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Metric hypothesis in the nonsymmetric unified field theory of Einstein and Straus
is discussed from a group theoretical and fiber bundle point of view. Theoretical back-
ground of the hypothesis is constructed. It is shown that the “hypothesis” is in fact implied
by the concept of Hermitian symmetry on which the nonsymmetric theory is based.

1. Introduction

I have postulated recently (Ref. [1]) that the metric tensor g,, in the nonsymmetric
unified field theory (Ref. [2]) should be determined by the equation

{;' } =, )
Hvi,

the Christoffel brackets being constructed from a,, and ffnv) denoting the symmetric part
of Schrédinger’s affine connection

i =ri+%sir, )
where
Fv = ngo]

is the contracted, skew symmetric part of a connection I' ,’;‘v. The “metric hypothesis™ (1)
proved to have far reaching consequences (Refs. [3, 4, 5]) in the physical interpretation
of the theory.

The aim of this article is to discuss group theoretical foundations of the above assump-
tion. In particular, it will be shown that identification of the metric through equation (1)
can be based on an extension of the local invariance group of the unified field from the
general relativistic Lorentz group to the Poincare group. The latter operates on a bundle
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of affine frames and factorisation of the affine group allows just enough freedom to set
up all the quantities needed in the formulation of the nonsymmetric theory.

The point of view adopted here is that since the most significant aspect of the theory
1s its foundation on the principle of Hermitian symmetry, this must be preserved in whatever
may come out of group theoretical considerations if the theory is to be physically meaning-
ful. Tt turns out that this can be achieved providing a certain amount of care is exercised
in defining the tetrad vectors.

Throughout this work Latin indices will denote tetrad or local vectors and Greek
indices, the coordinate components where and when necessary. In a relativistic space-time
manifold in which we are interested, both sets of indices go from O to 3. The group theoreti-
cal notation is that of Drechsler and Mayer (Ref. [6]).

Finally, I wish to express my gratitude to my colleague C. Radford for drawing my
attention to the group theoretical reasoning used herein and for working out the compo-
nent form of the expressions below.

2. Group theoretical preliminaries

Let x be a point of the space-time manifold X and 7,(X), the tangent space-to X at x.
The (Poincare) group of affine transformations A(4, R) acts on the bundle 4(X) of affine
frames, and can be represented as the group of all matrices of the form

g ¢
(&%) ®
ge GL4; R), {e R*.

The tangent space itself is then the tangent affine space T4 (X) say, and an affine
frame at x € X, (@; X)), consists of

ae TAL(X)

together with a linear frame (X;),. The group A(4; R) can be written (Ref. [6]) as a semi-
-direct product of its homogeneous and inhomogeneous parts

A@4; R) = GL(4; R) - R4, €))

R#* being assigned a Minkowski inner product. Corresponding to the product (4) is the
semi-direct sum of Lie algebras

a(4; R) = gl(4; R)Y®R*4. )

Hence, if @ denotes a gl (4; R) valued 1-form on X (a linear connection) and v is
an R* valued 1-form on X (a tensor of type (1, 1)), a connection o in A(X) is given by

0 = ody. (6)

Let Q be the curvature form of &:

Q = do+ o, 0]. ™
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The structure equation (7) then splits into a gl (4; R) part
Q = do+ 1w, 0] 8)
and an R* valued part
0 = ilw, p]+ily, 0]+dy = Dy, (€)

where D denotes the covariant derivative with respect to w. Hence © is the generalised
torsion form of the linear connection . Equation (9) gives the standard torsion form if
y is the canonical. 1-form.

Let us now express the above results in local coordinates (the expressions below have
been worked out by Radford).

