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THERE IS NO SLOW UNIFORM CONTRACTION OF A FLUID
SPHERE OBEYING AN EQUATION OF STATE*

By R. MANSOURI
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It is shown that there is no slowly uniform contraction of a spherically symmetric
fluid configuration in general relativity — as opposed to the Newtonian case — obeying
an equation of state p = p(p) and having an energy-momentum tensor with compact sup-
port.

1. Introduction

In this paper we will look at spherically symmetric solutions of Einstein equations
representing a finite fluid sphere obeying an equation of state p = p(g). McVittie [1]
conjectured that in the non-static case, the equation of state should be of the form p = p(p, ¢,
r). Tt has been shown actually in [2] that in the non-static case there is no solution of Einstein
equations with an equation of state p = p(g).

In the static case the situation is a bit different. There we know already such solutions
[3]. Let us look at this case more carefully. Imagine a fluid sphere of mass M (Schwarzschild
constant) with an equation of state p = p(g). We now consider an infinitesimal symmetry-
-preserving uniform perturbation where. the total mass M remains constant, We look at
this perturbation in a dynamical sense. This means that the perturbed configurations
should be linked by the dynamical (non-static) field equations. In other words we consider
slowly uniform expansion of a spherically symmetric configuration. A requirement for an
equation of state is that it should be also valid under such perturbations. Otherwise the
intuitive concept of a (global) equation of state breaks down. This requirement is also tacitly
made in all treatments of stability of gravitating systems. In the following we will show that
spherically symmetric static finite fluid spheres do not allow — as opposed to the Newtonian
case (Section 2) — any uniform symmetry preserving perturbations.

One can look at this result from two different points of view. From thermodynamical
considerations of gravitating systems it is to be expected that the pressure p depends also
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explicitly on some non-local variable specifying the system, such as the radius of the system
R as the only degree of freedom in the case of spherical symmetry. As the system is perturb-
ed, R will vary, and therefore p as a function of ¢ alone will not have the same functional
dependence as before. This could explain the negative result of the paper. But one could
ask: how does the general theory of relativity know about the thermodynamical behavior
of the system? This is the second aspect of the result. It seems that the mathematics of
general relativity “knows” in advance the physics of the situation [4].

2. The Newtonian case

We consider the uniform expansion (contraction) of a fluid sphere in Newton’s theory.
An expansion (contraction) of a spherical distribution of matter is said to be uniform if the
distance between any two points is altered in the same way as the radius of the configuration
[5]. Let the radii of the initial and the final configuration of the fluid sphere be R, and R,,
and further let

R, =y R,.

Then, if r; and r, are the distances of any specified element of matter from the center
before and after the expansion

Fy = Yo
if the expansion has been carried out uniformly. Let ¢4, po and g,, p; be the density and
pressure at corresponding points. It is clear that
o1 =y %0 A3)
since the corresponding volume elements in the two configurations are in the ratio y~3,
while the mass enclosed in either is the same.
Consider now a gas sphere in gravitational equilibrium. Then
dp GM(r)

dt r? &

where r denotes the radius vector. Furthermore M(r) is the mass enclosed inside a spherical
surface of radius . G is the gravitational constant. It is an easy task to infer from the above
equation written down for the corresponding points r, and r; that

Py = .V“APO 4)

4/3

14 e Po

— = (-—1> or pl = (—T/g) 91/3. (5)
Po Qo Qo

Thus, if a gas sphere expands (contracts) uniformly through a sequence of equilibrium
configurations, then the matter at every point undergoes a -polytropic change belonging
to the exponent y = 4/3 or n = 3 (Ritter’s Theorem {5]).

and with (3)
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Now imagine that the equilibrium gas sphere obeys the following polytropic equation
of state,
p=k-o"
Then, according to a theorem due to Emden, we obtain as a result of the uniform expansion
another polytropic of index y" with a polytropic temperature different from the polytropic
temperature of the original fluid sphere:
p/ — kl Qly'.

