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THE DEPENDENCE OF COULOMB DISPLACEMENT ENERGY
ON DEFORMATION OF A NUCLEUS
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Institute of Physics, Warsaw Technical University*
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The influence of deformation on the Coulomb displacement energy for the nuclei of
rare earth elements is considered. The essential contributions which change with deforma-
tion were calculated exactly using the shell model. The results were compared with experi-
mental data.

1. Introduction

Recently Coulomb displacement energy has been the subject of many theoretical
works [1]. However, the majority of them concern spherical nuclei; the influence of de-
formation was considered to a certain extent through the phenomenological correction
terms [2]. In this paper all contributions to the Coulomb displacement energy which could
essentially depend on deformation, for example: direct term, exchange term and spin
orbit term, are exactly calculated numerically. The Hamiltonian used contains a deformed
Woods—Saxon type potential and monopole pairing interaction.

Considerations were limited to the axial deformed nuclei of rare elements for which
such a kind of deformation is typical. There is also a remark regarding the influence of the
nuclear surface deformation on the Coulomb displacement energy. The obtained results
were compared with experimental data.

2. Method

The Coulomb displacement energy AE, is defined by the equation:
4E; = Exs—Egs, €))

where Egg is the energy of the parent nucleus Z_ in the ground state, and E,5 — the
energy of the daughter nucleus Z_ in the excited analog state. Neglecting the isospin
mixing, we can describe the states of nuclei with the help of the isospin value and its com-
ponent M on the z-axis in isospin space. Based on the concept of analog isospin [3],
the ground state of the analog nucleus |7, To— 1) 55 (on the assumption of charge-inde-
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pendence of nuclear forces) can be described by the formula {4]
|To, To—1Das = (ZTo)—l/zf‘wlTo, T0>Gss 2
where |T,, To)gs is the ground state of the parent nucleus, T, — isospin of the parent
nucleus. Using (1) and (2), the Coulomb displacement energy can be given in the form [5]
1 P A
4dE; = 3T (T, Tol [[T+» Vemds T-1iT0, To)gs: (3)
W]

For the ground state |T,, Ty)gs we have taken the configuration of the axial deformed
shell model with the one-particle potential of Woods-Saxon with regard to the short-

T T 2t T o7 T Vo'
/Sy/z- 5/2
572" g e,
K3/0* [ 5/2
oL (/2" 32"
2012 v2* 2Py 3¢
s/ v ¥ 172
Py % |32
' 203/ =41/
i -
. 3
-5 - -
", 5 72 S
/2"
72 Yoz 572
32" Br 13/2
-0} ~-1/2" 12
L3/2* -3/27
k73 w2t My / [~172
2s Py 2sy2 .
vz 2 L 1B, -2C . 12 4B,

01 02 o o1 a2

3/
127

= 1727 =N
l%’ro>gs‘ 7Z &
527 RN

/2
2 -

12
_ v, vz . o E 4
‘7(.7’.6-10>as'#' Va Up 1/2_ %p Zaw: N +ere
0 Z3 AN
5/2 ™
p N

Fig. 1. The structure of the ground state of the parent nucleus 7o, To>gs and analog [Tg, To—1)as. The
dilution of nucleon occupation through pairing is shown schemalically. The odd nucleon is blocked

-range correlation in monopole pairing form. We used an optimalised set of Woods-Saxon
parameters for the rare earths [6] and also outside this range (7). The pairing force was
taken from the work [8]. The ground state |T,, 7)gs is BCS-state with blocked state
of odd nucleon. As an illustration, one-particle states of 3°Fe are shown in Fig. 1 and the
structure of the states: parent (°7Fe) and analog one (°’Co). To demonstrate better the
dependence of AE, on deformation, we introduce a new value 8(4E,), as the difference
between the Coulomb displacement of a spherical and deformed nucleus, which essentially
depends on the deformation of the nucleus

O(4E.) (Bs> Bs) = AE(B, = 0, By = 0)—AE(B,, Ba)- €Y
S(AE,) so defined can be indirectly compared with experimental results.
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It is true, that if the nucleus in the ground state is deformed, we do not know the
experimental value of AE, for its spherical state, but we can profit from a phenomenolo-
gical formula given in [2] describing the Coulomb displacement energy for spherical nuclei

1394.1 Z 60 86.0Z

AE(SPH) = ——=— —416.0+[1 1] —— — ———t [keV 5

{(SPH) = —— -5~ = eVl )

The first term in (5) describes a direct Coulomb interaction, the second — exchange forces,

the third — Coulomb pairing interaction, the fourth is an approximation of the electro-

magnetic spin-orbit interaction [9], with the assumption ¢ = {Ia [2]. If we extrapolate

