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ON THE MEANING OF THE METRIC HYPOTHESIS IN THE
NONSYMMETRIC UNIFIED FIELD THEORY

By A. H. Krotrz AND B. T. McCINNES
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( Received October 4, 1979)

The meaning and geometrical significance of the method whereby a metric can be
identified in the nonsymmetric unified field theory is investigated especially in relation to
the setting up of a spinor analysis. It is shown that there is a close relation between the latter
and the metric hypothesis adopted. A possible connection between the nonsymmetric theory
and quantum electrodynamics is then obtained.

1. Introduction

The aim of the unified field theory is to provide a comprehensive geometrical descrip-
tion of the macroscopic gravitation and electromagnetism. Recent investigations into the
structure of the nonsymmetric version of the theory (Klotz 1978 a, b, c; 1979 a, b, ¢)
show that this is achieved if the theory itself is based on what may be called a weak prin-
ciple of geometrisation; in addition, of course, to Einstein’s principle of hermitian symmetry
(Einstein 1945; Einstein and Straus 1946).

In General Relativity one assumes a priori that a model of the world is given by
a Riemannian V,. The ficld equations then serve only to determine the particular metric
corresponding to a given physical situation. More correctly, they determine the gravita-
tional field arising therein. We can call this a strong principle of geometrisation. Its counter-
part in a unified field theory would be to hypothesise some well defined, but non-Rieman-
nian geometry and to try to write physics into it. However, this is impossible in the absence
of the concept of equivalence, replaced by the much weaker hermitian symmetry as the
only means of restricting the choice of possible field equations. All that can be assumed to
start with about geometry is that it possesses an affine structure used to define invariant
differentiation and to construct a generalised curvature tensor.

This does not mean that the nonsymmetric theory is purely affine. Affine connection
r ﬁv is an exclusively geometrical concept, except for its contracted, skew symmetric part

Iy=Tf =3I5—I3) 6))
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Physical fields are represented by the fundamental tensor g,, which, in a four dimensional
space has sixteen components. And geometry and physics do not determine each other in
the same, direct sense as in General Relativity. Indeed, they are both determined but
only after the field equations are found (and the principle of hermitian symmetry gives
them uniquely: Klotz and Russell 1973) and solved under some simplifying conditions
(of geometrical symmetry). Under these circumstances it is impossible to predict (and
it is wrong to postulate a priori) what is to be the metric tensor

a,, = a,,, det(a,) <0,

nv

say, of the geometro-physical space-time manifold. Like the connection between physics
and geometry, a,, must be somehow determined after we known the solutions of the field
equations. By a metric tensor we mean something more than just an entity used for raising
and lowering of tensor indices. Any nonsingular, symmetric tensor could serve this purpose.
Above all, the metric tensor determines the primitive, invariant distance measurement
in the manifold and hence also the light-tracks therein.

A macroscopic field theory seems meaningless without such a tensor being defined
in a nontrivial manner.

In the work referred to above (Klotz 1978a) a metric hypothesis has been assumed
according to which a,, should be determined by the equation

-

i\ __ B o
auv;l(rgl) = auv.l_aavrﬁf&_auarvl - 0’

or

where fﬁv is the symmetric part of the affine connection of the weak field equations which
in Einstein’s notation read

gy =0, [, =0, Ry=0 Ry:=0. ©)

The “‘twiddle’” over an entity denotes that it should be constructed from fﬁv which itself
is related to the original, abstract connection I's, by Schrédinger’s equation

Iy, = I +3 6T, @

The aim of this article is to explore the geometrical and physical meaning of the hypothesis

(2). It was introduced previously as an “inspired guess” in an attempt to find as general
a relation as possible which would reduce to the general relativistic value

Gy = G ©)

when Riemannian symmetry is reimposed. The far-reaching consequences as far as the
field theory is concerned which result from (2), make the present investigation particularly
imperative.
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It turns out that the metric hypothesis, instead of being seemingly arbitrary, singles
out a geometry of special significance not only in the realm of macrophysics (as shown
in the work already cited) but also in setting up a covariant form of quantum electro-
dynamics.