If we denote by g,, po and g;, p; the density and pressure at a point of the gas configuration
before and after the expansion, we get

k  po ol
If we substitute for p,/p, from (5), we obtain

k, @1>4’3 2\ [eo) ~*?
ko (Qo <el> B <Q1> '

Therefore in the case of 7' = 4/3 we have
k' = k.

Ko_ b 0

This means that the polytropic temperature remains constant during the expansion. It is
also a known fact that in this case the entropy remains unchanged.

But we know that the Lane-Emden equations for n = 3 or y’ = 4/3 give a solution
which corresponds to a finite sphere of gas configuration. Therefore the Newtonian theory
allows a finite fluid sphere obeying an equation of state p = p(g) = ko*'3, which admits
uniform perturbation with the same equation of state.

3. The general relativistic case

3.1. Specifying the metric for the case of uniform expansion

We start from the general metric for sphericaily-symmetric time-dependent solutions
of the Einstein field equations in which the source of the gravitational field is a perfect
fluid whose energy momentum tensor has a compact support. The metric can be written
in the form

ds* = e*dt*—e*dr® —e*dQ?, 6)
where «, f and pu are functions of r and ¢, and
dQ?* = d9* +sin’® 9d¢?. 0}

This metric should describe the region of space-time 0 < r<r,, 0 < I < w, 0 << @ << 2m,
—o0< ¢ < oo filled with matter co-moving with the coordinates (¢, r, 9, ¢). Therefore the
four-velocity of the fluid is given by [9]

u" = e %0,
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and satisfies

The energy momentum tensor is that of an ideal fluid
T = (p+ou"u’+ pg".

Now we formulate the condition for a uniform expansion. Let x, be the connecting
vector of two worldlines of neighboring particles [6]. Then the relative position vector
lying in the rest frame of an observer with the velocity u* is x,, = A, x, where the projection
tensor 4, is defined by A,, = g,,—u,u,. It can be split into a relative distance 6/ of neigh-
boring particles and a direction n,; then x,, = n, - 6/, where n,n* = —1. The rate-of-
-change of relative distance is

@ly

T on'n"+3 0,
where the shear tensor ¢,, and the expansion 0 are defined by [6]

— 1 s
O-uv =2 (Duv+l'vu)—' gh;‘v,

and
o, = ",

For a uniform expansion the foilowing conditions should be satisfied:

a) the rate-of-change of relative distance should be direction independent,

b) it should be independent of the position r.
The first condition means ¢,, = 0, and the second one is equivalent to the independence
of 6 from r. For the present metric, we have

o = (% O-/,wo"“’)l/z = \/%:e_a(ﬁ,l"u,t)’

0 = (B, +2p,).

The condition ¢,, = 0 yields

ﬂ,t = Hy ®
and therefore
6 = 3e *u,
or
R
10 =" )
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where we have set
u = log R(r, t). (10)

It will be shown below (see Eq. (19)) that, as a consequence of the field equations, 6 does
not depend on r.

We have therefore shown that the condition u, = f, together with the requirement
that the coordinate system in which Eq. (6) holds is a co-moving one and the Einstein
field equations guarantee the uniform expansion of the fluid sphere (as was defined for
the Newtonian case).

For the co-moving coordinate system (¢, 7, 3, ¢), the variable r is the analogue of the
Lagrangian coordinate of classical hydrodynamics. The function R(r,t) is the Eulerian
coordinate of that theory. That is R(r, t) is the coordinate position at time ¢ of the fluid
particle which at ¢+ = 0 was at the coordinate position r, if we require that R(r, 0) = r.
With this interpretation of R(r, t) it follows that

U=e"R,=30-R 11

is the rate-of-change of R with respect to proper time relative to the observer at ¢t = const,
= const, ¢ = const.
Using the relation (8), the metric (6) can be written in the following form:

ds* = e**dt* — ?;(drz +£2dQ%), (12)
where
log f(r) = u—p,
or
ds* = e**dt* — R*(di* +dQ?), (13)

where dr = dr/r.

