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RELATIVISTIC THREE-BODY EQUATION FOR ONE DIRAC
AND TWO KLEIN-GORDON PARTICLES

By W. KRrROLIKOWSKI*
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A new relativistic three-body wave equation is derived for a system of one Dirac
and two Klein—Gordon particles interacting through a potential. The original motivation
for considering such an equation came from a preon model of leptons and quarks, where:
it was conjectured that v = 8y, ¢ = 8y and u = 5)_(, d = §yy, the preons & and y being
colour triplets of spin 4 and 0, respectively, and of equal charge — 1.

As is well known, the three-body problem played an equally important role in quan-
tum physics as in classical physics. Especially, the development and check-up of the approxi-
mate methods of solving the wave equations were greatly stimulated by this problem
(cf. e.g. helium atom or tritium nucleus).

While in the non-relativistic limit the three-body wave equations have a universal
character of the Schrédinger equation for three particles with an appropriate potential,
their relativistic form must become specific for a given kind of particles, much depending
on their spins and interactions. For instance, the relativistic one-time [1] wave equation
for three Dirac particles has the form

(E~V—-D;—D,—~D3)yp =0, 1
where
D; = a;" pi+Bim, 2

if the potential ¥ transforms as the time-component of a four-vector. Obviously, putting
D; = 0 and taking for ¥ the two-body potential one gets from Eq. (1) the Breit [2] or
Salpeter [3] equation for two Dirac particles (depending on the form of the effective interac-
tion V).

In the present note we derive a relativistic one-time wave equation for one Dirac
and two Klein—-Gordon particles. Although the obtained equation applies generally to.
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any such system of particles, our original motivation for its developing was a preon model
of leptons and quarks, where it was conjectured that v, = 8y, € = 8()x))p (colour singlets)
and u = §x, d = 5(xx)e (colour triplets), the symbols & and y denoting colour triplets of
preons with spin } and 0, respectively, and with equal charge —% [4]. Thus, the electron
was supposed to be a three-body system of one Dirac and two Klein-Gordon subelemen-
tary particles bound by a colour antitriplet potential, e.g.

, 1 1 1
V = —3 Og + + = . (3)

- - - - -
[ry—r,l [ry—rs3) {ry—rsl

Such a system is likely to be relativistic in its internal motion because of the small electron
mass resulting from large binding forces (in spite of very large preon masses). There seems
to be an analogy with the massless neutrino which is certainly relativistic (in its internal
motion) if it is considered as a system of one Dirac and one Klein-Gordon subelementary
particles bound by the colour singlet potential
V= —% Ug “'..,-1_*_ .
Iry—ral

where (4/3)og = 2 and m,; = m, [5]. The relativistic three-body wave equation obtained
here, though relatively simple, is in fact (unavoidably) a very difficult system of four
fourth-order differential equations, so that we cannot yet offer for it any well justified
solution of a physical interest.

To start with let us consider a system of one Dirac and two Klein-Gordon free par-
ticles. 1t is evident that in this case the relativistic one- time wave equation should factorize
as follows:

(E,—D, ~vVKE VK2 (E-D, +VKi+VK2)

x(E—D, ~VK}+VK3) (E-D, +VK;—VK}) yo = 0, (5)
where
K} = pi+m}. (6)
After a simple manipulation, this equation can be rewritten in the form
{l(E-D,)*~K;—K3F —4K}K3}yo = 0 a
or
[(E-D,)*—4K*|y, =0 if K2Z=K?=K> (8)

Putting in Eq. (7) K} = 0 one obtains the relativistic one-time wave equation for one
Dirac and one Klein—Gordon free particles
[(E-Dy)*~K3]yo = 0. ®

Similarly, putting in Eq. (7) or (8) D, = 0 one gets such an equation for two Klein—Gordon
free particles
[(E*— K3 —K2)*~4K3K2]y, = 0. (10)
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or

(E*-4K*y, =0 if K% =Kj3=K~ (11)
Obviously, the condition K7 = K> can be exactly realized only if D, = 0 and m, = m,
(and the centre-of-mass frame is used).

