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THE RELATIVISTIC TWO-FERMION EQUATIONS (I)
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The relativistic radial equations for two spin 1/2 particles interacting via an instanta-
neous potential are derived. These equations are solved for the case of positronium. The
solution obtained is similar to that of Schrédinger’s equation for a hydrogen like atom in
the ground state.

1. Introduction

In quantum field theory the work on the two-body problem is based on two approaches:
i) three-dimensional one-time formulation based on the work of Fock and Podolsky [1],
in which the Coulomb law is derived from the basic equations of QED;

ii) four-dimensional approach which is based on the many-time formulation of Dirac,
Fock and Podolsky [2], in which a time variable is given to each particle.

Breit [3] proposed an equation for two fermions to describe the interaction between
the electrons in helium. Later on, a‘covariant approach — the so called Bethe-Salpeter
(BS) equation [4] — was formulated to describe the relativistic two-body systems. In QED,
where precise comparisons with experiments are made, and in other applications, the BS
equation has been found akward to work with. The unphysical variable of relative time
(relative energy) gives rise to redundant unphysical solutions [5, 6].

Hence, in order to give a physical interpretation for the two-body amplitude several
one-time formulations have been proposed. Logunov and Tavkhelidze [7] developed
a one-time approach which has been applied by Faustov, Todorov and others [8] in differ-
ent aspects of the two-body problem. Krélikowski and Rzewuski [9, 10] developed
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a one-time formulation for the relativistic two-body problem. Partovi [11] derived a two-
-time covariant, functional differential equation, which reduces to a single-time Schrédin-
ger-type equation in the CM frame. Suura [12] has also proposed an equal-time two-body
equation.

In fact, a realistic analogue of the Dirac equation to describe the two-body problem
so far does not exist. The purpose of the present work is to study the formal structure,
self-consistency and solutions of a new set of equations for the two-fermion system. These
equations are generalization to the field equations derived previously by one of us [13] to
describe particles of definite mass m and definite spin s. Hereby, we follow the same nota-
tions. In the next section the relativistic two-body equations are presented. In Section 2
the case of the e¢te~ bound system is discussed.

2. The relativistic two-body equations

Consider the free-particle energy-momentum equations

(PO+PPyy = (0 + o)y, 1)
where
P, = S, p¥+myd. (2.2)
In order to introduce the electromagnetic interaction, we consider the one-particle
equations
(SWPP+my )y, = PPy, (2.3)
and introduce the minimal interaction PV — PV —e, A, where A(? is the 4-vector
potential of the second particle. Then

POy, =[S0+ my” +ei (40 = S0 A ]y,

= [SWpV +m iyl — ey VAP Ty, 249
and A(? satisfies the equation
DZA;Z) = —4”3211’1;?52))’;(;2)’/’2,
with the retarded solution
v,
AP = e, _fT (w5 Pl (2.5)

where r = |r; —r,].

Integrating equation (2.3) with respect to ¥,, and inserting ijy)ldV, = |, whenever
no y, is present, and writing the two-body wave function y(r,, #; ; r»; t,) in place of v, ® y,,
we get

§ avidv,yptPPy = § dv,dv,pi(SSpY + myyMy

-

dv,dv,
—eies [ s s PR W i ) QO
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A similar equation for the second particle may also be obtained. To write down the
symmetrical two-particle equation, we average the interaction over the two particles,
since it is a mutual interaction, hence

(PLO+POyy = (SPV+SPpE +myD+myyP)y

€€z
= = DOINOR e+, (X))

If we consider the instantaneous interaction, we approximate y,,_, = Yi,—r = Y, and get

(PO+ Py = [P0+ SDED tmal 4 ma®+V1p, (29)
where
€182 . (1), (2) . (2). (D (1), (2)
Vu = - 7(?0 Yu +7%0 Yu )yv Py - (29)
Here,
VO = T (1—“1 * “2) (2.103)
and
€1€;
V= = (e (1-a, o). (2.10b)