Let E J‘ be a natural basis of the Lie algebra of gl (4; R) and e; the natural basis in R*.
Let also Y* be the local coordinates in T'4,(X); X7 the local coordinates in the bundle
of linear frames L(X); and x*, the local coordinates in the manifold X, that is the coordi-
nates of x € X. Then (Y% X% x*) are the local coordinates in the affine bundle A(X)
while (Y7, X7) are the coordinates in the fibre n~!(x) where

m:AX) > X

is the projection mapping of the bundle into the manifold.
In terms of these coordinates

(]

EYY{dX?+ydx?) (10)

i

and
y = e;YJ(dy*+ K3dxP), (11)

where K3 is a (1, 1) tensor, yJ; are the local components of the Ricci rotation coefficients
or, in effect a frame connection and

Y =X

We can introduce a (nonsymmetric) affine connection I'%, as follows. Let X be the hori-
zontal lift of X, = 0,.. Since

a(Xy) =0, (12)
we have
X;k = 6x,—‘yinfanﬁ—Kgayﬂ. (13)

Let us associate with every vector field ¥ an A* valued function f:

fla) = a”'(V(n(a))), (14)

aeAf(X), na) = xe X.
The function associated with X, is

fo=a (X)) = Yle (15)
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and
XU = (XJ¥+4,X0)), (16)
becomes the A* valued function associated with the covariant derivative V.«Xs. Thus
Vox0x? = I'}30.0, an
where
I3 = Xj¥ia+7u,XiYy (18)

and represents the connection coefficients with respect to w. I'}, is related to the rotation
coefficients by the L(X) coordinates since it follows immediately from equation (18) that

VX% = X% +TE XT—y5XxE = 0. (19)

3. Identification of the metric

We are now ready to discuss the problem of identifying a metric in the base manifold
X which we regard as the space-time manifold of the physical world. It turns out that
there is only one way in which this can be achieved which is consistent with the principle
of Hermitian symmetry. The problem is not as straightforward as in General Relativity
where, by the principle of equivalence and the strong principle of geometrisation (Ref. [1]),
the gravitational field is identified with the metric structure of physical manifold. In the
nonsymmetric theory, the Yundamental tensor g,, describing combined electromagnetic
and gravitational fields must be related to a geometrical structure of space-time by an
assumption which would replace the general relativistic axiom. Since the metric hypothesis
radically affects our view of this relation by restricting the domain of solutions of the field
equations, it is essential that it should possess the same Hermitian property as fundamental
macrophysics.

Since the elements of the tangent bundle 7(X) (i.e. tanget spaces T,(X)) have the same
structure as R* endowed with a Minkowski inner product, the bundle of linear frames
L(X) can be always restricted to the Lorentz bundle #(X, L) by reducing GL (4; R) to
the Lorentz group %,.

Transformations of the latter preserve the tensor

1 = XinX5, (20)
where the Minkowski tensor
ﬂij = dlag (13 -1, ~1, —1)

becomes the fiber metric. The corresponding restriction of affine transformations to
Poincaré transformations, reduces 4(X) to the Poincaré bundle of frames P(X). Defining
the tetrad

=X A=Y, ©3))
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Greek indices can be raised and lowered with /*(,; = Aln;;A}) and Latin indices with
n*(n;;). We may observe that (Latin) skewsymmetry

vy =0, =
of the rotation coefficients is a consequence of
Vi =0. 22)
Alternatively
Vai; = —Vajit(—lgyat T+ 15, T2)ALAL,
so that skew symmetry occurs if
Vg, = 0. 23)

However, derivation (23) conflicts with the principle of Hermitian symmetry. Hence
1,5 can not be chosen as the space-time metric. Since, on the other hand, equations (22)
and (19) necessarily hold, the only possibility is to construct the metric tensor

a*? = hinn} 24)
from another tetrad A which satisfies the equations
V,hi = If, ki, (25)
where I T denotes the skewsymmetric part of Iy, (with symmetric part f’fm). Then
D,hi = hi,+T¢,hi—y5hi = 0. (26)
Also from
Dynij = Vynij =0
we get
D,a¥ =0 @7
which is equivalent to the “hypothesis” (1). We can readily verify that with
Vaij = 'iik}l;,ahi'*"?ixf fap)hf'h:, (28)
Paij = ~Vajis
if
D,a,; = 0.

