless
kinematics throughout.

The q, q and g momenta lie in a plane, the production plane. The orientation of this
plane w.r.t. the e*e~ beam axis is specified by QCD. It is different for vector and scalar
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gluons and can thus be used to test the gluon spin [8, 17, 32]. Here I shall, however, assume
that thesc angles are averaged over. The event configuration is then completely specified
by the scaled energies

xi=—=' (0<x<1) i=q,q8 .1)

which satisfy
Xt xg+x, = 2. “4.2)
The usual definition of thrust T for a final state with many hadrons h is [33]
pEH
T = max -

A

h

4.3)

Here the maximization is done w.r.t. the direction along which the components p?[ are
measured. The maximal direction is called the thrust axis.

The definition (4.3) can be applied also to a parton final state in QCD. Since T is
linear in the momenta, it takes the same value for energy-degenerate states. Just as we
discussed above, this implies that the singularities cancel. Thrust is an “infra-red safe
variable” whose value is (hopefully) not much changed by the hadronization process.
This is to be contrasted with sphericity S,

> ol

h

S = 2 min ==,
2 Zf[’hlz
h

(4.4)

which was the variable first used by experimenters {1]. For hadron final states, the S and T
axes turn out to be nearly the same. However, in QCD sphericity is a singular variable
(for massless quarks).
For the qqg final state it is readily seen that
T = max (x;)
and the thrust axis is parallel to the momentum of the most energetic parton. The transverse
momentum py of the two other partons w.r.t. the T axis is given by

QZ
Pt = 7 (1=x) (1=x9) (1 =) (4.5)

A hadron which is a fragment of such a parton has, in addition to (4.5), an intrinsic (non-
-perturbative) pr w.r.t. the parton. A straightforward calculation shows that the transverse
momentum of the hadron w.r.t. the thrust axis is, averaging over the non-perturbative
fragmentation,

Pt = Pne+3 [(xﬁ dnex Q% — 2 pionp] sin’ 6. (4.6)
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Here < \p denotes the average for non-perturbative (NP) fragmentation, and x| is the
hadron’s scaled longitudinal momentum. x, ¢ are the parton’s scaled energy and angle to
the thrust axis.

The QCD cross-section for ete~ — qgg to O(x,) is, integrating over the e“e~ beam
direction {31],

L dotaie)_, % xird )
Oporn dXqdx; > (I-xy) (l—x;‘). '

The collinear and soft gluon singularities are explicitly seen in the limits x,, x; = 1.

1I. The overall {(p3>

At first thought, one might expect the (p3> oc Q2 behavior (3.1) to set in at quite low
energies, O ~ a few GeV, sufficient to produce gluons of 1 GeV or so. However, Eq. (4.6)
reminds us of an important fact: the coefficient of Q? is proportional to (xf.)NP. The
gluon must be sufficiently energetic to produce hadrons with transverse momenta above
the NP ones. Since the hadron energy fraction (xﬁ)Np ~ 0.04 is small [1], the p; increase
for hadrons sets in at rather high energies’.

To obtain a quantitative estimate of the rise in {(p2> due to QCD we shall make use
of the KLN theorem [27]. All singularities will cancel provided the energy-degenerate
states in Fig. 7 are given equal weights. In our case this means that we must assume that
the three states give rise to the same hadron {p}). If the partons fragment independently,
this is plausible for the single quark and the soft gluon states. In the case of collinear
gluons, it requires that {p3dyp is the same in quark and gluon hadronization. While these
assumptions cannot be expected to be rigorously valid, we do believe that they are reason-
able for an estimate of the energy scales.

With the above assumption, it is straightforward to calculate the {(p2) of hadrons
w.r.t. the thrust axis using (4.6) and (4.7). Taking (p>np and {x>np from e*e- data [1]
at O = 7 GeV we find

P 1 ( 0\
e T log (Q/A)[ 143 GeV) “0'2]’ (4.8)

where 4 ~ 0.5 GeV. The large energy scale ~15 GeV is due both to the small <xi2,>m>
and to the scarcity of hard gluons. As seen from Fig. 8, the increase in {p2) is only a moder-
ate effect for Q < 17 GeV, in qualitative agreement with data. Already at 30 GeV {p?)
has increased by a factor two, however. This effect should be clearly visible at PETRA and
PEP®?,

7 This is also a reason for why the two-jet structure of ete~ events is seen {1] only for Q > 6 GeV.

8 After this school was held, results were reported {15] from PETRA at Q = 27.4 GeV. The data
indeed shows a (p}> broadening consistent with Fig. 8. It also agrees with the (p¥(z)> prediction to be
discussed below (Fig. 10).

% Other phenomena, such as the weak decay of a new heavy quark, also lead {12] to increasing {p%>.
If top quarks are produced it could prove difficult to determine the QCD effect quantitatively.
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An analogous calculation was done for {p3>. This result is also shown in Fig. 8.
The scale turns out to be essentially the same as for {p3>, but the rise is of course much
more rapid (oc Q%). On the other hand, higher statistics is needed to measure {pt>
accurately.

, U Gev
0 Gev

Fig. 8. The energy dependence of <{p?> and <p> obtained (8] from QCD to O(s)

IV. The seagull effect

It is natural to expect that most of the p; increase from gluon bremsstrahlung will
be reflected in the fast hadrons. We should thus consider {p3(z)}, the average transverse
momentum of hadrons with a fixed energy fraction!® z = 2E,/Q. One characteristic of
gluon bremsstrahlung is immediately obvious from the Feynman diagram of Fig. 5:
To O(x,), pr increases in only one hemisphere. Hence, given the thrust axis, we should
for each event define the “narrow” and the “broad’ hemisphere by considering the value
of thrust in a given hemisphere H:

Ty = max {.Z!{,P'ill/iélii'}' 4.9

As the energy grows, (p3(z)> should increase in the “broad hemisphere” and remain
constant in the “‘narrow” one.

