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The high energy behavior (in the Regge limit) of nonabelian gauge theories is reviewed.
After a general remark concerning the question to what extent the Regge limit can be ap-
proached within perturbation theory, we first review the reggeization of elementary particles
within nonabelian gauge theories. Then the derivation of a unitary high energy description
of a massive (= spontaneously broken) nonabelian gauge model is described, which results
in a complete reggeon calculus. There is strong evidence that the zero mass limit of this
reggeon calculus exists, thus giving rise to the hope that the Regge behavior in pure Yang-
—-Mills theories (QCD) can be reached in this way. In the final part of these lectures two
possible strategies for solving this reggeon calculus (both for the massive and the massless
case) are outlined. One of them leads to a geometrical picture in which the distribution of
the wee partons obeys a diffusion law. The other one makes contact with reggeon field theory
and predicts that QCD in the high energy limit is decribed by critical reggeon field theory.

1. Introduction

This paper intends to give a review of our present understanding of the Regge limit
of nonabelian gauge theories, in particular QCD. Since cross sections are large in this
kinematic regime, high energy physicists have always been interested in understanding
the dynamics behind it (especially the nature of the Pomeron), but a theoretical descrip-
tion which is based on an underlying quantum field theory is still missing. Most of previous
attempts to understand the Regge limit within a field theory have been based on perturba-
tion theory, and the main difficulty (besides the question which field theory to choose)
was that the number of Feynman diagrams that could be handled always turned out to
be too small. Now QCD is believed to be the right theory of strong interactions, and we
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are asked to understand its behaviour in the Regge limit. Can we hope that the conventional
approach, i.e. the start from perturbation theory, might be successful for this theory?
Let me say a few words about this general question, before I come to details. The point
I would like to make is that there are good reasons to believe that perturbation theory is
a useful starting point, because the Regge limit is not far from that kinematic region in
which perturbation theory works {1] (hard scattering processes). But, on the other hand,
the Regge limit is also sensitive to certain features which are commonly referred to as non-
perturbative.

Let us start with the optimistic part of the argument and consider elastic forward
scattering of a very heavy photon off a nucleon. This is the process measured in deep
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Fig. 1. Hadronic part of the deep inelastic leptoproduction process in QCD

inelastic leptoproduction (Fig. 1), and the standard argument about light cone dominance
1

tells us that in the Bjorken limit (-q2 - 00, § ~ —q? (-— - 1) - 00, X ﬁxed) one pro-
x

bes the short distance structure of the nucleon target: if y, and y, are the two space-time
points where incoming and outgoing photons couple to the nucleon, then (y,—y,)?
< —1/¢*. Within QCD the property of asymptotic freedom then allows to use perturba-
tion theory for this short distance process. Either by means of the operator expansion
and renormalization group techniques or, equivalently, by extracting and summing leading
logarithms of Feynman diagrams, one can calculate the g2-dependence, i.e. the change
of the cross section when we move closer and closer to the light-cone (y, —y,)* = 0.
We now imagine that at some large value of ¢ we take a different limit: keeping now ¢
fixed and taking x — 0, we reach the Regge limit cos 8, ~ s/—g¢? — 0. By choosing ¢*
large enough, our investigation of the Regge limit can be carried out very close to the light
cone, but once g2 is kept fixed we always stay away from it by some finite distance. In terms
of QCD Feynman diagrams it is not difficult to see that those diagrams (Fig. 1) which
govern the leading g2-behavior of the Bjorken limit cannot be expected to describe correctly
also the region of very small x. The tower diagrams of Fig. 1 do not contain ““final state
interactions™ of the produced quarks and gluons and, hence, cannot satisfy unitarity which
is known to be important in the Regge limit (x — 0 limit). If one wants to investigate the
Regge limit within this perturbative approach, it is, therefore, necessary first to find all
Feynman diagrams (beyond those of Fig. 1), which are required by unitary for yielding
a sensible x — O behavior, then to compute their behavior in the limit x — Q.
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We conclude from this that, since the Regge limit, i.e. the Pomeron, can be investigated
very close to the light cone where the (effective) coupling constant is small and perturbation
theory works, perturbation theory may be a good starting point also for studying the
Pomeron. The problem then consists of two major parts: first one has to decide which
terms in the perturbation expansion (Feynman diagrams) have to be taken into account.
Because of unitarity which is crucial for the Pomeron physics, these terms will not be the
same as those which govern the Bjorken limit. Secondly, one has to find a method for
summing them up. As 1 will make clear later, this part of the problem will require new
techniques.

But as I have already indicated before, the Pomeron is also sensitive to certain features
of long distance physics (“confinement dynamics™), which implies that at some stage
nonperturbative aspects might have to enter the calculations. In the elastic scattering
process of a very energetic hadron (say, in the rest frame of the target) the projectile appears
as a composite system of partons which are spread out in impact parameter space. The
probability of finding a slow parton at distance b is given by the impact parameter transform
of the elastic scattering amplitude:

1 1 —
—~ T(s, b*) = — J‘ ke M7, k2 = —1). 1.1
s 2ns
The hadron radius is defined as:
1
(b = —J.dzbb’T(s, b (1.2)
s

and, in general, it will depend on the energy s. It might, again, be useful to relate this to the
hard scattering process in the Bjorken limit. In the deep inelastic scattering process the
photon couples just to those constituents of the hadron which carry the fraction x of the
hadron momentum (x is the Bjorken scaling variable). When approaching the Regge
limit x — 0, these constituents are more and more wee: the Pomeron feels the distribution
of the wee partons inside the hadron. When the energy increases, i.e. the incoming hadron
becomes more energetic, more decay processes are necessary before a fast parton slows
down and eventually creates wee partons, and this may occupy a larger region in impact
parameter space. As a result, the radius (b*) may grow as a function of 5. In order to
estimate how fast this growth could be in a realistic model, it may be useful to recall the
multiperipheral model where

L s, b7y = SO0 poas s (1.3)
s @' Ins

and

(b* =const-a’Ins (1.4)
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(2’ is the Pomeron slope). Lowest order perturbation theory (Fig. 2) in a field theory with
massless vector particles {2], on the other hand, leads to

L7, ) ~ I (1.5)
s |b| >
b = w. (1.6)

This indicates that only after summing many more diagrams one may hope to come some-
what close to (1.3), (1.4): the quantity (b2} can serve as a guide in estimating to what extent
the use of perturbation theory alone is sufficient to “confine” the wee partons inside the

)

Fig. 2. Simplest model for elastic photon-hadron scattering in QCD: the sum goes over all possibilities
of coupling two gluons to the quark lines

fast hadron, and the fact that it is infinite in lowest order perturbation theory of QCD
indicates how difficult it may be to obtain a correct theory of the Pomeron.

Before 1 can start to describe how well understood the Pomeron is within nonabelian
gauge theories (and this understanding is almost entirely based on perturbation theory),
I have to mention the other approach towards a theory of the Pomeron, namely reggeon
field theory (RFT). As it is well known [3], physics of the Pomeron can be discussed most
easily in terms of singularities in the angular momentum plane, and the interaction of
moving pole and cut singularities has been formulated by Gribov in his reggeon calculus
(or reggeon field theory). The rules of this formalism follow from certain analyticity prop-
erties of the S-matrix (existence of partial wave continuation, and ¢-channel unitarity
equations) and are expected to hold in field theories that contain moving Regge singularities.
The values of the parameters of reggeon field theory (intercepts, slopes, and interaction
vertices), however, are not very much constrained from these analyticity arguments alone,
and as long as RFT has not been considered in the context of a specific underlying field
theory, they have been chosen freely. As the most interesting case, the Pomeron with
intercept one has been studied extensively, and the best-known result is the critical Pomeron
theory with

Ot ~ (In5)77, —y ~ 0.2, amn

Since this solution has also been shown to be consistent with the most restrictive constraints
imposed by s-channel unitarity, it is an excellent candidate for a theory of strong interactions
at high energies. More recently [4], also the case of the Pomeron intercept being above
one has been investigated. Apart from the question how presently available energy ranges
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fit into these Pomeron field theories, the outstanding theoretical problem remains the deriva-
tion of the Pomeron parameters from an underlying field theory, such as QCD. 1t is not
unexpected that these features of angular momentum theory will play an important role
in analyzing the high energy behavior of nonabelian gauge theories.

After this introduction I can begin with a brief outline of the program of my talk.
The aim is a review of what at present we know about the Regge limit (i.e. the Pomeron)
of nonabelian gauge theories, and since the problem has not yet been solved completely,
I shall attempt to describe both what has been achieved so far and what seem to be the
main strategies for the future. Most of the existing calculations are determined to find
the high energy behavior of QCD, the theory of (confined) quarks and gluons, but mainly
because of the infrared problems, they start from spontaneously broken gauge theories.
The mass of the vector particles then is considered to be an infrared cutoff which at the
end of the calculations is taken zero, hoping that in this limit one reaches QCD. As I have
said already, all this will be based on perturbation theory.

In the first two sections of my talk I shall outline our present understanding of what
the formal behavior of massive (= spontaneously broken) nonabelian gauge theories is in
the Regge limit. First 1 shall discuss the question of reggeization of elementary particles
in these theories which divides the gauge theories into two classes: those where (at least)
all vector particles reggeize and those where some of them do not. Then I shall describe
(for a simple model) how this property of reggeization is seen to lead to a full reggeon cal-
culus: this follows from the requirement of having (asymptotic) unitarity in both s and
t channel, and the elements of the reggeon calculus are calculable in the limit of small
coupling constant. Although such a reggeon calculus is of interest by itself, I shall consider
it mainly as an intermediate step on the way towards finding the high energy behavior
of massless Yang-Mills theories. This then requires a study of the zero mass limit of the
reggeon calculus, and I shall briefly discuss what we know about this limit. As to the
question how the use of perturbation theory may be extended into the Regge limit, this
first part of my talk then basically selects all those terms in the perturbation expansion
which have to be taken into account for a reliable high energy description: the selection
criterion is unitarity, and the Feynman diagrams which are included in the reggeon cal-
culus are just enough to satisfy unitarity.