Apart from the somewhat formal considerations of the next section, the remainder
of this article will be concerned with constructing a spinor analysis in the non-Riemannian
context of the nonsymmetric theory. The interaction between macroscopic field structure
and quantum phenomena arises through the concept of **minimal coupling”, that is replace-
ment of ordinary partial derivatives by covariant operators. This may be justified if the
latter involve only a gravitational correction (Christoffel brackets). The procedure, in the
case of the generalised field theory, however is likely to make the Dirac equations depend
on the tensor

- ~ A
N:v = Fﬁv— {uv}’ (6)

which arises because of the presence of the electromagnetic field especially if we accept
General Relativity as an accurate description of gravitation. A non-negligible effect may
remain even in a flat-space approximation. This could lead to a difficulty since the theory
described by the Dirac equations with an electromagnetic field term is empirically ex-
tremely well tested.

We shall find that the metric hypothesis (2) allows us to resolve the above problem
albeit not entirely iniquely. Since we interpret I', as proportional to an electromagnetic
vector potential (Gregory and Klotz 1977), we shall find it convenient to adopt a constant
spinor for raising and lowering of spinor indices, (van der Waerden 1929) instead of the
more elaborate van der Waerden-Infeld theory (eg. Bade and Jehle 1953 — we shall adopt
throughout the notation of this review except when explicitely stated).

Throughout this article, Greek indices will take on the space-time values 0, 1,2, 3
and capital Latin indices, the two component spinor values I, II, with the usual summation
convention over either.

2. Geometrical consequences of the metric hypothesis
Let us define the covariant differential operators
V*h, = 0h,~Thh,, V'R =0 +T%h, 4

and
V oh, = Oh,—Thh,, V7 " = 0" +Thh* 8

(that is A,,, h,, etc. in Einstein’s notation).
+

Actually we shall make little use of V_ or of the operators V., V, which we could
define similarly using Schrédinger’s fﬁv instatead of the ‘“‘geometrical” connection I ;f‘,.
All we need to remember is that, for example,

Vih,
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will stand for &, .., and that (providing g(g—2) # 0, g = detg,,) I, is completely speci-
fied by the quaJ;ions

Vi gow+2lhg, =0,
or equivalently by )

Ve g t+2lags, = 0.

In general V} a,, cannot vanish and we define the tensors

I/Vazuv = Wavw ﬁ’auv = FVavu’ (9)
by

V:auv = Wa,uv’ 6:'auv = VVauvv (10)

respectively.

We shall also find it convenient later to use the Riemannian operator D, with Chris-
toffel brackets (or their spinor analogues) as the connection.

With the necessarily nonsingular metric tensor a,, used for raising or lowering of
tensor indices, we obtain from

a,0" = 8, (11)
the equations
Via" = —WM, Via"™ = —-Wr. 12)

After these preliminary definition let us return to the basic ideas of the nonsymmetric
theory. Regardless of its interpretation and of the field equations (3), the following three
essentially geometrical concepts are relevant: the shortest (or rather extremal) distance,
the path of no acceleration and geodesic curve.

The first two are defined respectively by

d{ds =0, with ds*=a,dx"dx", (13)
du® _ dx*

— +Ff“.u”uv = 0, with ul = ’;1—‘ .
— S

ds (14

Similarly, for a geodesic, we have
dn® dh”
h*—h?6x'T;, = (1+6L) (h“+6s —d—~) = h*+h*SL+0s I
s s

to the first order of smallness, the length L of the vector 4* being defined by
I? = a,h"K.
"

. . ox . .
If now A" is the unit vector ¥* = 5 and s is the arc parameter along a space-time
S

curve (to which »* is tangent) then L is 1, but
812 = 2LSL = 28L = u*u"6x°W,,,,



349

8o that

X

u
I +ufu'T5, +% uuu"u’W,,, = 0. 15)

We now see that in the absence of the electromagnetic field I', = 0 when I*;, = I'%, (which
does not by itself mean reversal to General Relativity) the curves (13), (14) and (15) coincide
if a,, is defined by (2) since then

u'u'uW,,, = u*u'u’a,,, = 0.