For a quantitative estimate, we note that when Q2 is large we can simplify Eq. (4.6)
for p? to

p? = 1 z2Q*sin? 6. (4.10)

The approximation breaks down for 8 < {pronp/z@, i.e. in the region where the perturba-
tive cross-section (4.7) is itself unreliable. We shall calculate {(p3(z))> using (4.7) and (4.10)

10 A similar quantity has been considered in Ref. [34], using another method.
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over the whole kinematic domain, and estimate how much the result depends on the region
of small p;!t.
If we write

2
<PH(2)> =< PHDne = aS(f )G(Z)Qz, 4.11)
then
To T
6 =222 [ AL [ 1ot v+ax 2-T-x1p, (2
(Z =3 z T2 x3 [ ’ X) Q(X, ‘ x q x
2/3 XL
+02=T—x, T)D, (%)} / D,(2), (4.12)
where x = max {z,2(1-T)} and
x}+x32
oGy x2) = = (=) (1= %) (5 Xy = D).

T (1=xy) (1-x,)

The thrust cut-off T, eliminates the region where the gluon is nearly parallel to the
quarks. We estimate T, to be the point where the thrust distributions of two- and three-jet

6zt T
003~ To=1 4
22k To=0.95 R
00~ -
To=08
I 1 { i

02 0.4 06 08 7
Fig. 9. The dependence of the function G(z) in Eq. (4.12) on the cut-off T,

'! Eventually, higher order (in «s) multi-jet cross-sections limit the region of applicability of (4.7)
to the exterior of a cone of fixed angle, rather than fixed pr (cf. the discussion above). However, the present
O(a;) calculation is sufficient for a study of the onset of QCD effects.
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events merge when NP fragmentation is included (see below). We find then
To =092 (Q = 15GeV), (4.13)
To =095 (Q = 30 GeV).

The results for G(2) turn out not to be very sensitive to the form of the fragmentation
functions. In the following we use D (z) = D (z) = 3(1—2)*/z. In Fig. 9 the dependence
of G(z) on T, is shown. For T, = 0.95, G(2) is only weakly dependent on the cut-off.

! i I I I I | [
<PH(Z)>(6eV))
— 2__. -
o 300GeV
49+4q6
o 1_.1.__ —
\ 156eV
] 1 1 ! t ! 1 L
10 08 08 0.4 0.2 8.2 gL 06 08710

Fig. 10. The average transverse momentum {p(z)> of hadrons with a fixed energy fraction z

We conclude that our results should be reliable for @ 2 30 GeV, and uncertain to perhaps
a factor 2 at 15 GeV due to the dependence on T,.

The prediction for {p(2))> is given in Fig. 10. As in the above consideration of the
overall {p3), the QCD effect is small at Q = 15 GeV. By Q = 30 GeV, however, the asym-
metry of the distribution is unmistakable. This should, then, be a characteristic prediction
of QCD that could not be confused with weak decays.

V. A Monte Carlo model

The third approach to QCD effects that I would like to mention is a Monte-Carlo
study. We generate qq and gqg events according to the QCD cross-sections, and then let
the partons hadronize as in the quark cascade model of Field and Feynman [11]. Since
entire events are generated, the effect of gluon radiation on any distribution can be obtained.
Compared to the above studies, however, a larger number of phenomenological assumptions
must be made.

The total qqg rate generated was based on (4.7),

To
o(qqg) = J‘ ar

2/3

do(qqg)
dT

»
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where T, is the NP cut-off. Since we neglect O(x2) effects, the remaining cross-section is
qq production:

o —
GQL_l = <1 + 77:> O.Born_a(qqg)'

T 1 T T 35T
0 P> (GeV? e
054 _
04l 9q+qq & -
0.2~ -
-~ qq o
i 1 1 1 1 HE(GIEV)
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<PL{2)>(GevY)
-~ 2.__. -
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Fig. 11, (a) The overall {pf> and (b) <(p#(z)) as obtained in Monte Carlo jet simulation
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The choice of T, is to a certain extent arbitrary. We found that a smooth transition from
3-jet to 2-jet events could be obtained with 7, chosen be to at the maximum of the NP qq

thrust distribution,
d [do@awe] _
dr| 4T |7,
This gives the T, values quoted in (4.13)!2,
The energy dependence of the overall (p2> and of {p3(2)) is shown in Fig. 11. They
agree very well with the estimates obtained above. The observability of three distinct jets

can be judged from the angular energy flow diagrams [19] in Fig. 12. This shows the energy
distribution projected onto the qqg plane, with the axes determined by the two most energet-

Fig. 12. Angular energy flow as a function of thrust T at Q = 30 GeV

ic partons. Three jets are clearly seen at @ = 30 GeV. (The significance of such plots must
of course be tested by comparing with structures which arise from fluctuations in isotropic
(phase-space) distributions.)

In conclusion, we have estimated the onset of gluon radiation effects using three dif-
ferent approaches. Each of them involves assumptions about the NP distributions. Signifi-
cantly, however, the three methods give very consistent results. Bremsstrahlung begins
to emerge above the NP background around Q@ = 15 GeV, and is very important at 30 GeV.
The reason for the rather large energy scale is the scarcity- of hard gluons and the soft
fragmentation spectrum.

