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It is shown that the many-time Fokker-type action integral corresponds to a single-time
action with a Lagrangian depending on higher derivatives (in exact theory — up to infinite
order). The expressions for such Lagrangians are found and the corresponding equations
of motion, forming a set of ordinary differential equations of infinite order are given. The
particular cases corresponding to manifestly invariant Fokker-type action, arbitrary tensor
interaction and electrodynamics are considered.

1. Introduction

The first relativistic theories of direct interactions which do not employ the concept
of field as an independent object explicitly were proposed by Schwarzshild, Tetrode and
Fokker at the beginning of the twentieth century as an alternative to Maxwell’s field electro-
dynamics. They were supplemented and extended on the radiation processes by Wheeler
and Feynman [1]. Theories of this type were proposed later for other interactions described
usually by means of field methods. All of them are based on the Fokker-type action in-
tegrals of the followmmg form [2-4]

© — 0
= -Ym, | de,Nui=Y Y [[ dridr,Ag. (1)
a - a<b -

Here a,b = 1, ..., N (N denotes the number of the particles in the system), m, being the
rest-masses of the particles, t, being invariant parameters of their world-lines x,(t,)
= (8, X)), U, = dx,[dv,, Ay = Au(x,— Xy, U, 11,) being some Poincaré-invariant functions
including the coupling constants; velocity of light ¢ = 1. The infinite limits for the inte-

grations will no longer be written, but will be understood.

The manifestly relativistic covariant equations of motion ’obtained from the varia-
tional principle for the Fokker-type action (1) have a very complicated mathematical
structure, and the presence of the individual time parameter for each particle inherent in
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(509)
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four-dimensional formalism complicates the physical interpretation of their solutions
As a consequence the employing of the Fokker-type dynamics for the investigation of the
particle system with direct interaction presents difficulties.

On the other hand great attention was paid recently to the problem of the construction
of the Hamiltonian [5] and Newtonian [6, 7] relativistic mechanics for the interacting
particle system in frames of the single-time formalism which is not manifestly Poincaré-
-invariant. Therefore, the question of the connection of the single-time formalism with
the many-time one based on the action (1) arises. The investigation of the problem of the
possibility to transform the Fokker-type action integral to single-time form

S=[drL, 0]

seems to be the most natural way to analyse the above question.

The action integrals of the type (2) with a Lorentz-invariant “time” and Lagrangian L,
depending on four-dimensional particle coordinates and velocities obeying some con-
straints, were considered in [8, 9]. However, it is more customary to operate with a varia-
tional principle in which these constraints are already taken into account and the action
is a functional on the three-dimensional particle variables, taken (in each Lorentz reference
frame) in the same. coordinate time moment f. Problems concerning the construction of
the relativistic theory for direct interactions, based on the action of this form were dis-
cussed in [10, 11]. The case considered there, in which the Lagrange function depends
only on the three-dimensional coordinates and velocities, is applicable, as has been shown
by recent investigations, no further than in the second approximation in ¢~2. Assuming
the dependence of the Lagrangian on higher derivatives (in exact theory to infinite order)
expression (2) may be taken as a basis for Lagrangian formulation of the relativistic particle
system dynamics which, in turn, makes it possible to move on to the Hamiltonian and
Newtonian formulation. The aim of this paper is to formulate the rule of obtaining the
single-time relativistic Lagrangians L and equations of motion corresponding to arbitrary
functions A,, in Eq. (1). These equations are, in the general case, ordinary differential
equations of infinite order with respect to the single coordinate time 7. The method of transi-
tion from expression (1) to (2), proposed here, is the generalization of the approximate
approaches presented in [12-15]. The consideration of some special cases (e.g. electro-
magnetic interaction) will allow us to obtain, in the frame of the general approach, the
results of other authors found for concrete interactions in different ways (including the
employing of field theories). The symmetry properties of such a theory and corresponding
conservation laws will be studied in the next work.

