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In this paper we derive the equations of motion for a spinning particle in the presence
of the metric-torsion field using a different method from that of Mathisson and Papapetrou.
We also discuss the behaviour of a spinning body in a static spherically symmetric metric-
-torsion field and compare our results with that of Schiff. We also proved that there is no
precession of gyroscop in absolutely parallelizable space. Finally, we discuss the top experi-
ment which can test our theory.

1

Here we shall discuss the dynamical effects of the torsion field, in particular, on the
motion of a spinning particle.

In Section 3 we shall derive the equation of motion for the moving spinning particle
in a metric-torsion field and equations which govern the variation in time of the spin
of the particle. We derive these equations starting from conservation laws of energy-
-momentum and angular momentum. The resultant equations are different from those
of Mathisson [1], Papapetrou [2] and Schiff [3]. We note that our derivation of the equa-
tions of motion for a spinning particle requires only the invariance of Lagrangian density
for matter, &,,, under local Lorentz rotation and under arbitrary coordinate transforma-~
tions. This derivation does not depend on the choice of the Lagrangian for metric and
torsion fields. Therefore, our equations of motion for spin hold generally for all types of
theories which extend general relativity (GR) by including torsion with the exception
of the supergravity and extended supergravity theory.

To illustrate more concretely the effects of the torsion field, in Section 4 we shall
calculate the time variation of the spin of a particle which moves in a circular orbit in a static
spherically symmetric metric-torsion field, using as an example for the metric-trosion
field the exact solution proposed in [4]. It was found that the Schiff’s effect in GR is only
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a special case in our results. In general, in addition to the precession of spin, the magnitude
of spin will vary periodically along the orbit. In our opinion it may be possible to detect
the existence of the torsion field using this effect.

2

Previously [4], we proposed a program for the gauge theory of interactions of torsion
and metric fields and found exact solutions for spherically symmetric static fields. Here
we shall use these solutions to discuss the precession of a spinning particle in a torsion
field. For convenience, let us briefly review some results of the previous paper which will
be used below.

The lagrangian density for the metric-torsion and matter fields proposed in [3] is:

L= [(Lg+Lo+Lu)V —g (ax)*
= § GR+1F g F + £,) N ~ g (dx)*. o

The equations of motion for the metric and torsion fields derived from it are:

] 11 a
XGaﬁ'l' [2’1F bayFabﬁy— :EF bygFabwgaﬂ] = T;zﬁ, (2)
a — a c c Y a ﬂ . Qa
11F b"‘ﬁ”ﬂ =1 [F baﬂ,ﬂ+BacﬁF bazp_B bﬂFacaﬂ— {dﬁ}F byﬁ+ {Qﬁ} Fabazgjl =S bas
where y and # are coupling constants. The definition of F°,,; and B, are given in [4],
1 ] —
T = = — (=g Z2)
\/—g 6gaﬂ
is energy-momentum tensor and
a g o -
Sbaz=—-—ﬂ— — (\/—ggm)
v —g 0B%;

according to the gauge theory, is the spin current.
In the case of spherically symmetric and static fields we found that the components
of the metric tensor are:

h h\"! .
8oo = <1+ _—>’ & = — <1+ 7) . 822 = ga3fsin® 0 = —1%, 4
r

and the other components are zero.
The components of the torsion are:

1 2
+{L+ — ]} —h/2r 1
r
’ Tzl2 = T313 = _r - T (5)

To:® =
ot 14+h/r

and the other independent components are zero.
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For h we can take the same value as in GR. & = —2KM/c?, while L satisfies the following
equations:
e Lo 6
2r ro ©

If we write L as series
L n 7
- " ( )
n=1

(11= “‘1

then we have:

a, = arbitrary constant,

h
az; = a, a2+—2-,
+h 3h+
a, =a,la,+ — || — +a, ],
4 2\ %2t T\ 2

®

3

From the invariance of %,, %, and %, under local Lorentz transformations and
arbitrary coordinate transformation, the following two laws of conservations can be easily
derived:

Wﬁ;p == -;‘ SabﬂFabap,
Saba"m = O, (9)

where T* is the energy-momentum tensor, or the momentum current, and S°** is the spin
current. For a single mass point they can be taken as:

T = oU*U? = P*U’, (10)
Saba — SabUa’ (11)

where g is the mass density of the particle, U* is its velocity, P* = oU® is momentum and
S is its spin density.
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From (9), (10) and (11) we obtain the equations of motion for a spinning particle
which read as follows:

d o
4 <—dT U+ {ﬁy} U"UV) = —1 S, UPF*, (12)
d ab a cbryB b ad 5 rat D ab

For a macroscopic body we can identify S with its rotating angular momentum. Here
rotation is about the proper centre of mass, while the proper centre of mass refers to the
point which moves with the velocity, U*, determined by Eq. (12).