12 The primordial decay function for gluons in the cascade model was taken to be f(2) = 3(1—2z)2.
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The effects discussed above are significant well inside the PETRA/PEP energy range.
If they are not observed experimentally much of the current use of QCD perturbation
theory would have to be questioned.

5. Partons and branching

As I indicated in Section 3, QCD calculations can be extended to high orders in a, in
the leading logarithm approximation (1.1.a.). The relevance of this approximation at current
energies can certainly be questioned. On the other hand, the qualitative (and quantita-
tive ?) success [35] of QCD scaling violations in deep inelastic scattering is encouraging.
Furthermore, the conceptual simplification that occurs in the 1.1.a. can be a valuable guide.

There are several good reviews of the leading log approach [20]. Here I would like to
show how, once the probabilistic nature of the problem has been established, one may reach
the answer in a straightforward way [9]. This method'? can be regarded as a natural general-
ization of thej parton evolution equations derived by Lipatov [37] and Altarelli, Parisi
{38], and is in some respects complementary to the “Jet Calculus” of Konishi, Ukawa
and Veneziano [39].

In Section 3, I sketched how in the l.la. the full contribution comes from squares
of diagrams like Fig. 6a, and therefore can be thought of as a branching process [21],
Fig. 6b. The salient feature of branching processes is that all fragments that exist at a given
“time” evolve independently: the decay probability of tone fragment does not depend on
any other fragment. Branching processes have been extensively studied mathematically
and found numerous applications.

For conciseness I shall assume a single parton species in the following discussion —
the generalization to several species is immediate and will be given below. We consider

ks

k2

Kn
t >

Fig. 13. A parton branching process k& — k;+k,+ ... +k, in time ¢

the branching process of Fig. 13: What is the probability P(k — k,, ..., k,; ¢) that a parton
with initial momentum k fragments into » partons of momenta k., ..., k, in time t? The
(small) transverse momentum component is averaged over, and “time” is related to the

'3 Similar ideas have recently been proposed in Refs. [36].



150

virtual mass as in Eqs. (3.3) and (3.5). Since we assume that the initial parton was produced
in a hard collision, its mass is O(|k|).

It turns out to be simplest not to consider the above probabilities directly, but rather
the generating functional defined in terms of them:

Fk, ¢, t) = gl {dky ...dk,P(k > ky, ..., ky; t)é(; ki—k)p(ky) ... (k,)/nl. (5.1)

Here ¢(k) is a function that can be varied arbitrarily. It is clear that the fragmentation
probabilities can be deduced once F(k, ¢, t) is known for all ¢.

Actually, F has a simple intuitive meaning: It can be regarded as the outcome of an
experiment with “acceptance’ ¢(k) for observing a parton of momentum k. For example,
if the acceptance is unity, all outcomes are measured with probability one and conservation
of probability implies

Fk,¢ =1,0) = 1. (5.2)

On the other hand, for ¢(k) = 0(1—k) only partons with momenta less than A are accepted.
F is then the probability that all partons at time ¢ have momenta less than 4. This is an
example of a probability that has a simple physical meaning, yet is difficult to express in
terms of inclusive multi-parton distributions. The inclusive distributions are, however,
easy to obtain from F. The single parton distribution is

_OF(k, ¢, 1)
D(k > xk 1) = =5 o0 -

(5.3)

and multi-parton distributions are obtained by repeated functional differentiation.
At ¢ = 0 there is a single parton of momentum k. The initial condition for F is thus

Flk, ¢, t = 0) = (k). 54

We now want to derive an evolution equation for F. The probability for a parton to decay
in time dt is
a(t) P(x)

T (5.5)

dP(k —» xk, (1—=x)k; dt) = dt —
2 k

1, ] .
Here oft) ~ " is the running coupling constant, evaluated at Q% = parton (mass)®. This

dependence on ¢ means that the decay probability is not constant during the branching.
We can, however, eliminate the variation by choosing a new time scale Y,

dy = dt oi(i). (5.6)
2n

Since Y ~ log ¢, the total branching time on this scale grows like log log Q2.
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The function P(x) in (5.5) can be calculated from the basic field theory vertices. For
QCD this has been done by Altarelli and Parisi [38]. If N is the number of colors,

P 1) = N*—1 1+x?
(q = a(x)+g(l—x)) = N 1%
P(g > qq) = § [x*+(1-x%)7],
P _ 2N(1—x+x2)2 .
(g — gg) = 77\(1-x) . 57

The characteristic soft gluon singularity is explicit in (5.7). The derivation below of the
evolution equation for F(k, ¢, Y) is strictly valid only for vertex functions P(x) without
such a singularity. However, the final result can be written in a form which remains meaning-
ful for vertices like (5.7) with infra-red singularitics. No further “‘regularization” is then
necessary.

The generating functional at time dY is, using (5.1), (5.5) and neglecting the contri-
bution from states with more than two partons (which is O(dY?)),

1

dy dYy .
F(k,¢,dY) = (l - 7) (k) + TdeP(xW(xk)(ﬁ((l - x)k). (5.8)
0
The “life-time” T can be obtained by imposing (5.2) on (5.8):
1
-3 f dxP(). (59)
0

Thus, “T = 0” for vertices like (5.7) with infra-red singularities.
From (5.8), the time derivative of Fat ¥ = 0 is

1

1
F(k, ¢, Y)ly=0 = — T ¢(k)+%deP(X)¢(xk)¢((1 —x)k). (5.10

0

d
dYy

We still have to find the analog of (5.10) at arbitrary Y. This can be immediately done
using a convolution property of the generating functional for branching processes, which
I shall next describe.