Section 4 deals with the question of how to solve this reggeon calculus, i.e. how to
perform the summation of all the terms that we have decided to keep. First I shall briefly
sketch an approach which, although it has not been pushed very far yet, has the advantage
of asking directly for the distribution of the wee partons in impact parameter space. It
allows a rather direct control over (b2 and, according to what has been said in the intro-
duction, over the validity of the use of perturbation theory. Moreover, this technique
seems to be applicable also to QED, where a high energy description which takes full
account of unitarity is still missing. Within this approach one sees the possibility that,
after summing all terms that have been obtained in the first part, the distribution of wee
partons may come close to the multiperipheral picture. Then I shall describe how one
might use the full apparatus of reggeon field theory, in particular its phase structure as
a function of the bare Pomeron intercept, in order to determine the high energy behavior
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of massless Yang-Mills theories. Under the assumption that confining QCD can be
obtained as the zero mass limit of spontaneously broken gauge theories with a modified
ie prescription, this approach predicts critical high energy behavior for QCD, i.e.

Tiotal ~ (lll s)—‘y_

2. Reggeization in Yang-Mills theories

Let us first consider gauge theories quite in general and ask which of them can be
expected to have a *“‘good” high energy behavior. The requirements one would like to
impose on a realistic theory are the existence of moving Regge singularities and analyticity
of the scattering amplitudes in the complex angular momentum plane, In particular, one
would not like to have fixed singularities of the Kronecker delta function type which seem
to exist if the theory contains nonreggeizing particles. This leads us to the question of
reggeization in Yang-Mills theories.

—
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Fig. 3. Reggeization of an elementary particle in field theory: the exchange on the lhs is elementary, on
the rhs the particle reggeizes

It might be useful to recall what reggeization of a particle in a given field theory means.
Suppose the theory contains a particle with spin J, and mass u. The exchange of this particle
in lowest order perturbation theory (Fig. 3) yields the following contribution to the t~channel
partial wave:

T(J,t) = const - &, (2.1)
which is nonanalytic in J. Higher order diagrams for the same amplitude then can have

two possible effects. 1. They leave the lowest order term (2.1) unchanged and simply add
some new contributions:

T(J, t) = const - d,,,+terms analytic near J,. 2.2)

In this case the particle stays elementary and leads to a nonanalytic term in the partial
wave amplitude. 2. Alternatively, the higher order contributions remove the é-function
in (2.1), for example:

a(t)—Jo

20 s - const, 2.3)

ot) = Jo+(t—p*) - B(0) (24)

T, 1) =
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(B(¢) is proportional to the coupling constant of the theory and vanishes in lowest order
perturbation theory. Eq. (2.3) then reduces to (2.1)). In this case the particle is said to
reggeize: it lies on the trajectory (2.4), and the partial wave (2.3) is analytic in J. Experience
with strong interaction physics clearly favors this second alternative: there is no evidence
that singularities of the type (2.1) should be present. Therefore, one should look for theories
in which, if possible, all particles reggeize.

Is there a simple way to decide whether, in a given theory, a particle reggeizes or
not ? The safest way, of course, is the explicit calculation: one computes the next-to-lowest
order term of the partial wave and compares with the power series expansion of (2.3).
This is the method by which, in the early sixties, Gell-Mann et al. [5] found that the
fermion in massive QED lies on a Regge trajectory. Based on these calculations the same
authors derived certain criteria which must be satisfied if a particle is to reggeize. One
of them implies that the theory must contain particles of spin one (or higher spin). This
excludes scalar theories such as ¢ or ¢* (although these theories may still contain moving
Regge singularities). Another criterium requires certain factorization properties of the
Born amplitudes. Later on, Mandelstam [6] gave counting arguments which say under
which conditions a particle must necessarily reggeize. All those methods, when applied
to (massive) QED, agree in that the fermion reggeizes but the photon does not. The boson
in scalar QED has also been found [7] to reggeize: this result came out only after direct
calculation of Feynman diagrams up to eighth order, and it illustrates that factorization
and counting arguments [8] have to be applied with great care.

Theories in which also the vector particle reggeizes must be of the nonabelian type.
To be more specific let us consider models of the following kind:

£ = —% Fi F** +1 (D,$)* - V(¢)+spinor part, (2.5
Fi, = 0,A5—0,A5+gf ™ A4S, (2.6)

D,¢ = (0,—igA,T")¢, (2.7)

[T T?] = if*cT". (2.8)

The potential ¥(¢) is invariant under the gauge group G and has its minimum at
some nonzero value {(¢) # 0. The pattern of spontaneous symmetry breaking may be
rather complicated (for general symmetry breaking schemes see, for example, Refs. [9]
and [10]), and the resulting particle spectrum may mask the original gauge group G. Is
there a simple criterium which tells us under which conditions the vector particles reggeize ?
We first answer the question for two popular models: (i) the Higgs SU(2) model and (ii)
the Weinberg-Salam model, and then state the result for the general case.

For the first case the gauge group G is SU(2), and the scalar field comes in two SU(2)
doublets. With the scalar potential

V@) = ~3igt+ @D 29)
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the Higgs mechanism makes all three vector particles massive:

M? = g*u?a, (2.10)

and leaves one (massive) scalar particle. (Generalization to SU(n) is made in the following
way [11]: one starts from the gauge group U(n), adds n complex fundamental representa-
tions of scalar fields which make all n? vector particles massive, and then restricts oneself
to the SU(n) subgroup of U(n).) Using the factorization criterion of the Born amplitudes,
Grisaru et al. [11] found that both the fermions and the vector particles of this model
reggeize. For the scalars the situation is still somewhat unclear: recently [8] it has been
pointed out that it may reggeize, but in a more complicated way, similarly to the boson
in scalar QED. This is contrary to the former belief [12] that reggeization of the scalar
particle can occur only for special values of the parameters of the theory (masses and
coupling constants). Presumably, only calculations similar to those of Ref. [7] will settle
this point.

For the Weinberg-Salam model with gauge group G = SU(2) x U(1) one adds one
doublet of complex scalar fields:

£ = —} Fi F*~1B,,B"+%(D,9) (D) + V() + ZL(spinors), .11
B,, = 0,B,~-0,B,, (2.12)
V($) = ~n’¢ ¢+ A(pd™)%. (2.13)
As a result of the Higgs mechanism one has the three massive vector bosons:
1
WE = \/2 Fidl), (2.14)
—~gA,+g¢'B,
zZ, = ’i 82, (2.15)
Veit+g?
g' = g-tanfy (2.16)
and the massless photon:
B,+g' A} .
=Bt .17
Jeite

With the same arguments which have been used for the Higgs model one finds [13] that
in the Weinberg-Salam model only the W-bosons reggeize whereas the Z and the photon
do not. Obviously, it is the U(1) subgroup of G which destroys the reggeization: the W’s
being purely made out of the nonabelian A-fields still reggeize. The Z and the photon, on
the other hand, contain the U(1)-type B-field, which destroys the reggeization.

The general connection between the structure of the gauge group G and the reggeization
of the vector particles has recently been investigated by two groups [13] [14]. It turns out
that in order to make all vector particles reggeize G must be simple or semisimple. If G does
not have this property - in particular if it has an abelian invariant subgroup — some
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of the gauge particles lie on Regge trajectories, but others do not reggeize. The Higgs
model with G = SU(2) and the Weinberg-Salam model with G = SU(2)x U(l) are
examples for these two types of models. It is important to note that this result on the regge-
ization depends on the gauge group G but not on the way in which the Higgs scalars enter:
this may introduce additional (global) symmetries into the theory, which manifest them-
selves in the mass spectrum of the vector particles but are independent of G. Finally, if
after invoking the Higgs mechanism some vector particles are left massless, their trajectory
functions (if they reggeize) have to be regularized by some infrared cutoff (cf. (2.4)).

The most important implication of this result concerns the reggeization of the photon
within grand unification schemes. In one of the most popular versions [15], weak, electro-
magnetic, and strong interactions are embedded into a SU(5) gauge theory in which,
according to the result stated above, all vector particles reggeize:

SU(2) x U(1) x SUB)coror C SUCS). (2.18)

Such a scheme, for the first time, would allow to get rid of the undesired Kronecker-type
partial wave singularities connected with the abelian photon, which according to our
present understanding of this problem persist in QED and also the Weinberg-Salam
model.

