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Ds; GROUP IN WEINBERG-SALAM MODEL
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A simple model with four quark flavours is presented. This model is based on the
gauge group SU(2);, x U(1) supplemented by a discrete group Ds permitting two values
m,

for the Cabibbo angle, both approximately equal to 9¢ & [m—d
8

The question of elementary particle mass spectrum structure scems to be one of the
most important and still unsolved problems of contemporary physics. Unified models
of particle interactions based on the gauge field theory, which have been developed during
the last twelve years did not give an answer. One can look for the reason for this in the
equivalence of different quark and lepton generations which couple to intermediate bosons
completely in the same way. Due to this symmetry, the mixing angles and masses of
fundamental particles remain arbitrary in gauge theories (this symmetry can not be spon-
taneously broken as it would lead to the appearance of unphysical Goldstone bosons
[1], it also can not be gauged as we would get the unobserved interaction [2]). Free param-
eters should be adjusted to experimental data by the choice of proper values of the
renormalized coupling constants in Higgs sector. Thus relations between masses, mixing
angles and coupling constants, obtained in the zero order of perturbation calculus, can
not be true (they are, in general, modified when the higher orders are taken into account).
However, if coupling constants satisfy some symmetry conditions (for instance, when the
gauge group is supplemented by a finite group), relations between them will be stable
under renormalization.

This approach allows one to express the Cabibbo angle (and/or further mixing angles)
in terms of quark mass ratios {3-6] and obtain relations between masses [7, 8}. In most
of the papers mentioned above (except [4-7]) the models within Left-Right symmetry
(namely those based on the SU(2), x SU(2)g x U(1) group) were used. On can summarize
the results obtained in them by the equation

9c ~ tan! \/—m—d . 1
mS
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Application of discrete groups to minimal SU(2), x U(1) model [9] met some difficulties.
It has even been argued that it is impossible [10]. However, Wyler showed [5] that this
conclusion is true only under certain unnecessary conditions, namely — all Higgs fields
have to form one-dimensional representations of a finite group. If this condition is relaxed
the useful relations in the minimal model can be obtained. Wyler proposed a model very
similar to one proposed earlier by Pakvasa and Suguwara [4] in which!

1 My

Je & tan” " —. (3]

my

In this paper we give a simple four quark model based on the SU(2), x U(1) group.
It leads to a relation of the type of Eq. (1) which seems to be in better agreement with experi-
ment than equation (2). According to Ref. [11], the application of a discrete group to
SU(2), x U(1) theory involves flavour nonconservation in processes with neutral Higgs
particle exchange. In our case it is charm nonconservation. Possible consequences of this
fact will be mentioned further.

Let us consider an SU(2),. x U(1) model with two left-handed quark doublets L, = (3,
L, = (%), four right-handed singlets uy, dg, cg, Sz (prime indicates that we work with
“bare” particles) and three Higgs field doublets ¢q, ¢;, ¢». Let us assume further, that
our model is invariant under a finite group Ds — dihedral group of order five (for defini-
tions of point groups see Ref. [12]). Quark and Higgs fields transform under D as follows?2:

L, dg ) ( ug ) (¢1>
~ E s , ~ E R , ~ E N ~ E > ~ A .
(LZ) 2 ( Sk 1 R 2 ¢2 1 ¢0 1

The Yukawa coupling term is then

Ly = a(qu;t(TH +Lougdp,) + b(Lyug+ Lci)do+ c(Lydrd; +Lyspd,) +h.c. 3

1 Pakvasa and Suguwara assumed m, = 0 for the zero order, independent of the symmetry condi-
tions. This seems justifiable since we know that m, is small, however it would lead to the unstability of
the equation for the Cabibbo angle at higher orders. In the model proposed by Wyler there are no such
problems and my, is free. In the limit my, = 0 Wyler’s solution approaches the one found in Ref. {4].

2 D, group has two two-dimensional representations E; and E, which are generated by the matrices

g 0 01
E;: s s
0 &* 10
e 0 01 i
E,: N R = _—
2 \o e 10 FEexP Ty

and two one-dimensional representations 4., A, generated by the numbers

1, 1and 1, -1
appropriately.
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Denoting vacuum expectation values (v.e.v.) of ¢; by »; one can easily find the mass

matrices
v, 0
Mds =C 0 UZ > (4)
bo, ab,
M. =
e (aﬁz bﬁo) ®)
and relations between masses
2 2
ma\'_ o
() =1 ®
2 2 2 2 2
mu+mc = 2”’”0[ +lavli +Ifwz} s (7)
md - mZ = (1bvg)® +|avy|?) - (1bvel* +av,|?) — |ab(veby +5ov,))2. ®

Physical quark states diagonalize our matrices and are related to the bare states by the
following unitary transformations

’ ’
dir =U dLr Upr \ Uy r

7 - L,R > ’ - VL,R 3
SLR SLR CLR CLR

where U, V are of the form

. e 0 &m0
DL = (O eiél,) 3 UR = (0 eiég) > (9)
cos Je'r sin 9¢'Fr=9) —sin 9e/@R79)  cog g
= (—sin 961+ og 9ot » W= cos 9e*® sin Sei(pk-g.,p)) ,  (10)
with
@ = arg (VoD +o0,),
2ablvgby + Bov,)
tan § = oL o2 (11)

lavl? —avy|? +V/4a*b2l068, + 500, + (lavy” ~av 2
a,fB,7,0 — free real parameters. One can express the Cabibbo rotation matrix as a function
of Uand V¥
(12)