The evolution of a branching process can be divided into two steps (Fig. 14). The
probability of a final state {k;} at time Y, + Y, is obtained by summing over all possible
intermediate states {k;} at time Y,

P(k = kyy ... ko3 Yi+Yy) = Y Pk = kyy ooy ks YOP(ky > .3 1)
P

XP(ky = ...; Y3) .. P(kp, = ...; Ya). (5.11)
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A sum over all (inequivalent) ways of assigning the final partons {k;} as decay products
of the intermediate partons {k;} is implied. The fact that the partons at ¥, evolve inde-
pendently has been used in writing the decay probability as a product.

Yo+,
Fig. 14. Completencss relation for branching processes

If we multiply both sides of (5.11) by the product ¢(k,) ... ¢(k,) and sum over all
states {k;}, the L.h.s. becomes F(k,¢, Y, +7,) (cf. (5.1)). On the r.h.s., we get a product
Flicy,¢,Y,) ... Fk,y d, Y2). When this is combined with P(k — ky, ... k,; Y,) and
summed over {k;}, we get another F(k, $, ¥,) in which, however, each ¢(k,) is replaced
by F(ki, ¢, Y2).

In other words: The evolution of k into {k;} in time Y, +Y, can be done by first
evolving k into {k;} during Y,. This implies ¢(k) - F(k, $, Y,). Then each parton at Y,
evolves a further time Y,: (k) —» F(k;, ¢, Y,). Formally we can express this as

F($, Y+ 1;) = F(F(¢, V), Yy). (5.12)

It is now straightforward to boost the evolution equation (5.10) to an arbitrary time Y.
We use

d d , _d '
gy [ V) = 1 F6, Y+ )y -0 = 55 FF($, Y), Yly=o. (5.13)

Substituting (5.10) in (5.13) we have the general evolution equation
1
;? Flk,¢,Y) = — %F(k, o, Y)+%deP(x)F(xk, ¢, NF(1—x)k, ¢, Y). (5.14)
(1]
Using (5.9) we may eliminate the life-time T in (5.14),
1
Ed—; F(¢,k, Y) =% J‘de(x) [F(xk, ¢, Y)F((1—x)k, ¢, Y)—F(k, ¢, Y)]. (5.15)
0

This is our master equation. Together with the initial condition (5.4) it determines F(k, ¢, )
at all Y.
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Eq. (5.15) is well-defined also for vertices P(x) that have 1/x and 1/(1 — x) singularities
like in QCD, provided only that energy-degenerate states are summed over. As usual,
this means that the acceptance for soft quanta is unity,

lim $(k) = 1. (5.16)

k=0
Since the momenta of the fragments are always less than that of the initial parton, it follows
from (5.2) and (5.16) that
lim Fk, ¢, Y) = 1. 5.17)

k=0

This is sufficient to ensure the convergence of the integral in (5.15) even for vertices with
infra-red singularities.

Discussion

The evolution equation for single parton distributions follows from (5.15) using (5.3).
By scale invariance,

1 1
D(k = xk, Y) = - D1 = x, ¥) = - D(x, Y). (5.18)

Differentiating (5.15) w.r.t. ¢(xk) and setting ¢ = 1 we get
1

4 vy =1 [appoy| Lo (*, ¥ Lp( > v)-pe 1. .19
720 =4 [0 S0 (5, ¥)+ 50 (55 v) b 1] a9
0

This can be recognized as the Lipatov-Altarelli-Parisi equation [37, 38]. It is interesting to
note that the regularization came almost for free in our approach: The singularities in
P(y) do not need a (), prescription'*.

The master equation (5.15) can be readily generalized to the case of more than one
parton species. The equation is shown symbolically in Fig. 15, with labels to indicate the

Fig. 15. The master equation (5.20) for the case of several parton species
parton type. There is one acceptance function ¢(k) for each species, and several decay

functions P, j(x). If F(k, Y) is the functional for a branching starting with an initial parton
i, we get the set of coupled equations

1
dd—Y Fik,Y) = Z %j‘dxpi-'jk(x) [F(xk, Y)F((1-x)k, Y)~F(k, Y)]. (5.20)
jk 0

'4 This has been observed also in Ref. [40].
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In contrast to the single parton equation (5.19), the master equations (5.15), (5.20)
are non-linear. They can therefore in general not be solved exactly, e.g. by the method of
moments [38]. An explicit and non-trivial solution is known [21, 41}, however, for the
case when ¢(k) = z is independent of k. In this case F reduces to a multiplicity generating

function,
0

Fk,z,Y) =Y 2"P(Y), (5.21)

n=1
where P,(Y) is the probability to have n partons at time Y. It is easy to verify that

Bz W) = i D exp (7/T) (5:22)

is the solution of (5.14). From (5.22) we can find, for example, the average multiplicity

my=2L]  —exp¥im.
dZ z=1
The appearance of the life-time T reminds us that the multiplicity is not a finite quantity
in theories with infra-red singularities like QCD: We should not count the number of soft
gluons.

Although the master equation cannot be solved analytically, it is not difficult to find
an approximate numerical solution. If in (5.15) we treat k as a discrete index (k = 1, ..., N),
the equation becomes a set of N first-order coupled differential equations, which can be
efficiently solved on a computer. The integrand in (5.15) can be sampled only at the chosen
discrete momenta, so that a suitable integration routine is needed (we used Simpson’s
rule).