In this approximation we obtain a local interaction. The factor «, * &, reminds us of the

Breit interaction
ee a,F) (o, r
. 12[1_%(a1_a2+(1 I )>]
r

1
o+ 5;5(“1 Ar)(oy A F). (2.11)

To evaluate Vg—V,, we take the expectation value between free particle states, where

in the rest-system P, = — P, = pis the relative momentum, {a;> = P/my, {at,> = —P/m,,
such that
B —€1€ .32
Vo =Voy = ——<j°[r™), (2.12)
2mym,

where j = r A p is the relative angular momentum. Thus V§—¥, gives spin-dependent
splitting of the energy levels.

Since our first concern is to examine the self-consistency of the energy-momentum
equations, we shall consider now the instantaneous minimal interaction and with equal
mass case m; = m, = m.
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The Schrédinger equation (PY”+P§+Vo)y = Poy, where P, = PV + PP, was
used already by Breit [3}, and also by Fulton and Karplus [14] and Fulton and Martin [15],
derived from quantum field theory. What is new here, is the momentum equations
(P, +P,+V)p = Pyp. One wants to see, whether they are consistent with the energy equa-
tion, and whether they yield additional supplementary conditions. For equal masses
the energy-momentum equations read

Py = [SuP,+(S0 —S)p, + mG +v@) + ¥, 1w, (2.13)
where
P, =P 4P, p, =3P -P?), X, =50x"+x7),
x, = x(l) (2)’ S (SL?-}-S(Z))

Furthermore, if we consider the rest-system P, = 0, P, = iM, where M is the mass of
the two particles. We seek the static solution, such that poy = 0, which is independent of
the relative time. Thus the energy-momentum equations read, for the instantaneous Cou-
lomb interaction

Mw=[(a1—a2) p+mO+9P)+ 2 2(1—a1-az)]¢ (2.14a)
and

M .
0= [_2_ (2, o) +i(6;—a3) A p+m(y,+7p,)

= el_% (@ +a)(1—ay - “2)] (2.14b)

Considering the direct product representation
59 = Su®I, ST = 1®S,s (2.15)

where S, is the Dirac algebra, with

SP = —igyo®, SO = ial? = ipso?,
S8 =95 S8 = B9 = inaf?,
Sso = BP = 0, 0 = 99D (2.16)
The y has the matrix elements y,5, such that
(S(l)'/’)aﬁ = (S%8)ow V' [; (2.17a)
and
(S(Z)w)aﬁ = (SAB)ﬁp Wap- (2.170)

For convenience, we write

v = aC+% S 5C a5, (2.18)



where C is the complex conjugation matrix, such that [16]

C'=-C, SL,=-C'S,C and S =C7'§,C.
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(2.19)

The 16 independent components of p are thus expressed in terms of the scalar a and
the 6-dimensional 15-component antisymmetric tensor y,5 = — py,. We denote its compo-

nents in three dimensions as follows:
Yia = Eantlys Yar = iE, Y5 = Ko Y45 = ixo

Yus = Pro Yas = iPo,  Yse =1,
which are four vectors H, E, y, ¢ and three scalars yq, ¢o, 1 such that

p=(a—ioc-H—a E+y: x—yoxo+B" ¢—BoPo+BsnC.
Equations (2.17a) and (2.17b) read, in favour of (2.19)
S%v = S4Ca+% S4sScoCcp

and

S$Hy = CSkpa+3 ScpCSisven
such that

S:(xg)'l’ = —SuCa—3 ScpSaC¥cp
and

sz?'/’ = 8,,Ca+3 ScpS.C¥cp-

Here the indices @ and b run over 1, ..., 5.
The energy equation (2.14a) reads, after multiplying by C-*! from the right,