We may also note that, as in General Relativity, we have

d v
% (a,u'u’) =0,
while the equation
g{‘i- v ;).(f ) =0,
implies that
d v
E; (g}—lru”u ) = 09

too.
This, however, does not mean that

a,y = gﬂ\:
because the vector #* cannot be chosen arbitrarily.
[For example in Klotz 1978a, we indeed have

844 = Q44

in the spherically symmetric static case, but the remaining components of a,, do not take
their general relativistic values except, of course, in a local approximation. This deviation
from a general relativistic metric is the origin of the cosmological interpretation of the
resulting space-time, (Klotz 1978¢, 1979 and also in Lett. Il Nuovo Cim.).

We now turn to the main object of this article which is to investigate spinor algebra
and analysis associated with the non-symmetric theory.

3. Spinors in the nonsymmetric theory

The preliminary results are independent of the nonsymmetric background and we
follow the account of Bade and Jehle. Thus, since an hermitian spinor

his = hgi,

and a four-vector 4, are both determined by four real functions of the coordinates, there
exist mixed (vector-spinor) quantities ¢ such that

iz = 0"igh,, B = "®h g (16)
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which are hermitian with respect to their spinor indices. Then, arbitrary identification of
the metric forms

a"vhuhv and YAB}’CDhA.ChéDs

where 7,5 is the fundamental (skewsymmetric) spinor, yields the defining equations of
spinor algebra:

0"4%0” jp = a®, (7
o* 150, "" = 6,67, (18)

and
0" 150"+ 6" 10" = a"5C,. 19)

It is interesting to note that it is the metric tensor a,, and not, for example, g,, which

necessarily appears in the definitions. Spinor algebra is linked to the underlying Riemannian
space and not to its nonsymmetric generalisation. This, of course, is as expected since
spinors constitute representations of the Lorentz group.

Let us now define covariant derivatives of a spinor y* by

A
Dyt = 8,9 +4° {w},

Vipt = 0,9+ 945,

Vip® = 0,9*+ 9T (20)
If the quantity
payt = —yly,

is regarded as scalar, we also have
N B
Diyy=0,pa—ys 4’ etc.

Regarding now ¢* 4 for the purpose of differentiation as an outer product Ay yj, it follows
from (17) that
D,o* g = D,c*? = 0. (21)
From now on we shall write V, instead of V; when operating on tensor indices. (Since
spinor and tensor indices are basically distinct there is no merit in distinguishing I'f
from something like I'§, which we would have to do if we wanted to preserve the VI and
V. operators.) Also the tensor W,,, cannot in general vanish in the nonsymmetric theory
and hence V,0*;; must be a nonvanishing linear combination of the o-spinors:

.- o n. B’ V. é.u. B a. __ B V.
V,0*is = 0;6" (s +T};0" ig—I;10"cs— 30" ic = H3,0"4p, 22)

where HY, is a tensor.
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It now follows from the equations (17) and (12) that

H.0% 30"+ 0" oo™ = — W
or
H2 = -5 W (23)
If we write similarly
Vio'is = Hi0" 4n (24)

where HY, is also (another) tensor, then
B= = -3 w" (25)

Equations (23) and (25) are of great importance in the sequel. They are independent of any
assumptions about y,5 except that we must have

Di(yisven) = Va(isven) = Vi(yisven) = 0. (26)

In the van der Waerden-Infeld analysis, these equations would lead to non vanishing

solutions for
A ~
{}.A} ) FfA and Fan

but as each of these would then introduce arbitrary vectors (presumably distinct) into the
theory (see Bade and Jehle 1953 or Klotz 1962) we would have confusion with no obvious
physical interpretation. Let us therefore assume that y,5 is a constant spinor and that