2. Derivation of the single-time Lagrangian

One of the possible ways to transform the expression (1) to form (2) was outlined
in [12, 13, 16}]. Choosing as parameters t, proper times of the particles and carrying out
the transitions to integration over the time coordinates 7, by means of the relation

dt, = diyfy(t), vt = [1—0a(t)]" "7,
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where v,(t,) = dx(1,)/dt, are three-dimensional particles velocities, we transform the ac-
tion (1) to the form

S ==Y m{dty; (t)-Y bZ §f dt.dty; (1)

X yb_ l(tb)Aab(xa(ta) - xb(tb)3 ua(ta)a ub(tb))' (3)

Since the limits of integration are the same we may here identify the integration variables
in each term and therefore obtain

S= _Z m, j dt'l'a_ 1(1)_2 bz ,U dtldtzxab(tl’ tz)’ (4)
where
Aap(l1s 12) = Va_l(tl)yb_1(t2)Aub(xa(t1)_'xb(t2)’ u(11), up(t3))- )

Changing the integration variables in the double sum of Eq. (4) [16]
t =t—(1=1)0, t, =1+10, (6)

(4 is an arbitrary real number) we get, after moving on to three-dimensional denotations,
the expression (2) with the Lagrangian

L= Lf"— U= '—Z "1aﬂl'¢;— 1(1)—2 bz j.d()Xab(Oﬁ xa(tl)_xb(t2)9 va(tl)a vb(t2))ﬂ (7)

where t; and ¢, are shortened denotations for expressions (6) rather than integration
variables. The Lagrangian (7) contains three-dimensional particle coordinates and velocities
with shifted time arguments. The other change of variables which was more complicated
than (6) was proposed in [14, 15).

The obtained form of the Lagrangian was considered in [16] as final and in [12, 13-15]
the shift of the time arguments was eliminated by some approximate approach. To elimi-
nate that shift in a general case we write the function U from Eq. (7) in the form

U = Z Z j dO exp [(;"'_ 1)9Da] exp (;'eDb)Zab(O: Vaps L vb)s (8)
a<b
where r, = x,—Xx,,

o

z b5 d°x,;
. (s+1) (s) — 9 . ns P
D, = Xai m&xf,? s Xy = pro D’x,;, j=1,2,3,

s=0

and a lack of an explicitly written time argument here and henceforth indicates that it
is equal to ¢. Taking into account the commutativity of the operators D, and D, we have

U = Z Z j. d() exp [B(AD“Da)]Xab(G: Fabs IJ,,, vb)’ (9)

a<b
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or, expanding the exponents in the power series

v=% 7% Z (D7 AD~D,)’ § dO06°1up(8, Ty Vs V). (10)

a<h s5=0

In Eq. (9) the equality (D,+ Dy)y., = Dy, Was used, where D is the operator of the total
time derivative:

D = ¢/ét+) D,

It is Eq. (10) that gives the needed Lagrangian depending on particle coordinates and their
derivatives to infinite order taken in a single time moment ¢. It is sufficient for existence
of the integral in (10) that for an arbitrary nonnegative integer s the equality

lim 6%, =0 11

-t aw
should be satisfied.

The arbitrary number 4 entering Eq. (10) as a factor before the operator D does not
affect the observabie characteristics of the system because the terms including the total
time derivative in the Lagrange function are not essential.

We note that, so far, among the symmetry properties of the function A, only its
translational invariance was used.

3. Equations of motion

The equations of motion corresponding to Lagrangians of the form (10) including
derivatives to an infinite order are

Lul = Z( D)a<s> 0, i=1,2,3. (12)

To calculate the derivative in Eq. (12) it is convenient to go back to the expression (7)
and employ the method given in [16]. We have directly from (7)

ou Oxap(t1s 12) 0x,5(t1)  Cxan(tss t2) Ov,i(ty)

= | 40 & T 5 ()

0X, Oxa(ty)  Oxg Ov(ty)  Oxg
b(>a)

+ Opalt1s t2) 0x,5(t;) + Oxpalty, t2) Ov,i(t7)
0x,i(t)  Ox% v,i(ty)  ox 1)

b(<a)