3. Construction of an asymptotically unitary S-matrix in a massive Yang-Mills theory.
The zero-mass limit

In this section I come to the longest part of my talk. Concentrating on the SU(2)
Higgs model which has been introduced in the previous section, I would like to describe how
one can construct a high energy description of this model which satisfies (in an asymptotic
sense) unitarity in both the direct and the crossed channel. The mass of the vector particle

t

Mo M0

Fig. 4. Model for the Pomeronin QCD: the lhs denotes the unitary high energy expression for vector-vector
scattering in the massive Higgs model; on the rhs the external particles are replaced by qq bound states,
and the gluon mass is taken to zero

mainly serves as a convenient way to avoid the problems connected with massless particles
and will be kept different from zero until the end of this section, where I will mention what
is known about the zero mass limit. The logic of this approach for investigating the high-
-energy behavior of massless Yang-Mills theories is illustrated in Fig. 4a and b: in the
massive case one studies the high energy behavior of processes with the (massive) vector
bosons as external particles. In order to be able to take the zero mass limit, one has to
replace the external particles by appropriate hadron wave function models. The gluon
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“soup” exchanged between these hadrons (the box of Fig. 4b) is taken to be the zero mass
limit of the box of Fig. 4a. Within the line of arguments set up in the introduction the
requirement of having unitarity for the massive case serves as a guide in selecting those
terms in perturbation theory which one has to sum up for having a reliable description of
the Regge limit of massless gauge theories.

After having established that the massive vector particles of the Higgs model reggeize,
it seems very natural to expect that the full high energy description of this field theory
should come in form of a complete reggeon calculus: the three reggeons (i.e. the reggeized
vector particles) interact with each other through all possible (momentum dependent) in-
teraction vertices which are allowed by signature conservation. This will, in fact, be the
result of this section: starting from the requirement of both s and #-channel unitarity,
a full reggeon calculus emerges. The method I am going to describe also allows, at least
in principle, to compute the elements of this reggeon calculus.

Before I am going into more detail, a few words should be said about the method of
calculation. So far the problem of finding a reliable description for the high energy behavior
of a field theory has not been solved, and this failure has, at least in part, to do with the
calculational technique. For each order of perturbation theory the high energy behavior
of a scattering amplitude, say for the 2 — 2 process, can be written as:

g>s[(In )"~ () +(ns)" 7%, (0 + ... +1nsfi()
+fo(H]+0()+0(s™H+ ... 3.1

Conventionally, the leading term of this expansion, f,_,(t), is found by writing down
all Feynman diagrams of this order perturbation theory, and, by means of a clever param-
etrization (Sudakov variables, infinite momentum variables, a-parameter representa-
tion), extracting the highest power of Ins. Summation over all orders in g then yields
the leading-logarithmic approximation (LLA). As it turns out, however, in both QED
and nonabelian vector theories this approximation violates the Froissart bound and,
hence, is inacceptable. Because of the tremendous technical complications, the nonleading
terms in (3.1) f,- 2, ..., fo can be computed so far only for very few special cases (for recent
progress in this direction see Ref. [16]), but not for the vector theories we are interested in.
In order to make further progress it seems, therefore, necessary to look for other methods
of computation.

Since the main defect of the LLA was the violation of the Froissart bound, i.e. the
lack of unitarity, the first goal must be restauration of unitarity. This suggests to use
unitarity for the construction of the amplitudes from the very beginning: the Lagrangian
is used only for determining vertices in the tree approximation. Amplitudes and all higher
order corrections are then found by means of dispersion relations, i.e. by using our knowl-
edge about the analytic structure of multiparticle amplitudes in the Regge limit. This
guarantees s-channel unitarity and, thanks to the reggeization of the vector particle, also
t-channel unitarity in terms of partial wave unitarity. In terms of the expansion (3.1),
presumably only parts of the nonleading coefficient functions f,.,, ... can be found in
this manner: those which are necessary for achieving unitarity. In other words, what one
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obtains is likely to be the small-g approximation of the unitary S-matzix (which does not
agree with the LLA). Whether this approximation is sufficient to give a reliable high energy
theory can, at earliest, be answered after the summation of all these terms has been carried
out. This problem will be subject of the next part of my lectures.

The presentation of how the construction of the unitary S-matrix works will be orga-
nized in the following way. Since extensive use will be made of the analytic structure of
multiparticle amplitudes in the Regge limit, I start (part A) with a short review of those
features which will be needed in the following. Then (part B) the construction of T, _,,, in
the LLA will be described. In part C this approximation will be unitarized, leading to
the full reggeon calculus. In the final part D, I shall discuss features of the zero mass limit.

A. Analytic structure of multiparticle amplitudes at high energies

Throughout this section I shall take a very pragmatic attitude: rather than describing
any proofs or derivations, I shall restrict myself to listing those results which will be needed
in the following. Those who wish to learn more details I refer to the lectures of Stapp and
White [17] in the Les Houches Summer School 1975 and to Refs. [18-20].

Let me first recall a few well known facts about the 2 — 2 amplitude at high energies:
(i) T, .., satisfies a dispersion relation in s with right and left hand cuts. For a theory with
vector particles one needs two subtractions.
(ii) Real and imaginary part of the amplitude are connected via the signature factor:

1 . cos Wi +1 .

Tor = 5 |4 -1+ 2220 ) R (32)
2mi sin 7j

The partial wave F(j, t) is real in the physical region of the s-channel.

(iii) t-channel unitarity comes in form of partial wave unitarity relations. Starting from
the normal r-channel unitarity equations, for example:

disce T = Eﬁ t2i6u (33

one projects out the partial waves F(j, t), assumes that the two pairs of intermediate state
particles couple together to moving-Regge poles and continues down to ¢ < 0:

disc; Fii0) = m o 4

(“+” and “—"" now refer to the j-variable). Together with

o XL RCEC
disc; =
o U - LR e

and
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one has a coupled set of “partial wave” unitarity equations: this is the form in which
t-channel unitarity enters the region s — o0, .7 < 0. In order to obtain a solution to these
unitarity equations, it is sufficient that the partial wave function F(j, ¢) takes the form of
a reggeon calculus. It is important to note that at this stage the parameters of the reggeon
calculus (trajectory function, interaction vertices) may be rather general: t-channel unitarity
alone requires only that the formal rules of the reggeon calculus are satisfied (presence of
signature factors etc.).

We now come to the simplest case of an inelastic amplitude: T, ., in the double
Regge region (Fig. 5). Before statements analogous to (i) — (iii) of T, , can be made for

a2 b s% c
SySaprShe >0
' i S S \
t,t, __9-"5—"_9— fixed
\_/
S

Fig. 5. Kinematics of the 2 — 3 process in the double Regge limit

T, .3, we have to use one of the key results on the analytic structure of multiparticle ampli-
tudes. It says that the amplitude T, in the double Regge limit splits into two parts,
one having energy discontinuities only in the variables s and s, the other one in s and s,
(see Fig. 6). In the partial wave representation one has:

| R o A .
Ty,3 = m JJdJ1d12[SJZS£i JzéjzfjlszR‘*'S“Sgﬁ j‘fj,fj,szL], 3.7
e ™Myt e MU gy
fj=m.—, iy = —r—7—. (3.8)
j sin n(j—j)

N 7
—— +

Fig. 6. Analytic decomposition of the 2 =+ 3 amplitude in the double Regge limit

This decomposition is necessary for both s and ¢-channel unitarity. In the s-channel the
Steinmann relations forbid simultaneous discontinuities in energy variables of overlapping
channels (in the present case, the (ab) and (bc) channels are mutually overlapping). This
problem is avoided when 7, _, ; is written as in (3.7). Modern dispersion theory also proves
that both pieces in (3.7) (or Fig. 6) have only normal threshold singularities in their respective
energy variables: more complicated singularities, such as Landau singularities, are sub-
dominant in the double Regge limit. From the z-channel point of view the decomposition
(3.7) is important, because only in this representation the partial waves F; and Fy are
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real, i.e. free from internal phase factors. For both F{ and F; a reggeon calculus exists [20]
which satisfies 7-channel partial wave unitarity.

We are now in the position to list the properties analogous to (i)-(iii). Once the de-
composition (3.7) (or Fig. 6) of T, ., ; has been made, we have:

(i) each of the two terms satisfies a double dispersion relation (with both right and left
hand cuts and the appropriate number of subtractions).

(if) Real and imaginary parts a related through the signature factors (3.8).

(iif) For each partial wave a reggeon calculus exists which satisfies t-channel partial wave
unitarity.

The generalization to more general multiparticle amplitudes is now rather straight-
forward. The crucial step in each case is that one first has to find the necessary decom-
position of the amplitude, before one is able to write a multiple dispersion relation for the
amplitude or a reggeon calculus for the partial wave functions.

In Fig. 7 this decomposition is illustrated for the two sixpoint amplitudes 7', ,, and
Ty ;: it holds in the kinematic region where all energy variables are as large as possible

L RS

Ty S R

Fig. 7. Analytic decomposition of the 2 — 4 and 3 — 3 amplitudes

and the momentum transfers and Toller angles kept fixed. A more detailed discussion
of these amplitudes (in particular certain subtleties connected with the last two terms in
the decomposition of T,_, and T3 _;) can be found in Ref. [21].

As it can be seen from these few examples, the number of terms in the decomposition
grows rather fast as the number of external particles increases. In practical calculations,
however, it seems not necessary to go beyond the sixpoint amplitude: it is believed that
these amplitudes already contain all the essential complications of the analytic structure
of multiparticle amplitudes (note that some of these complications do not yet show up in
T, . s: the five point amplitude is still “too simple’’). Once the correct expression for these
amplitudes has been found, it seems possible to generalize to higher order amplitudes.