Diyap = 0. @7

A
g -
and, from equation (21)

C : )
{w} =1g¢ (6,10"‘ iz +0is { v’i}) ) (28)

Using this equation together with equation (6) (and writing N,fv = F,f‘,—{,fv}) it follows
from the equations (22) and (24) respectively that

Then

C . v .
FEB = {lB} +—1i O-MACO' AB(N‘VLA - H%v) - %' FfA.écB’ (20)
and

- C . Y o - o~
FfE = {AB} +% O-MACG AB(NfA_Hgv)_% FfA'écB- (30)
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Let us now consider, the relations between the ‘‘twiddled” and untwiddled tensors.

From their definitions (9) and (10) and the relation (4) we immediately deduce that

Wluv = Wluv—% I;a,,, (31)
and, therefore, from equations (23) and (25), that

Hu = Hypy+ 10y, (32)
.and, of course, we also have

Ni = N+ 8l
so that, if we define

4 NT - a
Np).v = aloNﬂw Np).v - a).aNnv’

then
ﬁnlv = Nulv"'% azls. (33)
It follows from (33) that
Nﬂlv = Nyay- (34)

The relation (32) implies that we can write
Hypy = Hypy+ 3 T30, + A (35)
where the tensor 4,,, is skew symmetric in its last pair of indices:
A).;tv = _A).vp‘

Let us return now to equations (29) and (30). We have

o'uACo'vA.B(Nvﬂ}. '—Hlﬂv) = O—uACO.vA.B(anl _H/Zﬂv)‘ (37)

We now show that only the part of this expression skew symmetric in u and v contri-
butes to it. In fact the first of the equations (10) can be rewritten as

Nuv}. + Nvux = - W).uv' (10)

Permuting the indices 4, y, v cyclically, adding two of the resulting equations and sub-
tracting the third (and using round and square brackets for symmetric and skew symmetric
parts respectively)

N(u]v[).)—N[ul).[v]_N[i.]u]v] = '_'% (Wluv+ Wuvl_" VVV).;.I),
or

Nuvi._'H}.vp = —_';_ (lev+ Wuv).— Wvul)+sulv+sluv~ Slvu—H}.vm (38)

where we have put
Sp),v = N{M}.jv] = ai.a'N:v = alcr;v = "Sv).ﬂ' (39)
v

v
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Symmetrising equation (38) over u and v, we get, in view of (39)
N;ﬂ)."leg = “‘% W;.uv“sz__u =0, (40)
by equation (23). Similarly of course,
Nyya=Hyyu = 0. (41)
We may note also that defining the tensors T}, and Tj,,, by
T = Hypy =Sy Tzw = ﬁluv_gvpb 42)

we can write equation (38) and the identical “‘twiddled” equation in the form

Nuv}, - H).vu = %,' [Tluv - Tlvu + 2(Tulv - Tv,lu)]’ (43)
and
Nﬂvk - ﬁ).vu = —12' [lev - Tlvu + 2(Tulv - Tlvu)]’ (44)

(using (23) and (25)) from which equations (40) and (41) follow at once. We shall need
these forms later.
Finally, let us define (with Bade and Jehle) a curvature spinor

Pl = =20, " +2I C[x[BIF e 45)
Then, using the equation (22) and the commutator
(V.V, =V, V)" 15
we readily find that
PAB).x = '% RuleauAcovéB+(-;— Sule'*‘rg.ngv)auAcav(}B_% Pcé').xéAB’ (46)
where the tensor §*,;, is given by
Sule = VxH‘)‘.v—V).Hgv—Hg.szg'*'Hi@ gg' (47)

The above are purely formal results. We must now consider their application to physics
and in particular to the problem of constructing an analogue of the Dirac equations in
the curved space of the nonsymmetric theory.