This method of solution of course applies equally well to the single parton evolution
(5.19), where it is an alternative to moment inversion techniques. Actually, in applications
to data the present method has an advantage. The evolution of D(x, Y) depends only on
the values of D(z, Y) for z > x, as is clear from (5.19). For calculating moments, on the
other hand, the full z-range is required, and this can mean needless extrapolation of data.

We have tested the above method using two vertex functions,

P(x) = (*QCD”)

x(1—x)

P(x) = x(1-x) (¢2) (5.23)
The former is qualitatively similar to the g — gg vertex function in QCD (cf. (5.7)). The
latter is appropriate [39] for a ¢* theory in six dimensions (which is also asymptotically
free). The evolution of the single parton distribution is shown ** in Figs. 16. In the “QCD”
case one can see how soft gluon emission has removed the initial parton peak by ¥ = 1.0.
In ¢, on the other hand, the initial peak remains at all times, albeit with exponentially
decreasing probability.

and

15 To facilitate the numerical integration the initial parton distribution was triangular, peaking at
x = 0.98 and with a base of 0.04. We used N = 100 points.
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Fig. 16. Single parton inclusive distributions at various times for (a) P(x) = 1/x(1—x). (b) P(x) = x(1—x)

Fg(x) = Probability for no parton above x
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Fig. 17. The probability Fo(x) that there is no parton with fractional momentum greater than x. Fy(x)
= 6(x—1) at ¥ = 0. (a) P(x) = 1/x(1-x). (b) P(x) = x(1—%)

The probability Fy(x) that no parton has momentum above x is shown in Fig. 17.
This was obtained using ¢(k) = 6(x—k), as mentioned above. Due to soft gluon emission
in “QCD?”, the likelihood is unity that the initial parton has moved below x = 1, for any
Y > 0. In ¢}, this probability approaches unity according to the life-time 7 = 12. Away
from x = 1, however, the two sets of distributions are qualitatively similar.
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The above examples illustrate the kind of questions concerning jet evolution that can
be answered using the master equation (5.15). It would be interesting to make a phenome-
nological study with the true QCD vertex functions (5.7). In the present approach one
can go beyond single-parton distributions to investigate the over-all structure of the
branching. However, for a comparison with experiment some assumption is required
concerning how the partons turn into hadrons.

6. Hadronization
I. The rapidity plateau

After the hard parton has shaken off its excess mass by rapid bremsstrahlung, it remains
on-shell and eventually turns into hadrons. This last process obviously cannot be described
by perturbative QCD. Instead, we must turn to analogies and phenomenological models.

It is natural to compare hadronization with low-p; hadron scattering. Both processes
involve energetic, nearly on-shell quanta. The comparison is also suggested by the similarity
of the corresponding quark diagrams. The diagram of Fig. 18a actually suggests that e*e~

hy a > [ _a_—-—»——-h’

. I
é — "

¥ C \ L) -

g C_ = C_
¢ 2, DL,

hp, b " b
(a) (b) (c)

Fig. 18. Quark diagrams for (a) ete~ — hadrons. (b) ab — hadrons (meson exchange). (c) ab — hadrons
(pomeron exchange)

annihilation should be simpler than hadron collisions, there being only one quark line
that emits hadrons. In the dominant process of soft collisions (Pomeron exchange), hadrons
are emitted simultaneously, from two quark lines (Fig. 18c). There have been many attempts
to calculate hadron production in low-py scattering using ete~ data, often with encouraging
success. A good review was recently given by Diebold [42].

Do the present e*e~ data support the existence of a plateau in rapidity
Y= ;—log (§+§L), as the quark diagram would suggest? The SPEAR data indicated

—PL

[1] the formation of a plateau, with a central density of ~1.5 charged particles per unit
rapidity at Q ~ 7.7 GeV. This has also been observed [43] at DORIS (Q = 9.4 GeV).
Higher energy PETRA data, while still preliminary, are consistent with a lengthening
plateau [44]. A plateau height of ~1.8 has also been measured in v induced jets at Fer-
milab [45].
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At the energies considered, the fragmentation is likely to be dominantly non-perturba-
tive (cf. Sections 2 and 4). Hence the existence of a plateau supports the analogy to soft
collisions. The height of the ete~ platecau is somewhat larger than naively expected, however.
The plateau height in pp collisions [46] has some energy dependence, increasing from
~1.5at /s = 20 GeV to ~2.1 at /s = 63 GeV. This is still consistent with approaching
twice the ete~ value from below [47]. It is, however, also possible that branching processes
enhance the multiplicity in ete~ annihilations. This effect should grow in importance as
the energy increases.

1t will clearly be of importance for experiments at PETRA and PEP to investigate
the existence and properties of a rapidity plateau. Apart from its height, one should consider
other features, such as correlation lengths and the distribution of gaps in rapidity. In
hadron collisions, these are determined by the probability for a quark line to extend over
‘a long range in rapidity without emitting hadrons, and given by Regge behaviour. Present
data is consistent with similar behaviour in quark jets [48]. On the other hand, the quark
diagram of Fig. 18a suggests a simpler picture for e*te~. Flavour correlations between
hadrons arise when they share the same quark line. Since the single quark line cannot
emit hadrons, the gap and correlation lengths should be the same. By contrast, in hadron
collisions the gaps are shorter because two quark lines must not emit. We return to these
questions below in the context of specific models.