B. T,.,, in the leading fogarithmic approximation
The construction of the multiparticle amplitudes T, . ,, in the LLA which will be describ-
ed in the following has first been started by the Leningrad group [22] and then has been
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carried through independently in Refs. [23] and [21]. A summary of the Leningrad school
calculations can be found in Ref. [24]. I will not have the time to present calculations in
detail but will concentrate on making the logic as clear as possible. I will use the notations
of Ref. [21], and more details can be looked up there. The starting point is the computa-
tion of tree graphs for T, which, in the language of dispersion relations, serve as sub-
traction constants. For illustration consider the 2 — 2 vector scattering amplitude in

S CL O
YR

Fig. 8. Seven Feynman diagrams for vector-vector scattering in lowest order perturbation theory and
their high energy behavior

lowest order perturbation theory. There are seven Feynman diagrams (Fig. 8), and one
finds that some of them individually have a bad high energy behavior (e.g. they grow like 52).
However, when the sum in taken over all diagrams, these unwanted terms cancel and the
final result has the appealing form:

2g%s 3 * helicity matrices - group structure, (3.9

where the helicity matrices are constant (independent of s). As a graphical notation for
(3.9) we use the diagram on the rhs of Fig. 8. The fact that all (but one) Feynman diagrams
of this order are necessary for obtaining (3.9) illustrates the extensive cancellations between
different contributions of pertubation theory which are typical for vector theories. For

Fig. 9. High energy behavior of the 2 — 3 process in the tree approximation

the next amplitude, T, _;, the number of Feynman diagrams, which have to be taken
into account in order to find the correct high energy behavior of the tree approximation,
is already much larger. But the result is again simple (Fig. 9):

L. 1 - .
2g%s —ve: I'(q,, —q,) £ M - helicity matrices - group structure, (3.10)
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where the three component vector
F(q1, —9) = (T 65, T€2, T,83) G.11)

stands for the production vertex labelling the polarizations of the produced vector particle.
It has a nontrivial dependence upon the momenta ¢,, g, (¢? = ¢, g2 = t,) and the Toller
variable n = s, * 8p./s. For T, _ 4 the result is shown in Fig. 10: it takes the form of a multi-

N
be

Fig. 10. High energy behavior of the 2 — 4 process in the tree approximation

peripheral production amplitude, the production vertex being given by (3.11) [21}. T, is
obtained from 7, _, by crossing one of the produced particles.

An elegant method for computing these tree approximations for general T, _, has
been suggested by Lipatov [23]. Writing down a r-channel dispersion relation (without
subtraction constants), only the particle pole contributes to the tree approximation of
T,..,, and for this only the on-shell vertex functions have to be computed. The result
agrees with (3.9.) For T, ., a double dispersion relation in ¢, and ¢, is needed which has
to be saturated by the pole contributions. The only new element is the production vertex
whose off-shell continuation follows from direct computation and the requirement of
gauge invariance:

I'y(q:, —42)(91—q2)° = 0. (3.12)

Proceeding in this way it is possible to verify the results of Figs 9, 10 and to show that
for general T,_, the tree approximations always have this multiperipheral structure.
Within this approach the Lagrangian is needed only for the calculation of vertices in the
tree approximation: tree amplitudes are built up by means of ¢-channel dispersion relations.

In the next step these tree approximations will be ““dressed”, and this is done by using
s-channel dispersion relations plus unitarity. The amplitudes T, ., in the LLA are then
built up order by order perturbation theory. As a result of this ‘““dressing’ procedure, the
elementary exchanges of the tree approximation will be reggeized.

Let me illustrate how this happens. To order g one has the one loop contribution
to T,,,. For this amplitude the dispersion relation is:

,disc T(s', t)
T(s, t) = a(t)+b(t) - s+ — I -—-~—)— +left hand cut. (3.13)

The discontinuity follows from unitarity which, in this order of perturbation theory, has
only the two-particle intermediate state:

discT:}.E(_):{=m (314
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On the rhs of this equation, only the 2 — 2 amplitude to order g2 — which is the tree
approximation — is needed: this we know from the first step of our calculations. Thus
Eqgs. (3.13), (3.14) are sufficient to determine the leading term of 7,_, in fourth order
perturbation theory: the integral in (3.13) goes as s -Ins and, hence, dominates over
the subtraction constants. The result is the term of the order g* of the reggeizing vector
exchange:

e-— ina(t) — 1
Tyoy = —g2s® APV helicity factors - group structure, (3.15)
where
d’k 1 1

a(t) = 1+(t—M>)g? g% = -t (3.16)

) kI+M? (g—k)i+M*’
Comparison with the tree approximation (3.9) shows that the elementary exchange of
(3.9) has been replaced by the reggeizing vector exchange.

In order g° we have to calculate the one loop correction to the 2 — 3 amplitude.
In principle, we could proceed in the same way as we did for T, _ ,: one uses the decomposi-
tion of Fig. 6 and writes down a double dispersion relation for each of the two terms,
including the right number of subtraction terms. The various discontinuities and double
discontinuities are computed via unitarity, for example:

d*scsab{?"3%(' :ét( : l l \ (3.17)

On the rhs, only tree approximations are needed in this order of g. Let me, however,
shortcut these calculations a little bit. I directly use the ansatz (3.7) and, anticipating the
result that the singularities in j;, and j, Will be the poles belonging to the reggeizing vector
particle, I simply write:

T2'*3 = Sazszb,—azéazétn—azFR+Sals:z-al€alfa2—leL (3'18)

(the functions «; = a(t;) should, of course, be the same as in (3.16)). The unknown quanti-
ties are now the coefficient functions F; and Fy * Fy, for example, is determined by taking
the s,-discontinuity of Eq. (3.18), expanding in powers of g, and comparing the term
g with the rhs of Eq. (3.17). A consistency check can be made by taking the s-disconti-
nuity of (3.18) and comparing it with the result of evaluating the unitarity equation which
yields the s-discontinuity: both Fy and F; in (3.18) are already fixed by the s,, and s,,
discontinuities, respectively, and no further freedom is left. What we have found in this
way is that, up to this order of perturbation theory, T,_, is given by the exchange, in
both the ¢, and ¢, channel, of the reggeized vector particle. This is to be compared with
the tree approximation (Fig. 9) where the exchanges are the elementary vector particles.
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In order to make this comparison more explicit (and also for later convenience), we re-
write Eq. (3.18). Using the results for F; and Fy [21], (3.18) can be written:

a3 —1 #2—1
Tyos = 28 —2— (g1, —42) —=—; x helicity matrices x group structure  (3.19)
tl - M 12 - M
S c . .
(where terms of the order g®In Satoe have been neglected). Eq. (3.19) is the form in
5

which the double Regge exchange amplitude (Fig. 11) would conventionally be represent-

Fig. 11. The leading-logarithm approximation of T, 5: the wavy lines denote the exchange of a reggeized
vector particle

ed: it is equivalent to (3.18), but it looses the information about the analytic structure
in the energy variables.

In order g% two contributions have to be calculated: the two-loop correction of T, _,
and the one loop correction to T, _ 4(T5.3). For T, , we again use the dispersion relation
(3.13). The unitarity equation for the discontinuity now has several contributions:

¢ 93 320

On the rhs of this equation, all amplitudes are known from previous steps: T, in order
g? and g% and T, ,; in the tree approximation. Inserting the result into the dispersion
intergal, we correctly reproduce the coefficient proportional to g¢ of the amplitude (3.15).

The one-loop contribution to T, _ , (and T _ ;) is obtained in the same way as for T, _5:
to proceed most generally, one makes the decomposition (Fig. 7) and writes a multiple

Fig. 12. The leading-In s approximation of 7% .4

dispersion relation for each term (with the right number of subtractions). Then unitarity
equations are used for computing, in the given order, single and multiple discontinuities.
But we again shortcut this procedure and make the ansatz analogous to (3.18). There
are now five unknpwn coefficient functions which can be determined from the (single)
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discontinuities in the five subenergy variables. The discontinuity across the total energy s
again serves as a consistency check. The result for T, 4 can be written (Fig. 12):

o Su ' a be | o Seat |
T,o4 = 2g%s I'(g,, — c > T(q —q;) ——;
2-4 g tl-Mz (4, q2) tz—MZ (42, —4a3) t3—M2
x helicity terms x group structure, (3.21)

and what we have just computed is the term g€ in the power series expansion of this equa-
tion. This result (Fig. 12) is the ““dressed” generalization of the tree approximation in Fig. 10.

This procedure of calculating order by order perturbation theory all multiparticle
amplitudes 7., in the LLA can be continued up to arbitrarily high order (in Ref. [21],
this has been done up to the order g®). Let me, however, stop already here and state the
general result. For the four, five, and sixpoint amplitudes we have found that the T, ,,
have the simple multiregge form with only pole exchanges, and one should expect that

Fig. 13. The leading-In s approximation of Ty-m

this holds for general T, ,, (Fig. 13). This then generalizes the reggeization of the vector
particle, as it was found already by Grisaru et al. [11] for 7, _, on the level of the Born
approximation. A nontrivial feature of this result is the fact that no Regge cuts appear:
signature conservation rules would very well allow for two Regge cuts in the central rapid-
ity gap of T, (Fig. 12), but as a result of some subtle cancellations [21] these cut contri-
butions drop out for the LLA. As we shall see later, such cut contributions will, however,
come in when we go beyond this leading logarithmic approximation, requiring full s-channel
unitarity.