Similar but not identical equations were obtained by Mathisson [1] and Papapetrou [2].
By a quite different method, they obtained the following equations of motion:

D « D af 1 goi B

2;‘ mU*+ EC' S Ug|=—2SR ﬂe/U (14)
D D D

——:r-' Saﬂ+ UaUl:i; SﬂA+UﬁU}» g‘; Sla = 0. (15)

For a rotating body in a metric field, where
= [ ("= XHT? — ("~ X" T} V ~ g (dx)*, (16)

here X® are coordinates of the point which moves with velocity U

Our equations (12) and (13) take into account the effects of the torsion, but Papa-
petrow’s Eqgs. (14) and (15) do not. Furthermore, there is a formal difference between our
equations and those of Papapetrou. In fact, there are only three independent differential
equations in (15), but there are six components of S$*. Therefore, Egs. (15) do not
determine S* completely. In contrast, our Egs. (13) are six differential equations for six
components of S*. It is obvious that all the solutions of Eqs. (12) and (13) in torsion-free
case satisfy Egs. (14), (15). In this sense, our Egs. (12) and (13) are compatible with
Papapetrou’s Egs. (14) and (15).

Here we would like to discuss the formal difference mentioned above between Egs. (13),
(15) in more detail. Since Eqs. (15) are essentially three independent equations for six
quantities of S, it is necessary to impose three additional conditions on S*, in order
that they may be determined completely. As to what conditions should be added, there
are different opinions in the literature.

Papapetrou suggested that in the rest frame we should have

§*° = 0. an
Pirani [4] proposed the covariant version

5*U, = 0. (18)



177

Tulczyjew [5] suggested another covariant auxiliary condition
D
5P, = 5°* [mUﬁ+ ( o S,,g) 001 = 0. (19)
T - -~

These conditions had their origin in Special Relativity and are then generalized directly
to GR.

In Newtonian Mechanics, the motion of a rigid body can be decomposed into a trans-
lation of some point of the rigid body and a rotation about this representative point.
When discussing self-rotation, generally the centre of mass of the rigid body as the re-
presentative point is considered, and self-rotation refers to rotation about the centre of mass.

However, in Special Relativity the concept of the centre of mass is intimately related
to the state of motion. Meller [6] introduced the concept of proper centre of mass in the
rest system of reference with respect to the body. S* refers to rotation about the proper
centre of mass, and S% are the components of the centre of mass relative to the proper
centre of mass, i.e., relative to the centre of rotation. In special relativity it follows that [6]

o Pxd ,

where S = S, J is the spin angular momentum in the vector form. If V = 0, then
S0 =0 (21)

that is, the centre of mass coincides with the proper centre of mass for a rest body. Thus,
it is generally accepted that in the absence of any field

5*U, = 0. (22)

However, the problem becomes very complicated in GR because the metric fields have
some effects on §'°. Generelly, g4 are functions of spatial coordinates and time. A top
with a finite size and shape, when it moves, occupies different spatial regions at different
times. Therefore, according to Eq. (16) S® will be affected by the change of gaﬁ(a-c', 1).
In the same sense, g,; “deforms” the body. Of course, the deformation depends on the shape
and size of the body, so its effects will be very complicated. Even if ¥ = 0, this holds for
a rotating unsymmetric body with a finite size, because when it is rotating, it occupies
different spatial regions at different times. In addition, in general, g,,(x, r) varies with ¢
and so does S*. Therefore, Eqgs. (21) and (22) do not generally hold in GR. Thus, direct
generalization of those conditions frqm the Special to the General Theory of Relativity
seems problematic.

To summarize, there is no need to add any auxiliary conditions such as Eqs. (17)
and (18) to our Egs. (12) and (13). Additional conditions are in general incompatible with
equations (12) and (13).
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4

Now let us solve equations (12) and (13) in fields given by Eqs. (4) and (5). First we
choose a suitable tetrad as follows:

_ h 1/2

e = \/goo = (1+ 7) s
B\~ 12
PN

?2
(2) \/ g22 ]’

e = \/—g33 =rsin 0, 23)
the other components of ¢ are zero. Recall that

B
r, = {W +3 [~ T T+ T/1, (24)
B, = el [0 + b, e, (25)

substituting (4) and (5) in these, we have

1
Bo1o=Bloo=i<L+—r‘>,
2__3__1_1___\/_,
B, =B’ 3= —=B'33=B,, = -rvL, (26)

the other independent components = 0
for the orbit plane taken to be the X-Y plane. Now, Egs. (13) can be written in the simple
form:

d d d
Esol — F2503, 2";813 — F1303’ ‘_{1;503 — F1S13"‘F2S01, (27)
d d d
ES23 = FZSIZ, __d_TSOZ — F1812’ Il:SlZ — FISOZ_F2523, (28)
where
1\0° —

Equations (27) (28) (12) give us four integrals
(5% +(82*)*—(5°%)? = constant,

(S03)2+(S01)2_(Sl3)2 — Constant,

h 0 ’ 1 01
1+ —}Jvx{L+ —|S° = constant,
r r

r20® +r /L S'® = constant,
which correspond to the usual integrals of energy and momentum.
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A. Let us first discuss the particular case in which space is with absolute parallelism.
In this case

az = 0, L = s Fabaﬁ = 0, P‘l = O, 1:2 = 1. (30)’

~ |~

The general solution of (27), (28) is:
S13 = -—B, S02 = —E, SOI = A Sin ((p+51),
S° = Acos(¢+8,), S?*=Gsin(p+d,), S'?= Gceos(p+6,), 31

where A4, B, G, E, 6, and d, are constant.

X3
%3

«¢
l ()

Fig. 1 Fig. 2

Although the tetrad (23) was chosen to simplify the equations, it rotates with the
orbit motion as shown in Fig. 1. We eliminate the effect of rotation of the tetrad by a local
spatial rotation, as shown in Fig. 2.

8% = s, (32)
where
[ $=10 0 o )
.o lij=cosg Ilj=—sing 0
o= 0 B=sing l3=cosg O (33)
Lo 0 0 12 = 1J
Hence:

§% = Asind,, 8§ = —E, §° = Acosé,,
§'* = Gceosd,, S¥=—-B, 5% =Gsind,. (34)

From this result we conclude that in a space with absolute parallelism all the components
of the spin of a top remain constant. This constant is independent of the orbit. We note
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that in this case the orbit is the same as the geodesics in the Schwarzschild field well known
in GR.

B. Now let us go to the case in which the orbit of the spinning body is a circular one
but fields are given by general solutions (4) and (5).

In principle, the orbit should be determined from equation (12). However, in most
physical cases the right-hand side of (12) is negligible. For these cases the orbit is approxi-
mately the same as that obtained in GR for a particle moving in the Schwarzschild field.
The circular orbit occurs as a particular case. In this case, it is obvious that

03 =~ —hj2r3 . (35)
Hence, according to Eq. (29) F; and F, are constants on the circular orbit, so that the
general solution of Egs. (27) and (28) can be found easily. If
IFal > [Fyl (36)
we have

S% = Acos(VFZ—F2 g+4)),

S13 \/Fz sm (\/F2 F? ¢+6,)—BF,,

SOt = ﬁ%sm (VF2=F? p+68,)—BF,, (37)
' = G cos (VF—F} p+5,),

502 = ﬁ—ﬁlf_—_; sin (VFI—F? p+6,)~ EF,,

S22 = ;]1% sin (WF2—F? ¢—5,)—EF,. (38)

Making the local rotation of the tetrad as before using Eq. (32) we obtain:

~GF,

Jx — §32 I:
VFi—F

+G cos (VFZ—F2 g+6,)sin g,

- sin (VF2—F? ¢ +3,)+EF, :|cos @

J' =581 = —GF, sin (VF2—F2 ¢+8,)+EF, |sin
= \/F — 2 274 9T O, 1 ¢
2 1

—G cos (WVFZ=F2 p+8,) cos ¢,
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~ AF ——
J: = S”3 ;—/~F—*1—F"~ sin (\/F%"'F% ¢+51)—BF23 (39)
2 1

. AF — _ _
§% = [\—/—;—%sin (VFi-F? ¢p+61)~BF1]cos g—A cos (WFZ—F2 p+5,) sin g,
FZ_

2 i

~ AF,
503 = [\7—3 — sin (v F2—F2 9+8,)— BF ]sm g+ A cos (NFZ—F2 p+5,) cos ¢,

3—F1

N GF,
§02 = sm(x/Fz F? ¢+6,)—EF,. (40)
JFIZF?