Taking into account the Taylor expansions of x,;(7;) and x,;(z,) in the neighbourhood
of ¢ and eliminating the shift of the time argument we find:

aU sns 1 aXab
=~ = | 40 exp (01D) exp (~0D,)| (A~1)'0" —
Xai . Oxai

b(>a)
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+(A—1 gt L1 Ow [ " 0D
AT s S (=80 [+ ) exp (6D,
ai b
1 aXba as—1ips~1 1 aXba
1808 s S _
<y e e 3)

Substituting the total Lagrangian (~7) in Eq. (12) and using Eq. (13) we shall have, after
the formal summing of the series, the following equations of motion:

Dma}’avai = = X de{b Z cXp (BDb)"‘C/pai.Zab'*'b Z €Xp (—gbb)ﬂs’p’aixba}
(>a) (<a)
= — ZO (S!)— ! 5 degs{b(z ) ngaiXab +b(z N (_Db)sgaiXba}' (14)

For symmetric interactions (x,; = xs,) they may be written in the simpler form

D’na}’avai = - Z jd@ exp (’Iab()Db)gaiXab
B(#a)
= = z Z (S!)—l j do(r’abGDb)sgaiXab’ (15)
b(#a) s=0

where 1,, = sgn (b—a).

As it is scen from the expressions (14)-(15) they do not include the number 1. They
form a set of ordinary differential equations of infinite order replacing the integral-differen-
tial (or differential-difference) equations following from the action (1). The connection
between these two forms of the equations of motion was discussed qualitatively in [17]

The selection of the physically meaningful solutions of such equations constitutes
a separate problem. As it was pointed out in [16, 18, 19], as a criterion for such a selection
the stability of solutions may be used, i.e. the analytical character of a solution’s depen-
dence on small parameters entering into (14)—(15): coupling constants or ¢-?, respectively.
For such solutions the second order equations of motion can be derived by means of
successively excluding on the right-hand side of Eqs (14)~(15) all derivatives of coordinates
of order higher than the first, using equations of lower order in the chosen small param-
eter and supposing convergence for this procedure. Detailed discussion of this problem
together with examples are intended for a separate work.

4. The case of manifest covariance of the action (1)

In most applications the functions A,, entering the Fokker-type action (1) depend
on their arguments through four-dimensional scalar products only (see Refs. [2-4]).

~ 2 ~ ~
Qap = (xa"'xb) s Wy = Uy * Uy, Oup = ”ab(xa-xb) *Ugs (16)
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i.e. they are manifestly Poincaré-invariant. Moving on to three-dimensional denotations
the corresponding functions x,, entering Eq. (8) may be written, according to (5), in the
form

Hap = (1=, - ”b)Fab(Qaw Dgps Ogps Gba)9 (17)

where F,, = o' A, is a function of the following arguments:

Oap = 8 - ab9 Wyp = 'Ya')"b(l‘va N vb)’ Ogp = _})a[9+'?abrab . t’a]' (18)

Substitution of this expression for y,, in Eq. (14) gives the following equations of motion:

z : oF,
Dm,yv, = Jdﬂ { exp (6D,) {(1 ‘1y) <2ra,, TJL
C0gp

b(>a)

OF OoF, 5 oF ab
+ %, P +oy, — ) =D (vp—v7:(1=v,  0) | Fopt@p

ab 004, awab

oF ,

+rgy(1—v, - v) —— [¢ + exp (—0D,)
OO'ab

b(<a)

(1 ) 2 6Flm 6Fba OFba

X -0, 0 Fap —— —UYg—— —Up¥p ——

’ i aQab el agab o a Opq

, oF,, oF,,
-D (vb - va?a(l = vb)) Fba + Wy - - ab'})a(l vb) Py . (19)
T35 1 06 g

For symmetric interactions with F,, = F,, two sums may be united into one with the condi-
tion b # a by introducing in the exponent a sign factor #,, (cf. Eq. (25) below).