3.2. The field equations

To gain more insight into the nature of the problem under consideration, we first
write the field equations for the metric (6). We have

—Go = e (ui+2u,B)—e P+ 35— 2u,8,)+ e, (14)
~Gi = e "Quy+3pi—2um)—e Py (u,+20,)+e 2, (15)

~G3 = e 2Bt putuitBi— Bt udBi—)
—e 2P0t 7 + 05— 0, o+ 11, (0, — B,0))s (16)

- Gi = 2e—2ﬂ(u,rt_M,ta,r—”,rﬂ,t—i-”,t#,r)' 17
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Now the slowness of the expansion means that U given by (11) and the time derivatives
are so small that their products (as well as second derivatives) may be neglected.

Next we notice that all time derivatives in (14)-(16) are negligible, and therefore Eqs.
(14)-(16) are identical with those of a static sphere. At any value of ¢ the configuration
is therefore a static one. This sequence of static models is linked by (17) and (11) which
determines U, and thus how the material moves. We further assume that all members of
the sequence have the same mass M and therefore are matched to the same external
Schwarzschild metric. Subject to this one restriction we are, however, quite free. In other
words, if we take any continuous one-parameter family of static spheres, all of the same
mass M, then suitable internal motions of the material as described by the equation
G} = xT, will generally deform the models into each other, provided the parameter of
the family is treated as a function of time 7 only.

Now the field equation G} = xT} plus the condition that the coordinate system be
co-moving, that is the condition

TH¥=T,, =0
implies that
_G}L = 2e” w(ﬂ,rt—ﬂ,ta,r_ﬂ,rﬁ,t'*'ﬂtﬂr) = 0.
1t then follows from the condition (8)

B = Ho%r
or
. R: P
e = — (18)
R P,

where R is defined by (10) and P is an arbitrary function of time. We therefore see that

R P
1g =g o f 2 19
3 € R P 19
is independent of r, as was required for a uniform expansion.

For our purposes it is more suitable to work with the field equations in a form first
given by Misner and Sharp {7). In a modified form they have been used in [8] and [2}.
In what follows we use these modified field equations as they are given in [2] and look
for corresponding equations in the case of slow motion. We will use the metric (13) writing
it in the unbarred r coordinate.

We define m by
R? = "_R'Z’__.._

L+ U2 2Gm
R

2 2
m = ;—R[l-}-Rz (%) - (%’) :l 20)

or



199

The Einstein field equations then imply that
m, = 47zgR2R,,, 21
m, = -—47tpR2R,,. (22)

These two equations are valid also for the case of slow expansion. Note that, e.g., m(r, t)

as defined by (20) is not valid for the slow motion case, because it depends on UZ2. Neverthe-

less the derivatives of m as given by (21), (22) are first order in U and in the time derivatives.
The condition that the stresses be isotropic, that is the condition

Tll = Tzz = T33
with the restriction (8) leads to the following equation for R, valid also for the slow motion
case:
1 1 B()
—) == -, 2
<R ) R R? (23)

where B(r) is an arbitrary function of its argument.
We now come to the last equations we need to consider. The conservation laws
I*, =0 imply that

Rg,+3R(¢e+p) =0, p,+(e+p)x, =0,

which are first order equations in the time derivative. As a consequence of the existence
of an equation of state and Eq. (18) we obtain from the above equations

PG

T X(x)’ (24)

where h and X are suitable functions of r and x as defined in [2], and

o

0N

where Q(r) is a function of r alone. It can be shown that the thermodynamic quantities p
and ¢ depend only on this variable x. Equation (24) is again valid also for the case of slow
motion.

It has been shown in [2] that Egs. (21){(24), together with the assumption that the
pressure vanishes at the boundary of the fluid, are not consistent. We therefore conclude
that there is no symmetry preserving uniform infinitesimal perturbation of a static fluid
sphere obeying an equation of state p = p(g), if the perturbed configurations are to be
linked by the dynamical equations.
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