Now, in the case of interactions described by a potential V transforming as the time-
-component of a four-vector, we make in Egs. (7) and (9), and (10) or (11) the substitution

E—E—V. (12)

Then we obtain, respectively, the following relativistic one-time wave equations for inter-
acting particles:

{(E~V—-D)*-K;— K3 —4K3K3}p = 0 (13)
and [5]
(E-V-D)*~K3]y =0, (14)
and
{(E-V)’-K3;—K3]’-4K3K3}yp = 0 (15)
or {6}
[(E-V)*-4K*]y =0 if K32=Kj;=K~ (16)

In the case of m; = m, = m; we can introduce into Eq. (13) the centre-of-mass
and internal co-ordinates by the relations {7]

(17)

and

. (18)

where P, 7 and p are canonical momenta conjugate to the position vectors R, g and 7,
respectively. Then Eq. (13) gets the following form in the centre-of-mass frame:

=2 2
({ [E_V“(al KA ) ) (% +52+m2>}

___ ﬁ =2 22 .2 _
4 4+p +m°) +4(n-p)*)p =0. (19)
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We can see that it is a very difficult equation indeed, in contrast to Eq. (14) which in the
case of m; = m, reduces in the centre-of-mass frame to a Dirac-like equation for the
internal motion

. a - [p,V
E—V =2y - p+pym)+ — L .,l p=0 20)
E-V
or equivalently

[E-V—2a; p+Bm]IVE-V y = 0. @1

Here
ri=R+ir, T, =R-17 (22)

and
Py =1P+b, P=%P-p. 23)
Eq. (21) is, of course, analytically solvable for a Coulomb-like potential ¥ = —a/r. For

the critical « = 2 it gives a well-defined zero-energy level E = 0 [5] corresponding in our
model to the massless neutrino.

If it is possible to consider approximately the pair of Klein-Gordon particles 2 and 3
as a single integer-spin particle of mass 2m-b and momentum p,+ p, = (2/3)f)~ﬁ, then
applying Eq. (14) one obtains in the centre-of-mass frame

{{E=V—(ay - n+B;m)]*—[7+(2m—b)"T}p = 0, (24)
where ¥ = V(g). Hence

. . oy [T, V]+m?—~(C2m—b)?
{E—V‘z(al ‘m+Bym)+ SMEAE ( ) }’P =0 (25)
E-V
or equivalently
- - _@2m-b»*] ——
[E—V—Z(al R4 Bym)+ m——bf—-l—/—)] JEZVyp=~o0. (26)

The approximate equation (26) takes the form of Eq. (21) if the binding energy b = m.
Then it gives E ~ 0 for ¥ = —a/g with the critical & = 2, suggesting the possible mecha-
nism of keeping the small electron mass in our model (in spite of very large preon masses).
In fact, one gets

1

b~ —(Vy3) = <7> ~m @n
because o = 1 in the colour-antitriplet potential ¥,; = —a/r for the yyx pair, while ¢ = 2
in the colour-singlet potential ¥V = —«/g for the 8(yxy) quasi-pair. The explicit solution
of Eq. (16) for the (xx)p pair with the potential ¥,; = —1/r gives, however, much smaller

binding energy (in the n, = 0, [ = 1 state)

1+./8
b=2m—E,;; =2m (1— —-:—l/—;ﬁ) ~ 0.06 m. (28)
V1042 /8
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So the (xy)p pair must be bound stronger than through the Coulomb-like potential
V.3 = —1/r only. For an illustration, the potential ¥,; = —o/r with & = (14.,/33)
X o/3/4 ~ 2.9 gives b = m exactly (in the #, = 0, / = 1 state). Let us note that the %
preons, being spin-0 objects, should possess also quartic couplings besides the gluon
Yukawa coupling {4]. Thus the last term ¥, ; in formula (3) certainly requires modifications,
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