4. The Riemann and the fundamental tensors

It now follows that in order to retain Hermitian symmetry of the equation defining
the metric, we must distinguish the “physical” frame A} from the geometrical frame X9
(or A7), the rotation coefficients being given by either

')’:J = h’;h;a+l_—‘£] (29)
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or (because of the equation (18))
Vai = XeXja+ 15, (30)
where
Iy = hhile,, I =YX, (31)
Strictly speaking the rotation coefficients in the equations (29) and (30) are distinct, being

1-forms in two subbundles of the affine bundle of frames. In that case, they (or rather
the # and X tetrads) will be connected by a transformation of the form

0'g = go+dg. (32)
The effect of putting
o' =, (33)
is that the transformation g should satisfy the differential exterior equation
dg = wg—go. 34
The integrability condition of equation of equation (33) which is written in matrix form, is
Qg = gQ, 35

where £ is the curvature form of the manifold, and can be nontrivially satisfied by g = Q
which, since Q is skew means in general that g must belong to the symplectic group. The
existence of such nontrivial (i.e. not requiring that g should be constant, in particular,
unit .matrix) solution ensures that equations (29) and (30) can be written down without
imposing too severe restrictions on the affine bundle or the manifold.

In terms of the natural base Ej = n™E,;, the basis of the Lorentz group is

Lyij = Egyp
and {L;;, e,} generates the Poincaré group with Lie brackets
[Lijs Lu] = njLa—naLj+nuLy;—nuly;
[Lij9 el = N jx€;— Nki€ - (36)

Let o be the cross-section of P(X) over an open neighbourhood U of a point x € X,
assigning to every x € U a Poincaré frame (O,, X76,.), O being the origin of R*. In terms
of the coordinates (3, x*, X%)

o1 (%) = ((0, 0,0, 0), X%, X%). (37)

Then we have on the base manifold X,

i i ax
o*aw; = y,;dx’,

o*y’ = Kldx*,
*x0 _ 1 pi u v
6*Q; = 5 Ry, dx" A dx’,

6*0’ = 5 Tjdx* A dx’, (38)
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where

Riuy = Vju= Vs VsVt — V¥ (39)
and
T), = 2[ VK +I¢,,Ki) (40)
If the two frames coincide and K¥ = A/ = X7 (as they must not if the affine bundle is to
split in the required way), T5, becomes the usual torsion tensor of the affine connection I°;,.
We can verify easily, using the equations (29) that

X{Y/R:,, = R; (41)

Buv>

the Riemann-Christoffel tensor constructed from I°J,. On the other hand, using the 4-frame,
defining the (1, 1) tensor

K: = hK}, (42)

and raising and lowering Greek indices with the metric tensor a,,, the generalised torsion
becomes

T), = W[V,K,,~V K+ T1eiKay — TivarKan)-

If we identify the tensor K,, with the fundamental tensor g,, of the nonsymmetric theory
for which

guv,l—fz,lgav—vagua = Os (43)
then

T;fv = hjl’gaﬁ[r?va]ég_f?ua](se]‘ (44)

5. Discussion

We have shown that the metric hypothesis of the nonsymmetric unified field theory
can be given a rigorous, group theoretical foundation involving extension of local inva-
riance of the field from a Lorentz (i.c. general relativistic) to a Poincare invariance. It may
be thought that the distinction we have been forced to make between physical and geo-
metrical frames of reference is unnatural. Nevertheless, the distinction is fully in keeping
with our reinterpretation of the theory (Ref. [1]). All we need to note is that it is the physical
objects, represented by the K or g,, field, which are expressed in terms of the physical
h-frame, while geometrical objects, i.e. the affine connection and the Riemann tensor,
are expressed in terms of the geometrical X-tetrad. Hence we can regard the two-frame
formulation as a restatement of the weak principle of geometrisation, required in any
case in order to assign correct meaning to the theory.

Let us note that vanishing of the generalised torsion implies a strong restriction on
the field.

g[uV] Ffuv] = 0,
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which is not satisfied by the physically meaningful solutions of the field equations. Thus,
we must conclude that the torsion can not vanish.

Finally, it is interesting to observe that a formulation of the nonsymmetric theory
in terms of group theoretic or fibre-bundle techniques cannot be obtained were we to
identify

Auy = Buvy

as Einstein thought. The reason for this is that in this formulation the metric must satisfy
equations such as (23) (which we have rejected) or (27). On the other hand, equation (43)
by means of which the connection is determined by g,, and its first derivatives, implies,
as is well known, that g,,, satisfies an equation depending explicitly on g;,,; which does
not appear (and indeed, can not appear) in the equation determining the metric.
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