One may ask how well justified our extrapolation from T, ,,, T, 3, T5.4, T5.3 to
general 7, ,,, was. As a “proof™ for the correctness of this generalization one can perform
a consistency check and test the unitarity content of the 7}, unitarity puts nonlinear
constraints on the elements of the set 7, ,, which, on the level of the LLA, must be sat-
isfied if our result is correct. For the simplest case, T, ,, it can, in fact, be shown [25]
that the elements T, ,, and T, , satisfy the “bootstrap” equation:

diSCS T2_,2 = = and.Qn
(3.22)

t quantum number of
the vector particle
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When ‘‘squaring”, on the rhs of this equation, the T, , amplitudes, one has to take that
quantum number configuration which corresponds to the exchange of the vector particle:
from Fig. 13 it is clear, that in the LLA all t-channels carry the quantum number of the
vector particle and, in particular, there is no vacuum quantum number exchange yet.
(For our SU(2) model we have, after the symmetry breaking due to the Higgs mechanism,
a global SU(2) symmetry. If we call this symmetry, for the time being, isospin, than the
vector particle carries the quantum number 7 = 1. On the rhs of Eq. (3.22) we then have
the possibilities 7 = 0, 1, 2, and it is the I = 1 configuration that we must take.)

For T, ; we have three constraints given by unitarity. In Ref. [21] it is shown that
the following relations hold:

a a
~ E ; b (3.23)
discs, T2+3 = éb = %: f df2p i
[
Ne

quantum number of
vector particle

quantum number of vector particle

and i

discg Tpw3 = E 3 f df2, 1 (3.24)
]
[

—%
—e .
quanturn number of vector particle

On the rhs of these equations the r-channel quantum numbers again have to be that of the
vector particle. In the same way it can be shown that for T, ,, and T, unitarity holds
for all energy variables.

In order to summarize these unitarity properties of the 7, _,, in the LLA I use a matrix
notation. Let T be the matrix whose elements are the T, ,,:

T2"’2 T2~'3
T = T3_,2 T3_.3 eee b (3.25)

and let the subscript “1” remind us that we are dealing with the LLA. Then Egs. (3.22)
~(3.24) are elements of the following matrix equation:

TO-TO* = 2i- TW . TM* quantum number restricted. (3.26)

On the rhs, all t-channels must have the quantum number of the vector particle. This
restriction signals that 7™ is not yet completely unitary: to find the missing pieces will
be the task of the following subsection.
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C. Unitarization

In order to find a T-matrix which is fully unitary, i.e. satisfies Eq. (3.26) without.
any restrictions on the rhs, we make the ansatz:

T=YT®" 3.27)

with all the 7™ being matrices of the form (3.25). The expansion parameter is the following.
T is the LLA which has been obtained in the previous part; in the sense of the expansion
in Eq. (3.1) it represents the sum of the leading terms f,_, (In 5)*~1. T is the sum of the
next-to-leading terms, but as it was said at the beginning of this section, only those parts
of the f,_, will be found which are required by unitarity. Similarly, T®® corresponds to
the f,_3, etc.

To begin with the elements of T®, we recall that 7" had nothing but the quantum
number of the vector particle in all exchange channels. This was because the leading power
of In 5 in each order of perturbation theory always belongs to odd signature (the expansion
of the signature phase factor (""" +1) in powers of g2 starts with the constant —2
for odd signature, but with O(g?) for even signature). The requirement that the amplitude
is odd under s+« u crossing projects out the quantum number of the vector particle.
T® therefore must contain even signature exchanges, in particular the Pomeron. The
easiest way to find these amplitudes is via unitarity:

TO TP = 2 j TOTOF o ature: (3.28)

This defines T'®: on the rhs, at least one t-channel must have even signature, otherwise
we would be back at Eq. (3.26) and nothing new would have been found. Eq. (3.28) defines
discontinuities; for obtaining the full amplitudes one uses the Sommerfeld-Watson repre-
sentations, e.g. (3.7). The simplest example is T, _,,®. From (3.28) we have:

diSC, TZ(i)Z = Z [thJTZ—mIezven signature® (329)

(2)
ase 1, = 3 R 0K
22 Z even signature

Fig. 14. The leading-In s approximation for even signature amplitudes 7, -, as dcfined by its discontinuity

This determines the partial wave of T, ,, and is illustrated in Fig. 14. For one of the even
signature channels, the Pomeron, the leading singularity in the j-plane comes out as a fixed
cut [25]to the right of j = 1: it violates the Froissart bound and also dominates the LLA
(3.15), both being a clear indication that the expansion (3.27) cannot be truncated after
the first or the second term.

In case of the 2-3 amplitude the signature degree of freedom allows for three ampli-
tudes contributing to 7%®: the configurations (z, 7,) = (-, +), (+, —), (+, +). For
the first case a closer look at the signature factors (i.e. counting powers of g2 in Eq. (3.81))
shows that, out of the two terms in the decomposition of T, 5 (Eq. (3.7) or Fig. 6), the
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second one which has the s,.-discontinuity dominates over the first one. Hence, the ampli-
tude can be constructed out of the s, -discontinuity alone:

discsbcTZ(i)El = Z sdQnTZ—m‘fx : T2+—>n|even signature* (3'30)
)

. 2)
d,sc T —ZW‘....‘.M .
She  2—=3 even sighature

Fig. 15. The leading-ln s approximation for the 2 — 3 amplitude with signatures (z,, 72) = (—, +)

In terms of reggeon diagrams, this equation is illustrated in Fig. 15. For the signature
configuration (+, +), the g2-expansion of the signature factors implies that the amplitude
is proportional to its s-discontinuity:

TZ(E')B ~ diSCs Tz(i)a = Z IdQnTZ—m’I;l*-vS'even signature- (331)

The reggeon diagrams for this amplitude are shown in Fig. 16.

Fig. 16. The leading-In s approximation for the 2 — 3 amplitude with signatures (z,, 72) = (+, +)

The construction of T,_,4, T3 proceeds in the same way. For the various signature
configurations (—, —, +), (—, +, =), (+, =, =), (+, +, =) (=, +, +) (note that
(+, —, +) does not belong to 7™ but to T7®), it is always sufficient to compute single
discontinuities, and what one obtains are diagrams similar to Figs. 14-16. The following
pattern then emerges for the elements of 7®: whereas the element of T (Fig. 13) have
always just one reggeon in the t~channel, those of T (Figs. 14-16) can have either one
(for odd signature exchange) or two reggeons (for even signature exchange) in each r-chan-

TP

Fig. 17. Elements of the reggeon calculus for 7

nel. Since the rules, according to which the reggeon diagrams of Figs. 14-16 are constructed,
agree with the general reggeon calculus for inelastic production amplitudes {20], the
elements of T® also satisfy t-channel unitarity. The elements of this reggeon calculus
(Fig. 17) are obtained from the defining equations (3.28), (3.29) (analytic expressions will
be given in Ref. [26]). To complete the construction of T¢?, let me mention that also certain
nonleading terms obtained from expanding the signature factors of the elements of T
have to be counted as elements of 7?,



302

The construction of T, T .., essentially repeats the steps which have lead to 7!
and T'?, At the level of 7® new contributions to the partial waves with only odd signature
exchanges appear: this are reggeon diagrams involving the higher order 1-3 reggeon vertex

Fig. 18. Reggeon diagrams for T{3), with odd signature

Yy

Fig. 19. Reggeon diagrams for T{*), with signature (—, —)

— e

Fig. 20. Lowest order perturbation theory for Figs. 18 and 19

(Fig. 18) or the one reggeon + three reggeons —» particle production vertex (Fig. 19).
Compared to the diagrams of T‘" (Fig. (3)), these new contributions have two more
powers of g2 (or, in other words, are down by two powers of In s5). The lowest order (in
powers of g?) contributions to Figs. 18 and 19 are shown in Fig. 20: these diagrams, having
only elementary exchanges, are of the order gés and g’s, respectively, and contain no
logarithm of any energy variable. Furthermore, they are real. This implies that they cannot
be obtained by just iterating s-channel unitarity (in the language of dispersion relations,
they are subtraction constants), but they must be computed by hand: going back to the
Lagrangian, one has to use methods which are similar to those which were used for the
tree approximations at the level of TV, Details on this will be found in Ref. [27]. To find
the elements of T, one proceeds very much in the same way as we did for T*V: the lowest
order elements (Fig. 20) play the same role as the tree approximations, and T, __,, T, _ 5, ...
are computed order by order perturbation theory by computing the energy discontinuities
from unitarity equations (cf. (3.14), (3.17), (3.20)). On the rhs of these equations, a careful
counting of powers of g2 is needed, and contributions from 7", T*®, and 7® have to be
taken into account. As a result of these calculations the elementary exchanges of Fig. 20
are “‘dressed”, i.e. they are reggeized, and they also interact via the quartic reggeon vertex
which was found in the previous step. The unitarity content of 7 is the following:

T® 73+ Zi[T(l)T(3)+ 4+ TRAT®+ T(3)T(1)+]odd signture: (3.32)

This is the analogue of Eq. (3.26) for T™"). As in the case of 7**, also nonleading terms of
T and T® have to be counted as elements of T : they are obtained from expanding
the signature factors in powers of g2.
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T™ can be obtained from s-channel unitarity without computing new subtraction
constants:

TW_T8W+ 2i[T(1)T(3)+ + T(Z)T(2)+ + T(3)T(1)+]evm signature- (3_33)

In the matrix elements on the rhs, at least one f-channel must have even signature. Other-
wise we would be back at (3.32). Eq. (3.33) is the analogue of (3.28) for T™®. The reggeon
diagrams of T® contain up to four reggeons in the t-channels.

Repeating these steps, higher and higher T™ are obtained: at each step the (maximal)
number of reggeons in an exchange channel increases by one, and new elements (vertices
with a nontrivial momentum dependence) appear. The result for T is a complete reggeon
calculus, with the reggeizing vector particle being the reggeon and having (infinitely many)
selfinteraction vertices. In principle all these vertices are calculable, but so far only a few
of them are known, and to find a simple expression for the most general n — m reggeon
vertex remains a subject of future work.