4. Dirac equations in the non-symmetric theory

In some ways the problem of writing down a covariant form of the Dirac equations
is easier in the generalised field theory background than in General Relativity. In the latter
“minimal coupling” method is somewhat high-handed not only because of the almost
total back of empirical data on the interaction of the gravitational field and microphysics



354

but also because of the local flatness of the Riemannian space. For example, one could
easily envisage addition of a term like

uAC V. le X . E
Ryy126"7707¢g0"" 0 pcyp

HVAX
which automatically vanishes in the flat space-time, to the invariant equations. Also the
transition to the case when there is interaction with an exterior electromagnetic field
0, = 0,+iy,

involves additional assumptions which are foreign to the macrophysical theory. One can,
of course, drop the assumption that y 45 is a constant (Bade and Jehle); write

0 1 ;
Vap = (~1 0) v"%¢", 7, 0 real;

and observe that equations (21) are invariant under the substitution

A A .4
{:113}'-_) {;11;}’ “+'l%016 B>

where v, is an arbitrary (real) vector. Then y, can be interpreted as proportional to the
electromagnetic vector potential, the gradient 0, = 0,0 represents a gauge transformation,
and if the trace {/4} is not pure imaginary

A A
{AA} + {AA} = J,Iny.

But since v, is arbitrary this procedure hardly corresponds to a geometrisation of electro-
magnetism.

In the nonsymmetric theory it is impossible to establish a priori, that is before the
(macrophysical) field equations are solved, what might be a flat space approximation,
or indeed what is meant by flat space.

Hence, in the nonsymmetric theory, we have little choice but to take the Dirac equations
in the form

JEHY s myf = 0,

J2 o“’;BV,‘wA‘-{—mwB =0, (48)
or, perhaps,
V2 6"V, pp+my? = 0. (49)

(together with its conjugate equation). We shall see that rejection of the second alternative
leads not only to an unequivocal fixing of the Dirac equations with correct electromagnetic
and spin interaction terms but also back to our metric hypothesis.
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Thus, a theory in which the latter is adopted becomes particularly suitable for providing
a link between macrophysics of clectromagnetism and gravitation and quantum electro-

dynamics.
From equations (33) and (35), we have

n o NH fyt »
Nvl""Hlv = NVA—H}.V_AM,

(50)

so that, substituting into the first of the equations (48) from equations (50) and (29) we

obtain

*E(D,p5—% vco* "o ps(N Cu;. -H )t 3 ‘e *oadin¥et+z val ) +myt =0 (51)

Let us now return to the equations (26). A natural way to avoid uncertainty whether

“twiddled” or ‘“untwiddled’” operators are to be used is to assume that

Viyas = “rA?AB,
where u is a numerical, possibly complex, multiplier. Since
r,=o,
we shall then have
Dyap = 6;.3’;41; =0

automatically, and so (y,p being a constant spinor)

A ~
{AA}=F14A=O‘

Moreover, the second of the equations (26)

Vi(visven) = (Vavis)vep+7isVavep = 0,
will be satisfied if
Vivas = —ul 45
and this will hold if
u = iw, w real,
is pure imaginary, that is if V, is an antihermitian operator. Since then
Vivas = —L5cs—T gB?Ac = iwl;y 48
we find that
r fA = —iwl,,

and the Dirac equation (51) becomes

N 26*%(D,yp+3 "™ "peAan¥ct3 il pp)+my* =0,

(52)

(53)

(54)

(55)
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if
Nvulnﬁluv = 0. (56)

In the nonsymmetric theory this term clearly refers to an electromagnetic coupling
which in the equation (55) is already expressed by I';. Hence its vanishing implies the
assumption that apart from the appearance of the electromagnetic vector potential there
should be no further coupling with the electromagnetic field. This is then in full accordance
with the empirically well verified structure of quantum electrodynamics. The 4,,, term
must then express spin-properties of matter (or perhaps rather of the particle—electron—
described by equation (56)). As a correction to the Dirac equation it will presumably be
very small and there may be no harm in supposing that