II. The quark cascade model

The general questions posed above are often difficult to answer experimentally, because
of limited statistics or acceptance. Thus it is useful also to consider explicit models that
describe the entire event. Acceptance corrections can then be applied directly to the model
predictions.

The quark cascade model [11, 25] is by far the most commonly used model for hadroni-
zation. Particularly in the parametrization of Field and Feynman (FF) it has been widely
used by experimenters and usually found to agree well with data. Here I would like first
to review very briefly the essentials of the cascade model. I shall then discuss some of its
(theoretical) shortcomings, most of which are well-known. These could become serious in
a more detailed study of jet structure. We are thus led to consider an alternative model [10]
which is free of such difficulties, and related to the well established multiperipheral picture
of hadron scattering.

In the cascade model, hadrons are produced by repeated bremsstrahlung from a quark,

q-q;+h;
|—’ q,+h,
L qs+h;
' 3 (6.1)

-—

In each decay, the produced quark gets a fraction 5, and the hadron 1 —#, of the available
energy. This fraction is distributed according to a primordial fragmentation function
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f(n), with
1
§ f(mdn =1,
0
The total probability (or weight) of a given decay sequence (6.1) is thus
W= l;[f(nk)- (6.2)

The rank of a hadron refers to the production sequence. Thus hadron /, in (6.1) has rank k.
In general, the ordering in rank and rapidity need not be the same. For example, #,; can
have a small energy if 5, ~ 1.
To make the model “realistic”’, a number of further embellishments are required:
Flavour: The quark types in (6.1) are picked according to an assumed probability distribu-
tion.
Transverse momentum: The model is basically one-dimensional, but pr can be added
“by hand”.
Resonances: The primary hadrons in (6.1) can be resonances (p, K*, ...) which subsequently
decay. FF chose equal numbers of pseudoscalar and vector particles.
Having chosen the above parameters, one can fix the primordial function f(y) from
data on one-particle distributions. FF found

f(n) = 0.23+2.315> (6.3)

The model predictions can be efficiently evaluated numerically, and have turned out to
be in good overall agreement with data [1, 2, 43].

The cascade model is well-defined in an infinite-momentum frame, where E = p for
all hadrons. When it is applied to finite energy jets there are ambiguities and inconsistencies,
however. Only one combination of energy and momentum, but not both simultaneously,
can be conserved at each fragmentation vertex. It is also unclear how to terminate the
fragmentation as the remaining energy runs out. In practice, a lower cut-off on the quark
energy is usually applied. This means, however, that the final quark and its quantum
numbers are lost.

The model has a rapidity plateau. This can be seen by noting that hadrons of con-
secutive ranks have energies

E, - 1~n
Eiyy Ml =" e y)

(6.4)

Since the ratio depends only on f(n) in (6.3), the average particle spacing in rapidity is
constant. The plateau has some unusual properties, though, which are not generally
associated with plateaus in hadron collisions. First, I shall argue that the particle distribu-
tion depends on the direction in which the original quark was moving'®. This is true even

16 An argument to the same effect was given in Ref. [11].
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inside the plateau region, where one normally would think that the hadrons are independent
of end effects, due to short range correlations.

Consider the event shown in Fig. 19. The particles are labelled according to rank
and ordered on the rapidity axis. They are to be thought of as only a part of the full distri-
bution, with many more hadrons situated to the left and to the right. I shall show that the
likelihood for generating this sequence in the cascade model depends on whether the original

Prob.~[+1)]° £0)

e A C D E F G H

<<

Prob. ~ (1)

Fig. 19. A rapidity plot of hadrons A, B, ..., H produced in the cascade model. The arrows indicate the
direction in which the original quark was moving

quark moved to the left (i.e., hadron A is the most energetic one shown) or to the right
(in which case H is lowest in rank).

The sequence in Fig. 19 has one unusual feature: the rapidity of B is very different
from what its order in rank would normally imply. If the initial quark moved to the left,
this could happen if B is produced with n ~ 1, i.e. this hadron obtains only the small
fraction 1—# of the available energy. The quark produced with B is then energetic, and
produces C at the typical rapidity distance from A. The remaining hadrons D, E, ... are
also produced with typical energies. The “improbability” of the event is thus measured
by f(1), the likelihood for one fragmentation with =~ 1.

The picture is quite different if the original quark moved to the right in Fig. 19. The
decay sequence looks normal until, after C, hadron B is suddenly produced with a very
much higher energy. After this, hadron A (and the following ones) are at typical distances
from C. This can happen only provided all of the hadrons G, F, E, D, C are produced with
n = 1, so that energy is stored in the quark. Then the quark must, in one decay, give up
almost all its energy to B: n & 0. The “improbability” is now [f(1)]*f(0), clearly different
from what we found previously.

The above argument shows that the hadron distribution depends on the direction in
which it is generated. If in e*e~ annihilation two back-to-back jets are generated, the point
Yem = 0 will be very special. This is not what one would expect in a hadronization picture
with short range correlations.

There is also another unexpected feature of the plateau distribution. We saw above
that although hadron B in Fig. 19 was produced far from A, the next particle (C) was
nonetheless close to A. The generating procedure “remembers’ more than just the position
of the last hadron. This is again different from multiperipheral-Regge models, in which
a rapidity gap, once created, normally is not again populated.

Most of the effects discussed here are likely to be small, and would reveal themselves
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only in a detailed study of the events. It is also possible that the cascade model is correct
and, e.g., the distributions are different on the two sides of yq, = 0 in e*e~ — hadrons.
In either case, it is useful to consider alternative models, more in line with the phenomenol-
ogy of hadron scattering. I shall next discuss a model based on the multiperipheral scheme.