The fact that the result of our unitarization procedure comes in form of a complete
reggeon calculus was to be expected as soon as the reggeization of the vector particle had
been established. For future investigations it might, however, be useful to mention that,
by a slight rearrangement in the expansion of T, a more physical picture of the (elastic)
scattering process can be obtained. The idea is simply to reexpand each reggeon diagram
in the expansion

Ter = LT (3.34)

in powers of g2/(j—1) (note that each reggeon line by itself represents a power

a m
series inthis parameter: [j—1—(«(t)— D} ! = [j—1}* - —— } witha—~1 = 0(g?):
1
J

m

2 m
Fo, = Z (—f_—l) £ (3.35)

m

(F{, is the partial wave of the amplitude T ,). Since the variables j—1 and Ins are
conjugate to each other (cf. Eq. (3.2)), (3.35) leads to an expansion of T,,, in powers

Fig. 21. Space time picture for the elastic photon-hadron scattering process in the Regge limit (rest frame
of the photon)
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of g2 In s and has a physical interpretation close to that of the well-known multiperipheral
model (for a description of these ideas see Ref. [27]). The term proportional to (g2 In s)™
represents the following subprocess of elastic scattering: out of the incoming fast hadron
which is a composite system of virtual constituents (partons), some partons have initiated
a m-step cascading decay. At the end of this decay slow partons (wee partons) have been
produced which can interact with the target at rest. This process is illustrated in Fig. 21.
In the introduction I raised the question whether the hadron radius can be made finite:
this means that we are interested in the distribution of these wee partons in impact param-
eter space. As I will explain a little later, the expansion (3.35) may be a better starting
point for investigating this question than the reggeon calculus representation of the T-ma-
trix that was obtained in the first instance. This is the reason why I mentioned this second
form of representing the matrix T.

D. The zero mass limit

In the first three parts of this section I have been dealing with the question of how
to select those terms in the perturbation expansion which are needed for obtaining a reliable
high energy description. All this was done for the massive SU(2) Higgs model, but our
final aim is the pure Yang-Mills case. We therefore have to investigate how our 7-matrix
behaves under the limit which takes us from the Higgs model to the pure Yang-Mills
case.

The T-matrix whose construction I have outlined before depends only on the two
parameters g (the gauge coupling) and the mass of the vector particle M2 = g2u?/A (cf.
Eq. (2.10)), but not on the Higgs parameters u and A separately. For our purposes it is,
therefore, sufficient to demand that M2 — 0, g staying fixed. A brief investigation of low
order perturbation theory shows that, in order to decouple the Higgs sector from the
gauge particles, on should take A and g to infinity such that u?/4 — 0. For the time being,
I shall concentrate on the question how our T-matiix behaves when M2 is taken to zero.
But it seems to me that a more accurate study of the transition from the Higgs model
to the pure Yang-Mills case would be very desirable.

First it is necessary to replace the external states which so far have been taken to be
massive vectors and scalars. It is well known from QED calculations [28] that the simplest
case of a high energy scattering amplitude which is finite in the zero mass limit of the photon

a b
Fig. 22. Elastic scattering of two qg-systems in QCD: (a) the zero mass limit of T{2),; (b) Parts of T(%),
for which the zero mass limit can be shown to exist
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is that of elastic-photon scattering (or elastic photon-clectron scattering): the incomihg
photon dissociates into an electron-positron pair which interacts with the target via photon
exchanges (note that elastic electron-electron scattering via multiphoton exchange is not
infrared finite). This can easily be generalized to the nonabelian case [24] (Fig. 22a):
replace the external photons by hadrons, say vector mesons with some wave functions,
and take the fermions to be quarks. It can then be shown [26] for T{?),, the first term
in the expansion (3.27) which contributes to elastic scattering, that in the zero quantum
number exchange channel the limit M2 — 0 exists and is finite to all orders of g2. For
higher terms in (3.27), T{", etc., this can be shown [26], so far, only for important sub-
sets of terms (for example those shown in Fig. 22b); but from the results of studying
infrared singularities in hard scattering processes [29] it seems likely that in the vacuum
quantum number (color zero) channel infrared singularities should always cancel.

Let me assume that this, in fact, is true for all the 7™ in (3.27). Then our present situa-
tion can be described as follows gFig. 23). Starting again from the deep inelastic region
where the use of perturbation theory (and in this case even the summation of only leading

x #O,qz«-— - q2 fixed x—»0
Bjorken limit Regge limit

Fig. 23. Elastic photon hadron scattering in QCD: on the lhs in the Bjorken limit, on the rhs in the Regge
limit

logarithms) rests on a safe ground, we now have isolated those Feynman diagrams which
have to be summed when the Regge limit is taken (g2 fixed and x — 0). They are obtained
as the zero mass limit of our 7-matrix which is coupled to the quark loop as external
source.

I finish this long section with a few comments on other approaches to the same problem.
When describing the derivation of the LLA, I have restricted myself to that method which,
as I believe, is most suitable for achieving unitarity: the use of the analytic structure of
multiparticle amplitudes together with unitarity. Other groups of authors [30, 31] have
followed the more conventional method of investigating Feynman integrals and extracting
the leading term by use of a clever choice of integration variables. This approach has so
far been restricted to the 2 — 2 amplitude (with one exception [32]), in the LLA and one
step beyond (in our notation: T$>),). Wherever a comparison can be made, the results
of the different approaches agree. As to the next logical step, namely the unitarization of
the LLA, Refs. [33] and [34] claim that the fully unitary S-matrix takes a simple eikonal
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form, both for QED and the nonabelian case. However, when reexpanding this eikonal
representation, it appears that pieces are missing which are necessary for having s and
t-channel unitarity. From the s-channel point of view, subchannel unitarity is not satis-
fied, i.e. rescattering contributions to inelastic production amplitudes are missing. T-channel
unitarity (partial wave unitarity) requires that the lowest order g2-expansion coefficients
of the 3-reggeon, 5-reggeon, ... cut diagrams are real. Hence, they cannot be obtained
from iterating s-channel unitarity alone, as it is done in the eikonal expression of Ref. [34].

A very different approach has been taken in Ref. [35]. For the case of quark-quark
scattering, the leading infrared divergent terms are isolated by means of the equations
of Cornwall, Tictopoulos and Korthaus-Altes, de Rafael, and then the behavior of these
terms in the Regge limit is studied. The result is a fixed cut singularity at j = 1. Compared
to the procedures which I have been describing so far, this amounts to taking the two
limits (Regge limit s —» o0 and zero mass limit M2 — 0) in the reverse order. As it has
been shown by Bronzan and Sugar [36], these two limits do not commute: the terms
found in Ref. [35] (first M2 — 0, then s - o) form a®subset of those obtained from the
other approach (first s — oo, then M? — 0) and, hence, do not seem to satisfy unitarity.

4. Summation of the diagrams

I now come to the final part of my talk: how can one try to sum all the contributions
that have been obtained in the previous section ? Let me recall the two quantities we wanted
to concentrate on: the s-dependence of the total cross section as the most important observ-
vable, and the hadronic radius {b2) as a test for the reliability of the calculations. Unfor-
tunately, I will not be able yet to give you fina! answers. The task of summing all these
contributions of T (or, at least, of extracting the relevant information about the leading
s-behavior) requires new techniques, and all I can do is to outline the main ideas and
mention those results which we already have. For the investigation of the two quantities
O and {b%) two different approaches seem to emerge: the first one starts from the
reggeon calculus representation of the S-matrix and than makes use of the phase structure
of reggeon field theory which has been studied within the last few years. For a study of
the parton distribution in b-space, on the other hand, the power series (3.35) seems to be
a good starting point, and I would like to begin with this approach first.

To be specific, let us consider the model illustrated in Fig. 22 (elastic scattering of
two q-q bound states via gluon exchanges), assuming that the zero mass limit exists for
all 7{", in the vacuum exchange channel. As explained before, the expansion in powers
of g2 In s (cf. (3.35)) can be related to the parton picture: each power of g2 In s stands
for a change in rapidity by one unit, and the term (g2 In s)™ ¢,, corresponds to a m-step
decay of some fast constituent into slower ones such that at the end wee partons emerge.
For the rest frame of the target, this situation is illustrated in Fig. 21, for the CM-system
in Fig. 24: each horizontal line denotes a point in rapidity (i.e. all points on one line have
the same rapidity), but each vertex has its own impact parameter coordinate. The (statis-
tical) distribution of all these points in impact parameter space defines the extension of
the hadron. For the lowest approximation to the elastic scattering process, 7'¢2,, there
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is a direct analogy to Figs. 21 (or 24): two successive steps in the expansion (3.35) are
connected by a single two-dimensional transverse momentum integration, ie. 13,
= K - t!») with K being an integral operator (the explicit form of this recursion relation
can be found in Ref. [25]) or #{%), = KxKx ... Kxt{®. The lines in Fig. 24a then

denote the flow of transverse momentum in T%,. At the level of T¢",, the momentum

-~ —r~
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Fig. 24. Space-time picture for the clastic photon-hadron scattering process in the Regge limit (CM-system):
@ TR, () T4,

flow becomes more complicated (Fig. 24b): between two rungs there may be more than
two vertical lines, since the Kernel in t$), = K - t{*) involves more than one k,-integral.
With increasing »n the number of vertical lines (i.e. the number of k,-integrations in 75",
increases, giving rise to more and more interaction between partons of different rapidity.