C = VU = cos Jeirr—an) sin QP9 —x)
L L —sin ‘gel(VL‘ﬂL'Hﬂﬂr) cos Se'(JL'ﬁL)

Since phases in the above formula are unmeasurable we can set them equal to zero [13]
and choose for further simplicity

o=y, =0, Ip=pL=n+e. (13)
Then

9 = SC' (14)
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It can be easily checked that the relations (6), (7), (8) are not sufficient for expressing the
Cabibbo angle through the quark masses. The formula for the Cabibbo angle obtained
from these equations depends additionally on the Higgs field v.e.v. phases (by the factor
Gr~n"u)) However, this dependence may be eliminated due to the scalar fields poten-
tial properties. The most general invariant form of it is:

V = 13ebo+ui($101+G:05)+ A(Bodo)* + B(odo) (161 + $20,)
+C(191+ P20 +D($161— $,0,)° + G($204) ($102)

+F[($190) ($001) +(D200) ($002)1+ F [(Pod1) (Fod2) +(S200) ($190)].  (15)

This is the same potential as in Ref. [5]. Parametrizing v.e.v. as follows
vy = roe®, v, = rycosae’™, v, = r,sinae'?, (16)
we find one of the minimalization conditions

sin 2xo—x1—12) = 0, an
ie.
el'(lxo—xx'zz) =1 or ei(ZZo—xr‘zz) = —1.

Only the first relation allows one to express the Cabibbo angle as a function of masses.
Thus, we can choose without the loss of generality

Yo=x1=1Xx2=0. (18)

According to Ref. [5] the potential V has a stable minimum for real v.e.v. if

o 2F [ro\? 9
sin 2o = —— | —
4D—G \ry (19)

(some relations between constants 4, ..., F' should be satisfied). On the other hand

mS
jtan o] =

my

In order to make this true we ought to choose properly only one constant — F’. Anyhow,
it can have 1epercussions on r; and r; values. But by inspecting the formulas (7) and (8)
one establishes that v.e.v. are multiplied in them by the free parameters a, b. Thus, the
quark masses in our model also remain free.

Expressing the Cabibbo angle through the quark mass ratios we obtain two solutions

my
my mgy 2 m,
2 [ 41+ e
mg mg — my
(1)
me

tan 29¢ =

(20)
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2
. md mu . .
For the typical values of ( - ) and satisfying
8 <

( my )2 m,
m, m,

both solutions of (20) are approximately equal

tan28cz2\/ ,

mg

or with the same accuracy

8 ~ \/ Ma 1)

$

Assuming that constants a, b, c are positive one gets relations between bare and physical

quark states
oy _ (1 0\ [ d. A\ _ (1 0\ [ dx
(1)-6 D) (@)-6 %) e
ug\ [ cos9c —sin9c\ [ u
e, /] \—=sin9. —cos9:/\c /)’

ug )\ _ [ #sin8c —cos I\ [ ug
(cg) - (?cos 9 —sindc/\ e/’ @3)

Formulas (22), (23) permit us to rewrite the Yukawa coupling in terms of physical states

) o cos9c 0\[d
LY = C [aLdRq)(1)+SLSR¢g +(u’ c)L ( : 0) ( s )R ¢-1+

—sin 3¢

+(@, o) (g zlons ‘(’;CC) ( f)k o3 +h.c.]
e[ (33 o) (4),#
+(@, 5, (ii’:s‘gscc e g:) ( . )R b3 +h.c.]
val@on(Temme. “hrak)(4) Re@a (0 ) (1) &
@, 0, ( Fsin? 9. Lsin 29C) ( Z )R 5

Fisin29. cos? ¢

. 0 0 u -
+(d, §), ( +sin9c  —cos 9C> ( . )R ¢2 +h.c.}, (24)
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We see that in our model there are no strangeness changing interactions with neutral
Higgs particle exchange, but there are similar processes with Ac = | or 4c = 2. It would
lead, for example, to the abnormal D°-—D° mixing which in principle is measurable.
However, such mixing can be suppressed by choosing Higgs field masses large enough.
Anyhow, the presence of such interactions is not in conflict with the known properties
of charmed particles.

Note

One can suppose that the choice of a discrete group is unrestricted. This, however,
is not true. Wyler showed that such a group should have at least one two-dimensional
representation under which two of the three Higgs fields have to transform. If this condition
is satisfied there are two further classes of possible cases:

— two right-handed quark fields built a doublet and two other — different singlets of
a finite group;

— right-handed quark fields are assembled into two different doublets satisfying some
other conditions.

In both cases left-handed fields transform as a doubiet.

The models presented by Pakvasa and Suguwara [4] and Wyler [5] belong to the first
class. The simplest model of the second kind is proposed in this paper.

I am indebted to A. Szymacha for continuous interest in this work and stimulating
suggestions.

Note added in proof. Recently several six-quark models based on the SU(2)L X U(l) gauge group
have been proposed (see Ref. [6, 7] and D. Wyler, Phys. Rev. D19, 3369 (1979); E. Derman,
H.S. Tsao, Phys. Rev. D20, 1207 (1979). However, the model presented above remains the only
one with four quarks leading to the proper relation for the Cabibbo angle.
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