III. A model for quark hadronization [10]

As in the cascade model, we consider the quark diagram of Fig. 18 in 1+ 1 dimensions.
The total weight is written as a product, like in (6.2). However, each factor A(y) is now
associated with a quark line, and depends on the distance y that this quark line extends
in rapidity. From short range correlation and Regge behaviour we expect

h(yy ~ exp(—ay) as y - . (6.5)

The function £ is otherwise unknown. It may include resonance effects for small y.
The weight of an n-particle event is thus

n+1

W, = [T a(y®—=y* 1), (6.6)
k=1

where y™ is the rapidity of the hadron of rank k. @ and y"* P arc the rapidity positions
of the initially produced quarks. They should be outside the rapidity range populated
by hadrons, but are otherwise unimportant parameters. Note that the order in rank and
rapidity can be different. The absolute sign in (6.6) ensures that the weight only depends
on the (absolute) distance between the hadrons that the quark line connects.

The n-particle cross-section is obtained!” by integrating the weight (6.6) over phase
space, subject to energy-momentum conservation:

@ 9] Bl nt1 n
op= | dy, fdy, ... fldyn 2 I h(ly"‘)—y("’”l)é‘z’(; p~p. (67
—w y2 Yn— erm k=

Here yy, ..., y, is the ordered set of hadron rapidities. The sum is over all n! ways of
assigning ranks to the hadrons, thus determining the rank rapidities y®.

The model defined by (6.7) has several advantages compared to the cascade model.
Momentum conservation is exact. There is no ambiguity or loss of slow particles. The
condition (6.5) implies short range correlations and hence a forward-backward symmetric
plateau. There is nothing special about ycy = 0.

Furthermore, resonance effects can at least partly be described by the form of A(y)
at-small y. It may thus be sufficient to consider only the production of stable particles in
(6.7). In this respect the situation is analogous to that in hadron collisions: resonances are
“dual” to quark exchange.

The fragmentation of heavy quarks is believed to be different from that of light quarks,
with the heavy hadron taking most of the energy [49]. In a cascade picture, this feature
has to be put in “by hand” via the primordial function f{). In a rapidity formulation such

171 am assuming only one quark flavour. Several flavours can be incorporated as in the cascade
model,
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sa (6.7), on the other hand, it emerges naturally. The separation in rapidity between light
and heavy hadrons is the typical one, given by the extension of light quarks. This implies
that the heavy hadron will take most of the momentum, because of the mass dependence
. _ (E + P“)
in y=log|——)
my

1t must be said, though, that these good features were obtained at the expense of
calculational simplicity. The weight in (6.7) is a sum of n! terms. Even though most of these
will be quite small, there remains the problem of sorting out and summing the important
ones. Fortunately, this draw-back is alleviated by the (rather surprising) fact that the prop-
erties of the plateau region can be calculated exactly and analytically, in the case
h(y) = gexp (—oay). I shall next describe this solution. Quite apart from its relevance
for jets, I think this feature makes the model interesting to study.

Since the particles in the plateau region carry negligible energy, we may drop the
energy-momentum d-function in (6.7). Substituting also #(y) = g exp (—ay) (and dropping
an overall factor of g) we have

0 © o n+1

o,=g" [ dy, fdva... [ dy, ¥ exp[—a ¥ y®P-y* Y] (6.8)
- 1 Fra-1 Perm k=1

The plateau region of this simplified model (which as we shall see extends from 3@ to
y"* 1) should be identical to the platean of the original model (6.7). The hadron rapidities
in (6.8) can range beyond [y'?, y"* ], but in this region momentum conservation cannot
be ignored.

1 shall begin by reformulating the cross-section (6.8). For convenience I take y® = 0
and y"*Y = Y. The weight of a given configuration depends only on the total rapidity
distance travelled by the quark lines. As shown in Fig. 20, we may characterize the quark

1 2 4 3
— —t + + + y
0 Y
B g e

Fig. 20. Rapidity plot of a 4-particle event. The arrows show the movement of the quark lines

lines as going “forward” (left to right) or “backward”. If there are no lines going backward
the total distance travelled is Y and
Y Y Y
o =g"{dy, {dy,... | dy,exp(—ay) =e "g"Y"/n! (6.9)
o]

y1 Yn-1

This is nothing but the well-known Chew-Pignotti model [50].
Now assume there are m lines moving backward a combined distance 4. The total

distance travelled by all lines is then Y+24. There are n;ﬂH ways of choosing the

m backward-moving lines from the n+1 quark lines. The phase space integral over all
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divisions of 4 into m intervals and of Y+4 into n+1—m intervals can be done explicitly
as in (6.9). The total n-particle cross-section is thus

n @0

o o —aY _Y_” n+1 —2aA Am_l (Y+A)"‘m
g, = g'e [n! + Z( m >fdAe =D —mi | (6.10)
0

m=

This expression can be further simplified by expanding (¥Y+4)"" and doing the integral
over 4. By means of the identity

S )- ()

one finds

G, = g'e”™ E (2a)* " <2: "/f) Y¥/k!. (6.11)
— K
k=0
Consider now the total cross-section

Or =
n

o,

i

If the order of the sums over n and k in (6.11) is reversed one gets a sum involving the
hypergeometric functions F(3k+4%, 3k+1; k+1; 2g/x). These can be expressed using ele-
mentary functions [51]. The final sum over k gives the remarkably simple result

1
op = ) exp (—AaY), (6.12)

where
A= J1=2g/a. (6.13)

It is interesting to note that o blows up as 4 — 0, or « — 2g. A singularity of this
kind could have been anticipated already from (6.8). As o — 0, this expression reduces
to a phase space integral over an infinite volume, which is necessarily divergent. (Similarly,
(6.7) becomes a standard phase space model with momentum conservation.) From (6.12)
and (6.13) we learn that the “phase transition” occurs already at « = 2g. As we shall see,
long range correlations arise at this point, and the hadrons spread over the whole rapidity
axis. The expression (6.8) is meaningless for « < 2g, while the original model (6.7) is still
well-defined (but has no rapidity plateau with short range correlations!).