In order to study the b-distribution of the partons in Fig. 24 we shall investigate how
the leading j-plane singularity of the partial wave in (3.35) is generated (i.e. we study the
behavior of the expansion near the rightmost value of j for which the series diverges).
For this we use an observation made by Kuraev et al. [25] for the case of T§9,: the

divergence of the expansion
g2 m
F§2, = E (—-) 0w .1
j—1

m

comes from a specific region of phase space of the k,-integrations in Fig. 24a. Each k,-in-
tegration is perfectly finite, but for large m (which is the number of rungs or cells in Fig. 24a)
the dominant region of integration in those cells which are far away from the external
particles moves more and more towards large k,-values:

Ink3?y =c, m, 4.2)

where ¢, is a computable number (note that this type of growing transverse momentum
is quite different from that found in hard scattering processes). Eq. (4.2) means that the
average value of (In k2)? obeys a diffusion law as a function of the number of steps. Once
k% is large, the resulting singularity will not depend on finite quantities such as the mass
M? or the momentum transfer g2 = —¢: this explains its nature of being a fixed cut.
The j-value j, for which this singularity arises lies to the right of j = 1 and leads to a total
cross section which grows like 6y, ~5'°~! (Fig. 25a). Since with (4.2) also <k}) grows,
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as the number of steps m increases, the variable b2 conjugate to k2, which stands for the
distance in impact parameter between neighboring vertices in Fig. 24, becomes smaller
and smaller, and the parton distribution inside the upper (or lower) hadron is of the form
shown in Fig. 25b. As to the zero mass limit M2 — 0, the most interesting point is that
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Fig. 25. (a) The total cross section as obtained in T{3),; (b) the hadron extension in b-space for T3}
2-2 22

{massive case)

of g> = —t = 0 [24]: the large b-behavior comes from the small g,-region. For M? = 0,
g% = 0 the diffusion picture of In &% still holds, but <In k2> now moves in both positive

and negative direction:
Ink? ~ +.Je,m “4.3)

(c; being independent of M? is the same as in the massive case (4.21)). In b-space the large
negative values of In k3, i.e. the small values of k2, allow for longer and longer step-
lengths in b-space, and the radius {(b%) grows too fast (as a power of s). This implies that,
at the level of the approximation T®, (a) the radius (b2} is too large, and (b) the limit
M? — 0, although it exists order by order perturbation theory, is discontinous for the
leading s-behavior. The last point has been made explicit {24] by solving at ¢ = 0 the in-
tegral equations of T4, for M2 # 0 and for M2 = 0: there is a jump in the s-behavior
of 6, at the point (M? = 0, ¢t = 0), compared to M? # 0 and Jor ¢ # 0.

As a guideline to what the situation in a realistic high energy theory should be, it
might be useful to recall a few features of the multiperipheral model. Writing the amplitude
in the form (4.1), one finds that ¢, ~ [8(¢)]™ with B(¢) being the integral in equation (3.16),
and the resulting j-plane singularity is a moving pole. Since the k-integrations in [8(¢)]™
are always superconvergent, and their mean values do not depend on m at all, the average
steplength in b space is constant, and we have the well known random walk picture in
b-space with (b2?) ~ o' Ins. This suggests that in our nonabelian gauge theory model
we should look for a mechanism which stops the growth of (k2> as a function of the num-
ber of steps.

Let me briefly outline [37] how the presence of the higher 7™ could lead to a change
in the right direction (as long as one does not know the form of general T*™ in full detail
I can describe this only qualitatively). A simple dimensional argument for the general
n — m reggeon vertex shows that the diffusion law (4.2) for In &2 will always hold, provided



309

the limit M2 - 0 is finite. The only new feature compared to 7¢2), is that the momentum
integration between two steps in Fig. 24b now may consist of two or more k,-loops, and
the variable which grows is the mean value of these k,’s:

1 _
Ink? = ;[m K+ ... +lnkd] ~c,/m, 4.3)

or

K2 =12 K, K. (4.4)

The numbers c, in (4.3), belonging to the approximation 7™, will be different from
¢, in (4.2): if the growth of In k? should come to a stop, we must have c, - 0 as n — o0.
The situation of the n variables In k7, whose “‘center of mass” coordinate obeys the
diffusion law, resembles that of the one-dimensional motion of » atoms, moving in a po-
tential which depends only on the relative distance of the atoms from each other, but not
on the center of mass position. In such a case the center of mass coordinate obeys the
diffusion law, and depending on whether the relative forces between the atoms are attractive
or repulsive the diffusion will be slower or faster than in the absence of those forces. The
crucial observation now is that, if the forces are sufficiently attractive, the motion of the
center of mass can come to a stop when the number of atoms becomes infinite. Applying
these ideas to our 7™, we see that if the number of k;-variables in (4.4) becomes very
large — i.e. in Fig. 24 there is more and more interactions between different horizontal
lines, each of which represents a certain rapidity in the “gluon cloud” around the incoming
hadron — the growth of k, towards the center of Fig. 24 can come to a stop, and the im-
pact parameter steplength stays finite and constant. About the s-dependence of 6., very
little can be said as long as this argument has not been made quantitative; if the series of
the T™ converges, the cross section (Fig. 25a) must flatten out at high energies in order
to satisfy the Froissart bound.

It is important to mention that the same type of analysis has also to be carried out
for the abelian case of QED. At the level of the LLA for the Pomeron channel, the leading
singularity of the tower diagrams [38, 39} in QED is also a fixed cut to the right of j = 1
and has very much the same characteristics as in the nonabelian case. Important differen-
ces between the two cases are expected to come in when the effects of the higher approxima-
tions T™ are included (it seems that the sum of all those diagrams which are described
in Ref. [38] and Ref. [40] for QED represents the analogue of the T that we have discussed
for the nonabelian case. The eikonal graphs of Ref. [39] and even the ““operator eikonal”
expansion of Ref. [33] only form a subset of the more general class of diagrams in Refs.
[38] and [40] and do not satisfy full s-channel unitarity).

Let me now describe the other approach towards analyzing the structure of T that
I mentioned at the beginning of this section. It starts from the reggeon calculus represen-
tation of T and then uses the phase structure of reggeon field theory (RFT) which has been
investigated during the last years. As it is well-known [3], RFT lives in two space and one
time dimension (impact parameter and rapidity), and it has a nonrelativistic energy-mo-
mentum relation: E = A+a'k?(E = 1—j, j = angular momentum; 4 = 1—x(0); «(0)
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and o' are intercept and slope, respectively, of the trajectory function). This is quite different
from relativistic quantum field theory, and since, moreover, the triple interaction vertex
(at least for the Pomeron case) is purely imaginary, it is clear that the phase structure of
RFT, as a function of the “mass” 4, is not the same as in usual quantum field theory
models. It will, therefore, be useful to review first what we know about the phases of RFT.
As I have said at the beginning, RFT is designed to satisfy t-channel unitarity (to be more
precise: partial wave unitarity), and, there is no a priori restriction on the parameters such
as 4 and a': as long 25 no connection was made between RFT and a specific underlying
theory, it was, therefore, the strategy to vary the RFT parameters and to see for which
values a realistic strong interaction theory emerges.

Fig. 26 shows the two phases of RFT: the intercept of the output singularity, i.e. the
power of s of the e'astic forward scattering amplitude, has been p'otted as a function
of the negative bare mass: —4, = «(0)— 1. In the subcritical phase to the left of the dotted

ap (0)=1-d5

Ref. [41]

Ref [42]

subcritical “dy = 2p(0)-1

|
|
|
I
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Fig. 26. Phase structure of reggeon field theory: the intercept of the renormalized Pomeron singularity
is plotted against the bare negative mass. The two curves to the right of the critical point (dashed line)
indicate the two solutions described in Refs. [41] and [42])

.ine the total cross section is falling. There s no problem with s-channel unitarity, but
from the physical point of view this phase has litt'e interest, since in nature o, is far
from being falling. When -4, approaches the critical value slightly to the right of zero
(i.e. o (0) is slightly above one), the total cross section becomes less and less falling until
the power of s reaches zero: at the critical point ¢4 ~ (In$)”7, —y ~ 0.2. At this critical
point a phase transition occurs: particle production shows long range correlations, and
for the elastic scattering amplitude a scaling law with two anomalous dimensions holds.
Consistency of this solution with s-channel unitarity is highly nontrivial: it has been
checked quite extensively (including the decoupling problems of the Pomeron), and all
tests have been passed successfully. Thus this critical RFT is an excellent candidate for
strong interaction theory a high energies. Those energies, however, for which asymptopia
of strong interactions is expected to set in, lie above presently available energy ranges,
and it remains to be explained how the finite energy tail of asymptopia connects up with
critical RFT. In the supercritical phase to the right of the dotted line in Fig. 26 (the bare
mass is now negative) two solutions have been suggested (and there is still a disagreement
which of them is the correct one): the first one has been obtained by Amati et al. [41]
and leads to a total cross section which saturates the Froissart bound o, ~ (In 5)2.
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For such a behavior of the total cross section unitarity in the s and t-channel presents
certain problems, and a complete check is still missing. The most important physical
implication of this solution lies in the fact that the rise of the total cross section as observed
at ISR energies, does not require any special value for 4,: as long as 49 < 4¢ criticars the
behavior of &, has the same s-dependence. The other solution to RFT in the super-
critical phase has been presented by White [42]. It leads to a falling total cross section,
thus making the phase picture in Fig. 26 quite symmetric with respect to the critical point.
While this solution has no problems with unitarity, its physical implications are very strong;
the only possibility for having a nonfalling total cross section is critical RFT, and this
requires a very special reason why the bare Pomeron intercept takes just the critical value.
White {43] also gives an explanation for this: he argues that criticality of RFT can be
explained within QCD as being equivalent to confinement. I shall now try to explain
this argument, which, of course, relies upon the validity of the second solution to super-
critical RFT. However, I should emphasize once more that several people consider the
first solution to be the correct one.