M{a—ic-H—a E+y- x—yoxo+ 8" ¢—Bodbo+Psn}
= —2ia-Va+2ifsdiv H+2idiv E—2if-curl
—2iy-curl ¢ +26 - Vy+2m(—~y -  E+a- x+Bsdo—Bot)

e.e
+ == {4a+27 - 2+ 2000+ 28 &+ 2Bode+4Bsn}-

From the linear independence of the S,5, we obtain the equivalent equations

Xo =0,
2mn = (M+ 2e;e2) o,
2iVn = MH,
2idivH = [ - 4e;e2] n—2mo,

(2.20)

(2.21)

(2.22)

(2.22a)

(2.22b)

(2.23)

(2.24)
(2.24b)
(2.24¢)

(2.24d)
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2iVa = 2my+ME, (2.25a)
. g deye,
2idivE ={M— a, (2.25b)
r
. 2ese,
—2icurly = M- @, (2.25¢)
r
. 2e,e,
2icurl ¢ = 2mE+ | M — z (2.25d)
r

and the momentum equations (2.14b) read
M[—a A H+io A E—yox+yx0o—Bod+Bdo]+20 A Va+2icurl H
—2ifs curl E~2if; curl x—2if A Vyo-+2iy, curl ¢ +2iy A Vo +2i A V

+2m[—y A H—yE+ie A x+ay,+Bsd— Bl

2e,e
= =2 [rox+ 720+ Bo+ Bbo] = . (226)
This gives

Xo =0, (2.27a)

2e,e,
2my = M+ o, (2.27b)

r

2iVnp = MH, (2.27¢)
iVg, = mH, (2.27d)
curl H = 0, (2.27¢)
2iVa = 2my+ ME, (2.28a)
icurl E = m¢, (2.28b)

2
_2icurly = (M— e‘e2> é, (2.28¢)

r
. 2ese,
2icurl ¢ = 2mE+ (M— 2} 4. (2.28d)
r

We can see that equations (2.27a, b, ¢) and (2.28a, ¢, d) are identical with (2.24a, b, c¢) and
(2.25a, ¢, d) showing the consistency of the energy and the momentum equations. Also
(2.27¢) follows identically from either of the equations (2.24c) or (2.27c).
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If we consider the energy equations alone, we find that equations (2.24) suffice to
determine H, ¢, and 5, where 7 satisfies the differential equation

Vi M M 4e,e, m>*M o
1 4 r M+ 2e e, =
r

On the other hand equations (2.25) do not suffice to determine the three vectors x, ¢
and E. Thus the momentum equations give necessary supplementary conditions. Further-
more, the momentum equations (2.27) alone lead to H = ¢, = 5 = 0, which are satisfied
automatically by (2.24). In fact, equations (2.27c and d) give 2M#n = md¢,, which together
with (2.27b) give 1 = ¢o = 0. Hence also

H = 0. (2.29)
From equations (2.25) and (2.28)
¢ =0. (2.30)

In fact, by taking the curl of equation (2.25a), we obtain
2mcurl y+Mcurl E = 0.

Substituting equations (2.28b and c) into the above equation, we obtain equation (2.30).
Thus we are left with equation (2.25a) and

culE=0, curly=0, (2.31)

r

2
2mE+ (M~ e’ez) x=0. (2.32)

Taking curl (2.32) and using (2.31), we get

rAayxy=rAE=0. (2.33)
Hence
r r
x=x- E=E-
r r
and
Eo - L(M_ 26132) " 2.34
2m r

It follows from (2.25a) that a = a(r) is a function of r alone,

o _ l:m— M (M— 2e1e2>] x (2.35)
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showing that y and also E are functions of r only. Further, equation (2.25b) reads

2i d 4
—21— — (r’E) = (M— e1e2> a
re dr r

Hence

(o= 22a) 1, 20070 (g ) 239
r

r dr r

Also, from equations (2.35) and (2.36) we can obtain, by eliminating a, the differential
equation for .