If the torsion field is very weak and |a,| very small, then [F,|?>> |F?|, so that
F,/NF2—F? ~ 1. In this case, the above formulas can be written in a simple form:

= Gsin [(1—vVF2—F2) ¢+68,]+EF, cos ¢, (41)
J’ = Gcos [(1—vF2=F?) ¢+8,]+EF, sin ¢, (42)
AF
JF = L sm [\/F2 F} ¢+6,]—BF,, (43)
JFi—F
§°' = —A4sin [(1—\/Fi—Ff)qHél]——BF1 cos @, (44)
§% = —Acos [(l-—\/;’?:i’—f)tp+51]—-BF1 sin @, (45)
. GF,
§°2 = sin (v F2—F2 ¢ +5,)—EF,. (46)
JFi-F}

In all the above formulas 4, E, 5, and G, B, 5, are integration constants, and are determined
by the initial conditions. It is interesting that when a, = 0, we obtain (34) and in (34)
G, B, §, are determined by the initial conditions of rotation rates of the body, and 4, E, S1»
are determined by the initial coordinates of the centre of mass, relative to the proper
centre of mass.

If 4=F =0, Egs. (41)‘(46) can be written as:

= G sin [(1—vF2=F3)p+35,], 47)

= G cos [(1—F2=F3)p+56,], (48)

J* = —BF,, (49)

§°' = —BF, cos ¢, (50)

§° = —BF,sin g, &)

5% = F: sin (WF2—F2 g+5,). (52)

JFE—F?
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Eqs. (47)-(49) show the precession of rotation about the z-axis and the precession vector is:

X V
= 1-VF-F1= ’ (53)
.. . . h . .
It is interesting that if a, = — > then all components of torsion vanish, and we come
back to GR. In this case
h 2KM  ¢? —h
= e~ —— N h = e s —_— =, 54
2 2 c? v° 2r 4
so that
3KM
(-FI-F) = - ——. (55)
2¢°r

This is just the usual Schiff’s result [3].

Incidentally, if we use the Pirani condition (18) we can also obtain Eqs. (47)~(52).
But in general 4 and E are not exactly zero. Hence, we should use Egs. (41)-(46) to
describe the effect of rotation of a realistic top. However, of course, 4 and E are small,
and so is Fy. So their effect on rotation is small.

C. If |F,| < |F,|. The general solutions of Eqgs. (27) and (28) can be found easily.
The physically meaningful one is given

_FlA /

S!3 = s €XP— —F% ¢—BF,,
\/F1_F2
S'? = Gexp—F}—F2 ¢,
GF -
§23 - 2 exp—\/Ff—Fg ¢—EE,, (56)
VFi~F?
— AF
SO = ! exp— \/F1 F3 ¢—BF,,
JF—F?
GF —
5§02 = T_’_:exp VF2=F% p—EF,,
\,Fz F2
3 _ _\/ 2_ 2 (57)
A exp F{—F; ¢.

Making the local rotation of the tetrad as before using Eqgs. (32) we obtain:

i} GF I I
Jo= 8% = [\F_{:%?z exp—~/F>—F2 <p—EF1:|cos ¢+ G(exp—vF2—F2 ¢)sin ¢,

~ GF, ——
J=5§"= [\/F" —; exp—~/ F2—F2 ¢~EF1]sin 9 —G(exp— v F2—F2 cos @,
~ F.A
J=8§0 = 1 —-exp VF?~F? ¢—BF,. (58)

VF2_F
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If ¢t - 00, ¢ - 00, 50 we obtain
J* = EF,cos ¢, J'  =EF,sing, J°= —BF,. (59)

Eqgs. (59) show the precession of the rotation axis about the z-axis and the period of
precession is the same as the period of orbital motion.

5

To test the Schiff effect, the giroscope experiments were proposed some time ago.
In our opinion, the same experiments can also test our theory. Our theoretical predictions
are given by Eqs. (41)-(46). Because we have taken into account the effect of torsion
fields, the value of precession of the top’s angular momentum will be different from that
predicted by Schiff. The magnitude of the top’s angular momentum will vary periodically.

The period of variation is approximately the same as that of the orbit because JFi-F?n 1.
The extrems in variation do not necessarily occur at the perihelion and aphelion. Fur-
thermore, the axis of rotation would shift periodically. Therefore, we can observe the shift
of the north pole.

It is too bad that we were unable to determine numerically the effects of torsion
fields. For there is an integration constant, a,, which should be determined numerically.
It is well known that the integration constant, 4, can be determined from the Newtonian
|-2kM

approximation to be & = 5
c

, where K is determined experimentally. However,

there is no experimental measurement of the torsion fields up to now. The measurement
of a, is still a challenge for experimentalists.

One of us (L.Y.F.) thanks Professor A. Trautman and members of his group for
helpful discussions.
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