The basic idea is this: one reformulates the reggeon calculus (which has been derived
in the previous section and, as elementary reggeon, only contains the quantum number
carrying vector particle but no Pomeron), in terms of a new RFT which now contains, in
addition to the vector particle reggeon field, also a Pomeron field (in terms of the vector
particle, the Pomeron is a bound state of an even number of vector particles). Then one
investigates the structure of this RFT as a function of the parameters of the Yang-Mills
theory, in particular the mass M of the vector particle. For the Yang-Mills theory at M2 # 0
(one now considers generalizations of the SU(2) Higgs model: the gauge group could be
SU(3), and the pattern of generating masses for the vector particles may be more complex),
it is argued that the normal iz prescription should be replaced by a principal value regulariz-
ation: by assumption, this is the way to reach, in the limit M — 0, the pure Yang-Mills
case in the confining phase. The RFT obtained from such a modified Yang-Milis is found
to be in the supercritical phase with a falling cross section, as long as M? # 0, and it be-
comes critical at M2 = 0. As a result, the nonfalling cross section, being a very special
feature of strong interaction physics, can be explained only in a massless confining vector
theory, where confinement, by assumption, is reached in the zero mass limit of massive
Yang-Mills theory with a modified ie prescription.

In order to explain this argument in somewhat more detail, it will be necessary to say
a few more words about the solution to supercritical RFT, as it has been obtained before
any connection to an underlying theory was made. Let us start with a RFT that contains,
as the only field, the Pomeron in the subcritical phase, and decrease the mass from positive
values to negative ones. Beyond the critical point the effective potential (for simplicity,
our RFT contains only a triple interaction) has its stable minimum no longer at the or.gin,
and by redefining the field variables one has to expand around other field configurations
(note that in contrast to, say, the simplest Higgs model one cannot simply perform a shift
of the field variables by a constant (i.e. time independent) amount: a detaiied description
of the “‘generalized shifting” procedure can be found in Ref. [42]). As a result, new interac-
tion terms (Fig. 27a) and new diagrams (Fig. 27b) appear, involving creation and annihila-
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tion of Pomeron pairs out of the vacuum, and the mass of the Pomeron propagator is
positive again. The “new” elements in Fig. 27a, b lead to additions to the triple Pomeron
interaction (Fig. 27c), giving rise to a nontrivial momentum dependence. In fact, this
momentum dependence is singular: the reggeon line inside the vertex of Fig. 27¢ carries
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Fig. 27. Elements of supercritical RFT according to Ref. [42]: (a) Pomeron creation and annihilation;
(b) new diagrams which appear only in this phase of RFT; (c) interpretation of (b): new additions to the
triple-Pomeron vertex

a factor {agt, —|4o—Ao.|]! which for positive #, produces a pole. This singularity is of
the same form as if the upper reggeon in Fig. 27¢ would be an odd-signature massive

-1
T
vector particle of mass |4, 4], accompanied by its signature factor [cosz oc(tl)] :

this suggests that the supercritical phase has a more complex reggeon content than the
subcritical phase we started with. A more detailed investigation (which, via cut reggeon
field theory, takes into account the s-channel unitarity content of RFT) shows, in fact,
that a consistent interpretation of this solution of supercritical RFT requires the presence
of several massive reggeizing vector particles in addition to the Pomeron: in Fig. 27b, for
example, the two-reggeon intermediate state receives contributions from both the two-
-Pomeron cut and the two vector particle cut. At the critical point 4, = 4, these vector
particles become massless (together with the Pomeron), but they completely decouple
from the Pomeron because the vertices in Fig. 27a are proportional to A4, —A4g..

In the next logical step of the argument one wants to identify these massive vector
particles with massive gluons that exist in an unconfining phase of Yang-Mills theories

TS XT

a b

Fig. 28. A part of the 2 — 2 reggeon vertex (a), as obtained in massive Yang-Mills theory, is identified as
the “singular” vertex (b) of RFT (Fig. 27¢)

(QCD). For this it is necessary to show how the (massive) reggeon calculus of the previous
section (the SU(2) Higgs model now being generalized to other gauge groups and Higgs
patterns) can be mapped into such a supercritical RFT. Let me show, as an example,
that with an appropriate definition of the Pomeron certain elements of the reggeon calculus
have, in fact, the same structure as the “singular” RFT vertex of Fig. 27¢c. One of the
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simplest elements of the reggeon calculus, the 2 — 2 reggeon vertex, consists of several
contributions one of which is illustrated in Fig. 28. Its momentum dependence comes from
the exchange of an elementary gluon between the two reggeized gluons. Each reggeon
line in Fig. 28a carries its signature factor which, in the small g approximation is simply
a propagator [t—M?2}1. The singularity structure of the two-reggeon state to the left
of the interaction vertex is easily analyzed: besides the two-reggeon cut, there is the reggeon
particle singularity which for the normal ie prescription sits on an unphysical angular
momentum sheet, and the two-particle cut. Now it becomes crucial to modify the /¢ prescrip-
tion such that the reggeon particle singularity appears on the physical sheet (simultaneously
the two-particle cut disappears on the unphysical sheet): in the limit M — 0 it becomes
a pole degenerate with the Regge pole of the vector particle, but it still has the quantum
numbers of a bound state of two gluons and can be identified as the Pomeron singularity.
Taking this singularity on the lhs in Fig. 282 and drawing a single Pomeron line for this
bound state of a reggeizing gluon and an elementary gluon, we arrive at Fig. 28b which
(always in the limit M? — 0) is of the same form as Fig. 27¢c. This shows that a certain
part of the reggeon calculus has, after changing the ie prescription, the same structure in
angular momentum and transverse momentum as supercritical RFT. In the same way
more complicated parts of the reggeon calculus can be identified with higher order elements
of RFT in the supercritical phase. It is, however, clear that this way of dividing the reggeon
calculus of massive Yang—Mills theories into several pieces each of which goes into different
elements of the RFT raises counting problems which still remain to be solved: before
this can be done it will be necessary to complete the calculation of the most general element
of the reggeon calculus which has not been found yet.

Finally, the limit M? - 0 is taken and by assumption, massive Yang-Mills theory
with the modified infrared regularization reaches QCD in the confining phase. At the same
time, the masses of the RFT elements, being of the order M2, approach zero, and the
singular elements & la Fig. 28b disappear: from the analysis of the supercritical phase
of RFT it then follows that the RFT has become critical with the nonfalling cross section
Oom ~ [Ins]77 [44].

5. Summary: the Regge limit in QCD

In these lectures I have reviewed the present status of the high energy (Regge) limit
of nonabelian gauge theories, distinguishing between what has been achieved already,
what sort of strategies and approaches seem to emerge, and what remains to be done in
the future. Almost all existing calculations start from perturbation theory of spontaneously
broken gauge theories with the hope of taking at the end the limit (with the Higgs sector
decoupled) which reaches pure Yang—Mills theory. I have first tried to illustrate how good
perturbation theory can be for this Regge limit: there is hope that perturbation theory
is a valid starting point, since the Regge limit can be studied very close to the perturbative
regime of QCD. But selection and summation of terms in the perturbution expansion
must be much more complicated, because the Regge limit is also sensitive to features that
have to do with confinement. It is, therefore, necessary to keep a certain control, throughout
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all calculations, of how reliable the perturbative approach is, and this can be done by
keeping an eye on the hadron radius (b2).

After dividing gauge models into two classes — those where all vector particles reggeize
and those where some of them do not — I have spent some time on describing, for the
first type, how unitarity in both the s and #-channel can be used to classify those terms in
the perturbation expansion which (at least) have to be summed up for obtaining a valid
high energy description. The result (for the massive, i.e. spontaneously broken, Yang-
—Mills case) comes in form of a complete reggeon calculus, thus generalizing that property
of the theory which at a lower level had manifested itself in the reggeization of the vector
particles. The elements of this reggeon calculus are computable, but an expression for
the general interaction vertex has still to be found. The zero-mass limit seems to exist,
provided the external couplings are taken to be a model for hadronic bound states
(e.g. 99).

For the summation of all these contributions two different approaches seem to emerge.
The first one, being more geometrical, investigates the distribution in impact parameter
space of the wee partons. A diffusion picture then emerges which is quite different from
the random walk picture in multiperipheral models: diffusion, as a function of the number
of steps, takes place in the variable In k3 rather than b. It is argued that, after summing
all contributions required by unitarity, the hadronic radius <b2) may stay finite when the
mass of the vector particles is taken to be zero, but a new technique has to be developped
in order to put this on a firm ground. Such a technique would also allow to study the
abelian case (QED), where the summation of diagrams is still incomplete. The second
approach makes use of the phase structure of reggeon field theory, and is based upon one
of the two competing solutions that have been advocated for the supercritical phase. By
assumming that QCD in the confining phase can be reached from spontaneously broken
gauge theories in the zero mass limit, but only after the /¢ prescription of the massive
case has been altered, it is argued that such a massive case corresponds to supercritical
reggeon field theory with a falling cross section, whereas in the zero mass limit the reg-
geon field theory becomes critical with the nonfalling cross section 6, ~ (Ins)™?.

For very helpful discussions I am indebted to Professors V. N. Gribov, L. N. Lipatov
and A. R. White.
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