A/luv = 0’ (57)

although this is not forced by the theory. It suggests on the other hand, that equation (56)
could likewise be strengthened by replacing it with

Nya—H, = 0. (58)

If we assume this in equation (44), multiply it by &**** (the Levi-Civita permutator) and
define the vector density

X EARVA
T =T,

we get
6T +2A~T*—-T%) =29" =0,
so that
T#lv_Tvlu =0,
or

ﬁlﬂv_gvul = 2§\ml
and, from the definition (6)

. . - o
—ZI—(HMN"'HVWI) = aua( 1{.— {V}}) .

Hence, the assumption (57) together with the unforced but plausible condition
Hj, = Hj, (59)
not only establishes concretely our spinor analysis (without (58) we have no means of identi-

fying uniquely the tensor HJ, which by the equation (22) is crucial to the theory), but also
leads unequivocally to the metric hypotheses (2) with which we have started.
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If the background Riemannian space reduces to a flat, Minkowski space-time then,
under the assumption (57), equations (48) iterate to the standard Schrodinger-Klein—
—Gordon equation of second order. The scalar w is then identified as

w =30, (60)

where g is the charge which gives rise to the external electromagnetic field (eg. Gregory
and Klotz 1977).

5. Conclusions

We have seen that the metric hypothesis (2) which already led to a reinterpretation:
of the nonsymmetric unified field theory in a macrophysical sense, is consistent with the
assumption that geodesics, paths of extremal length and paths of no acceleration should
coincide with each other. Nevertheless, the hypothesis comes even more into. its own
in an attempt to set up a concurrent spinor analysis. It is difficult to say at present whether
the results lead to an empirically verifiable prediction. The problem is that we have no
independent way for determining the 4,,, term in equation (51). We have tentatively called
it a spin interaction but the Schrodinger-Klein-Gordon equation resulting from equations
(48) without this term already contains an electromagnetic spin quantity. It is for this
reason that we have put 4,,, equal to zero. However, the assumption that it vanishes is not
forced by the formalism and, hence, becomes an independent hypothesis which, of course,
it would be better to avoid.

On the other hand, our method (equation (52)) of introducing the electromagnetic
four-vector potential, which is essentially a macrophysical concept being a description of
the external field, seems preferable to that of van der Waerden’s and Infeld’s. In the latter,
the potential vector is purely arbitrary whereas we have endowed it, again through the
equation (52) with a definite geometrical meaning. Its components appear as a kind of
eigenvalues when the geometrical covariant operator V,, acts on the components of the fun-
damental spinor. The correct place where the potential vector makes its appearance is the
macrophysical unified field theory where its curl is proportional to the skew symmetric
part of the Ricci tensor identified with the electromagnetic field (Gregory and Klotz 1977).

Similarly to the case if the A4,,, term, the assumption that the Hj, tensor should be
skew symmetric in its covariant indices which led us to the metric hypothesis (2) is not
strictly forced by the sp nor formalism. It is merely extremely plausible.

What we have shown is that the same hypothesis which offers a possibility of an
observational verification of the unified field theory through cosmological considerations
(Klotz 1978c¢), enables us to construct a spinor analysis particularly well suited to the deri-
vation of the correct equations of quantum electrodynamics. It should be noted that these
results are independent of any variational procedures which are always somewhat arbi-
trary. Our methods provide us also with an unequivocal support and explanation for the
concept of minimal coupling. Equations (48) are the only ones which can be sensibly
postulated within the context of the nonsymmetric theory.
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The link which we have found between the macrophysics of relativistic gravitation
and electromagnetism on the one hand and the quantum electrodynamics of Dirac on the
other, may be regarded as a powerful argument in favour of the unified field theory of
Einstein and Straus. In this sense it is also an explanation of the correct meaning of the
metric hypothesis which hitherto was purely arbitrary.
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