3. The mass of the positronium

We consider now the positronium e, = —e, = e {(or also the muonium). We solve
equations (2.35) and (2.36), which now read
_da M M+ 2¢% G.1)
f—=|m-— — , .
dr 4m r X
4e” 2¢*\ dy  2(Mr+é®
m(M+~5>nz=<M+—~)—£+-ngfjx (3.2)
r r / dr r

We seek solutions which vanish at infinity. Consider the asymptotic functions x, and
a, as r — oo. Equations (3.1) and (3.2) become

dag, ( M2>
i—==m— — |1
dr 4m

and
Ly
F ima,
hence,
d*xo
= ~K%., =0, (3.3)
where
K =}@m*-M*)'"2, (3.4)

When M < 2m we obtain the asymptotic solution y, ~ e *". Thus, a solution of this
form may be sought,

N
x = e—Kr Z B"(Kr)n+v — e—KrB(r)
n=0
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and

N

a= ie-—Kr 2 A,,(Kr nty _ ie-—KrA(r),

n=0

where the sums terminate at the same n = N.
Denoting
o=Kr, & =a m*=mK, M*=MIK,

where a is the fine structure constant, then A(g) and B(p) satisfy the following equations

20\ dB 200 2(M*—0) 4o
MY+ =) — 4|5+ " —M*|B=—m*(M*+ —)4 3.5)
e/ de 0 e e

\

and

4 dA . 1 M*a B 3.6)
do |m* 2m*e| )

We obtain the following recurrence relations

20(v+n+3)B, ,+[ —2a+M*(v+n+3)]B,s, —M*B, = —m*M*4,—4am*4,,, (3.7)

and
1 M*o
A,—(v+n+VA4,,, = —B,— ——B,+;. (3.8)
m*- 2m*
From the above equations we get
M*q
(2v+1)By =0, vd; = — B, 3.9)
2m*
hence, v =0, B, =0, A, # 0 and B, = —m*A4, is a solution and the other solution
M*o,
Vv = "1, Ao = W— 0

is singular, and thus is excluded. On the other hand, if we take n = N, such that
Anyy = Ay+z = Byyy = Bysa = 0
then both equations (3.7) and (3.8) give the same relation
By = m*A4y (3.10)

showing the consistency that both series for 4 and B terminate at the same n = N. Further-
more, in equations (3.7) and (3.8) by taking n = N—1, we get

[M*(N+2)—2¢]By~M*By_, = —m*M*Ay_, —4am*Ay
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and
M*qy
2

m*(AN_l-—NAN) = BN—I'— BN' (3.11)

From these equations and equation (3.10), we get
[M*(N+2)+2u]By = M*(By_;—m*Ay_,)

and

The self-consistency of these equations gives the cigenvalue for M in the form
2MK(N +1) = a(M?—-2m?). (3.12)

This holds naturally for N > 2, because condition (3.10) does not hold for N = . Squaring
we get equation

[(N+1)?+a2]M* —4m*[(N + 1) +*IM?* + 4’ m® = 0

which gives the mass spectrum

MN 2 (12 1/2
— ] =242|1- ————| - 3.13
(m) * [ (N+1)2+a2] (313)
The other root of the equation is excluded. In fact
aZ 1/2
Mi-2m? = +2m?*[1— —————| .
NTEm wam (N+1)2+o2

Since MK > 0, then equation (3.12) requires that M?2%—2m? > 0. Hence only the root
with the positive sign is admissible. Expanding in powers of a2, we get to the first degree
2
oa“m

My~ 2m—
N AN

(3.14)

Here

My—2m ~ —Ry/2(N+1)?

2

c . m
which is the same as for the hydrogen atom where Ry = is the Rydberg constant

. m
with the reduced mass X except that N+1 replaces N.
The ground state N = 1 is given by

M*q
2

"‘m*Ao = ( "'1) Bl’ Bl == —m*Ao.
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Hence,

—~1=1, Ma=4K, M?}¥a*=16m>—4M?>

or
M* (2 +4) = 16m>,
from which we obtain
4dm a‘m

M, = —==2m—- —
4+o? 4

which is the same as Schrédinger’s hydrogen atom for the ground state.
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