(5) to the region of deformed nuclei, the experimental equivalent of (4) can be expressed
in the form

S(AE)exp = AE(SPH)— AE (MEASURED). (©6)

. Since we are interested in §(4E,) (this is the difference), we can neglect such correction terms
to the Coulomb displacement energy as the effect of finite nucleon size, vacuum polari-
zation, the short range correlations, the dynamical effect of the neutron-proton mass
difference, the charge dependence and charge asymmetry of nuclear forces [1, 10-12],

because analysis of these corrections suggests that their dependence on deformation is
. e’

not significant. If we take (3) and put into this equation Fgy = I——- then the main

part of the Coulomb displacement energy — direct term — can be expressed in the follow-

ing form

. o
AE? = o J Ue&"c’(r)vc(r)dar, %)
where
Vi) = J j ““(r).‘ 5 7 )

is the one-particle Coulomb potential. In (7) and (8) Qf,:l‘,’)’(r) is one-particle neutron (proton)
density matrix, ot2F) -— density matrix of neutron excess. In addition, one ought to
regard the quantum-mechanical exchange term, which can be given in the form

1 . €
AEFH = ST f J‘ oP(r, 7)o &R, r')l., |d3rd3r’, ®
[

where ¢*P(r, 7') is two-particle density matrix. Expression (9), in general, is calculated
on the basis of a statistical model [13] and nuclear matter {10]. Without difficulty, one can
also get AEE*“M in the case of spherical symmetry [9]. In the present work this value was
exactly calculated also in the case of deformed nuclei using the method given in the Appen-
dix. In the expression containing the terms of direct and exchange interaction, the electro-
magnetic sin-orbit interaction gives a small contribution to the Coulomb displacement

energy (order of a few keV), hence this term can be estimated without significant error
on the basis of [9].
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3. Results and discussion

The change in nucleon deformatiorzauses a shift of the one-particle states sequence
(Fig. 1) as well as the change in the sy metry of the wave functions. These two effects
influence in a different way the behavior of the direct and exchange terms.

Let us consider the direct term. The one-particle density matrix can be expressed with
the help of multipoles

@) = T ) Yo(@) (10)
L=0

(M = 0 because of the assumption of axis symmetry). In Fig. 2 graphs of multipole mo-
ments for the proton-density matrix of **8Dy-nucleus for different deformations (8, = 0)
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Fig. 2. The graph of the dependence gg‘](r) for **Dy for various values of deformations f, (84 = 0)

are given. As expected, the amplitude of the functions decreases very strongly with the
higher multipoles. The effect of the proton density matrix deformation influences the one-
-particle C oulomb potential (8). This potential is given in a form similar to (10)

V) = 3 V)Y@ (11)
L=0Q
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(see Fig. 3) hence the direct term of the Coulomb displacement energy is

[} 0
42 = 2 [ Voo 12
2T,
L=0 0
Comparing Fig. 2 and Fig. 3 the averaging effect of integration in expression (8) can be
seen.

The contributions from higher multipoles have relative values higher for proton
distributions than for a one-particle Coulomb potential generated through these distribu-
tions. The direct term depends slightly on the change of sequences of one-particle states
and the strength of pairing forces. The exchange term depends more on state sequences.
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Fig. 3. The graph of dependence VEL](r) for 8Dy for various values of deformations f,(fs= 0)

Contrary to 4AEP, where the proton effect and neutron excess effect are independent,
in AEEXM the proton states and neutron excess states are combined. The change in de-
formation causes the change in overlapping of their wave functions and also because of the
displacement of one-particle states, causes removing of some states by adding and including
of others. The pairing interaction weakens this effect due to the dilution of the occupation
of one-particle states. This effect becomes visible when superfluid correlations disappear.

The exchange term depends stronger on nucleon deformation than the main term.
This is illustrated in Fig. 4 for the nucleus 13Nd, where 5(4ED) and §(4EE*M) depending
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on deformation £,(8, = 0) are given. As we see, the consideration of the deformation
effect through the correlation correction in the direct term [2] seems to be insufficient.
In; Table I numerical values of 6(4E_ )1y are given for a few nuclei from the rare earth region
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Fig. 4, The dependence of AEP, AEEXCH and AE, on deformation #, (8. = 0) for '*!Nd

which are calculated in the minimum of Strutinski’s deformation. One can see, that in all
examples the value of 8(4F, )y is higher than A(SE )exp, and the divergence is growing
with deformation. It seems, that the reason for this effect is the inadequacy of fitting (5)
for nuclei far from the magic ones. In general, the difference does not exceed 80 keV.
Summarising this, we can conclude with the following suggestions:

TABLE 1
. SAEYtn | S(AE)Exe 46

Analog pair ﬁz ﬂA [Mev] [MCV] [kev]

149Nd-1*"Pm 0.197 0.063 0.099 0.127 28 +20
15ING-'*1Pm 0.237 0.080 0.1385 0.121 17.5+£25
169Er 169Tm 0.300 0.0 0.164 0.123 41 +22
169Yb-1¢Lu 0.300 0.0 0.174 0.136 38 +23
17Yb-17 L 0.300 -0.012 0.207 0.121 86 +20

Table I contains the results of theoretical calculations for a few analog pairs from the region of the
rare earths. Columns 2 and 3 represent theoretically calculated deformations . and f, (on the basis of
Strutinski’s shell correction). Columns 4 and 5 represent the values d(AE.)ry calculated from the fit (5).
The value 46 in column 6 is a difference between A(4Eg)Ty and dAE:)gxp with experimental error. Experi-
mental values are taken from publication [2].
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1. One cannot neglect the deformation effect in the exchange term; it is comparable
with this effect in the direct term.

2. The value of Coulomb displacement energy depends rather strongly on the de-
formation of the nuclei, therefore one must take it into consideration in theoretical and
experimental research concerning the analysis of Coulomb displacement energies.

APPENDIX

The calculation of the direct and exchange term

The Schrédinger equation with the deformed Woods-Saxon potential was solved with
the help of the diagonalisation method (see [14]) on the basis of a spherical harmonic oscilla-
tor. It is shown that the use of 11 oscillator shells sufficiently reproduces the results of a
9-shell calculation performed on the basis of a deformed oscillator for the considered range
of nuclei and deformation. Wave function of the Woods—Saxon potential indicated by

projecting the angular momentum 2 on the axis “z”” and by parity, has the following form
P « nl( r)
(r, O') Qnpmr — Ylm(‘Q)XE(O') (Al)
e

where %, are the decomposition coefficients of the function y{>™ on the deformed
oscillator basis.
In the Woods-Saxon basis, the one-particle density matrix is given by the expression

(lp) z 2 hp(ﬂ x)‘z (A2)
where v? denotes the coefficient of the occupation of the state o taken from the BCS-

-method. Using the theorem of addition of spherical harmonics we can decompose the
density matrix (A2) on the multipoles

o1PG) = Z 01 Y, o(9), (10)
where
1
) = e Z 202 {? Az ms
Van(2L+1) A
m(PRy TOOUED
RuRwi1) _ym J @11y @F 5 1) IOFOILOY <1 — ml’m|L0>} (A3)
Using now the well known decomposition
o . +k
1 4 F<
1 YA(Q) V(@ A4
F= ) i z Q)Y (2) (A4)

k=0 A==k
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TABLE II

L 0 1 2 3 4
AEPILI(B, = 0) 14.788 0.0 0.0 0.0 0.0
AEP[L](B, = 0.3) 14.607 0.0 0.097 0.0 0.0
AEEXCHIL(B, = 0) —0.290 —0.081 —0.031 —0.018 —0.008
AEEXCH[L](ﬁz = 0.3) —0.361 —0.100 —0.046 —-0.020 10.012

In Table II the components of the decomposition of the direct and exchange term are given (see
(A 6) and (A 7)) towards the L-value for the analog pair **'Nd~!5!Pm at two deformations , = 0 f, = 0.3
(8. = 0). All the values are given in MeV. As can be seen, when considering differences between deformed
and spherical shape, calculations should be limited to L <{ 4. The contribution coming from L = 5 would
be of order of magnitude ca 1keV.

it is easy to perform the integration (8). As a result we get

o]

V[L](r) = ﬂ—- J‘ otH(r) i r2dr (AS)
¢ 2L+1 ) 7~ Tkt '
o
The integration in (A5) can be expressed through the elementary sum containing poly-
nomials, exponential functions and an error function (ERF).
Now carrying out the decomposition of (10) for o&f2 and going back to (11), we get
after simple calculations

1
482 = > | veodeorar 1)
oo L=0 0
= Y 4E[L]. (A6)
L=0

If a similar procedure is applied to the exchange term, this term can be expressed in a form
analogous to (A6)

4B =y, AEZL], (A7)

where AEE*M [L] is a single integral depending on r. As an example the values of the
sum components (A6) and (A7) for 15!Nd for different values of deformations B,(fs = 0)
are shown in Table II. Tt can be seen that, the components decrease fast to zero if the
L-value increases. Practically one can limit the calculations to Ly, = 4.
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