Because of the factor g" in (6.11), o is actually a multiplicity generating function.
It is likewise easy to find {m) and {4, the average number of backward-moving lines and
the average distance they extend:

1-22

1
=-gY+ —n,
{n) 38 + Y
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1—4 2224441
=—— | oY+ - -1,
{my 32 [g + 2 ]
1-2)? 1-42
(1-4 Y4

4y = ) R (6.14)

As A — 0, there are, on the average, as many backward- as forward-moving lines, and the
distance they cover tends to infinity.

The inclusive particle distributions can be obtained very simply from ;. The proba-
bility for finding a particle (of any rank) at y is equal to the total probability for the quark
lines to migrate from 0 to y, times the probability that they make it from y to Y:

1 do g
o(Y) dy  or(Y)

Using (6.12), this is a plateau of height g/A from 0 to Y, which for y < 0 is cut off as
(g/2) exp (2aAy). The cut-off for y > Y is analogous (Fig. 21). Recalling that momentum
is not conserved in (6.8), this decrease just reflects the correlation length.

AN

0 Y

or(y)a(Y —y). (6.15)

Fig. 21. Hadron rapidity distribution in the model (6.8)

The two-particle distribution can also be expressed in terms of ¢. Subtracting a pro-
duct of single-particle distributions (6.15) we have for the correlation function of two
particles at y,,y, 0 <y, <y, < Y):

2
g
ey, y2) = ~7 ©Xp [—2ai(y,—y)] (6.16)

From this we can see that the correlation length is 1/(2xA), and indeed diverges as A — 0.

Let us finally consider the case of two particles in the central region that have consec-
utive ranks. The probability for a quark line to propagate from y, to y, without emitting
hadrons is exp [—a(y,—y,)}. Hence the two-particle distribution is

1 do g’

or dyidys = 7 SR Lma=D OG-yl [+exp (=22d(2 =y )] (617)

The second term corresponds to the possibility that the hadron at y, has lower rank. It
can be neglected when y,—y; > 1/Q2xA).

As noted previously, the multiplicity is lower than average in the region between two
hadrons of consecutive rank. The single quark line separating them is not emitting hadrons.
Eq. (6.17) reminds us, however, that this is an asymptotic prediction, valid for large y, —y,.
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The second term in (6.17) in fact gives rise to twice the average multiplicity. This enhance-
ment at small separations is linked to the positive correlation (6.16).

As the above examples show, the model defined by (6.8) has some very simple, yet
non-trivial properties. It can be regarded as a natural generalization of the multiperipheral
model proposed by Chew and Pignotti [S0]. We allow quark lines to go “‘backward”, so
that the order in rank and rapidity can be different. As o — oo such backward steps arc
suppressed and our model (6.11) reduces to that of Chew and Pignotti, Eq. (6.9).

7. Concluding remarks

Jet studies can shed light on a wide range of strong interaction phenomena. At present,
onc of the most interesting questions is whether experimental evidence will be found for
multi-jet structure. This would provide a direct test of QCD perturbation theory. As was
emphasized first by Sterman and Weinberg [6], the perturbation expansion is reliable for
properly inclusive “‘jet” cross-sections. In Section 4 we estimated the energy range at which
hard gluon bremsstrahlung should become visible in e*e~ annihilations, based on known
properties of the non-perturbative hadronization. The p; broadening setsinat @ = 15 GeV,
and is a major effect by @ = 30 GeV. It would thus seem that data from PETRA and PEP
will be decisive in this regard.

The structure of individual jets can be calculated in the leading logarithm approxima-
tion (1.l.a.), which is valid for small angles between the partons. The success [35] of the
l.La. in predicting scaling violations for deep inelastic lepton scattering makes this particu-
larly interesting. Furthermore, in jets one can go beyond the single-parton distribution
to discuss correlations and global properties of the events. In the l.l.a., perturbation theory
reduces to a branching process. We made use of this in Section 5 to investigate the event
structure in terms of branching probabilities.

Compared to deep inelastic scattering, the situation in jet physics is complicated by
the fact that hadron, rather than parton, distributions are observed experimentally. There-
fore some assumption is required concerning how partons turn into hadrons, in order to
compare with data on jet structure. (For inclusive quantities such as total jet production
cross-sections this is not required, since one sums over an essentially complete set of states.)
As T discussed in Section 6, it is natural to compare hadronization with low py scattering
phenomena. More data on rapidity distributions, gaps and correlations would help to
clarify this question.

I am very grateful to the organizers of this school for inviting me to attend. The prepara-
tion of my lectures rests on the many fruitful discussions and collaborations I have had
with K. Konishi, T. F. Walsh, P. Zerwas and with my colleagues at the Niels Bohr Institute
and Nordita. Special thanks go to N. Sakai for reading the manuscript.
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