We will illustrate the results obtained above by an important example corresponding
to interactions which in the framework of the classical field theory may be described
through a tensor field of integer rank n. Then the function A,, has the form (see Refs
[4, 14))

Ap = gagba;:bc(éab)’ (20)
g, being coupling constants, G(g) being some (symmetrical, retarded or advanced) Green’s
function of the corresponding field equation. Then F,, = g,g,wh 'G(0,,) and after sub-
stituting expression (17) into Eq. (10) and taking into account that that integral has symme-
tric limits we get the following expression for the interaction Lagrangian (the constant ¢
is inserted for later convenience)

(AD—D,)* Vg 0\, ;
Z z £48» Z czs(zs), ( - CZ b) (42 1VV.‘S(rab)' (21)

Functions W(r) introduced here are defined by the integrals
W(r) = [ d06*G(8* —r). (22)
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They exist if function G secures the fulfilment of the condition (11). Taking it into account
we obtain from expression (22) the recurrence relations
1 dW(r)
r dr

=@s=DW,_i(n), s=1,2,.... (23

It follows from consideration of the limit ¢ — oo in Eq. (21) that Wy(r,,)is (up to the factor
€.8») the nonrelativistic interaction potential of the particles @ and b.

Since functions (20) are symmetric in indices @ and b the observable characteristics
obtained from the Lagrangian (21) will also be symmetric at arbitrary A. Nevertheless, it
is more convenient to symmetrize the Lagrangian itself. This can be achieved in different
ways, for instance, by putting in (21) 4 = 1/2 or, otherwise, choosing A = 0 and taking
into account that the operator D?* = [(D— D,)D,)® acting on the two-particle expressions
differs from (—D,D,)* in terms including the total time derivative D [19]. In the last case

we have
(—D,D,y’ v," v pe e
E E 8a8s )z (2S)", L= == ) ol Wilra). (24)

Equations of motion correspondmg to the Lagrangian above are obtained by means
of substituting the foregoing functions F,, into Eq. (19). Because of the symmetry of F,
with respect to the indices ¢ and b they have the form

Dma?ava = ga z) gb j d0 exp (nabgc_ 1I)b) {2rab(1 - va : vbc_z)wa_ 1GI(Qab)
b(#a

—c72D[(nv,+ (1 —n)vyi(1—1, - v,c Nty *Glea) 1} (25)

where the prime on function G denotes the derivative with respect to its argument.

When the exponent in (25) is expanded in power series, the terms with odd powers
of 6 vanish and therefore the sign factor #,, may be omitied. Performing the expansion
and using definition (22) for the function W, we obtain

D | Dl%s 1 v, 0 n—1 1 dVVs(rab)
MyYby = — 8, s Fy - D, -
5 & & /) B @ &) v, dra

b(#a) $=0

1 2 v, [/ n—-1 N
-+ 3 D no, -+ (]- - n)va)’a 1- cz @ ap n/s(rab) . (26)
c

Another form of the equations of motion obtained from the set of three equations (26)
through multiplying by the matrix y, * X (8;;— v,0,;/c?) will be useful below:

D2s B Vap
g 8 é 25(2 )' ! :b ! {[" 7“2* Yaob * Vap

b(#a) s=
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v, o, L W)
+ (;_2' ab " Vp— )(1_ cz )] Far drab [(n 1)vm'ya

X (1—=1v, * v,¢ ™ 2) —nvy+n(n— Dve~ (2, - 0,420, - 0,
~ (L=, 0™ vy 0,40, )+ v,c” 2(nv, - 0, +(L—n)v,y - v,

X 'YZ(I —U, vbc_z))] VVs(rab)}5 Usp = U;— Uy, l.’a = Dva' (27)

5. Application to electrodynamics

In the case of the electromagnetic interaction transferred through a massless vector
field, in expression (20) n = 1, G is Green’s function of the wave equation and g, = e,
are the particle charges.

In Wheeler-Feynman’s electrodynamics [1] the symmetric Green’s function Gsy“‘(g)
= §(p) is chosen. Then from Eq. (22)

Wy(r) = [ d00>°6(6> —#*) = r**~* 28
and the substitution of these expressions (and 7 = 1) into Eq. (24) gives Kerner’s Lagran-

gian

=3 Yewn Y [ (= DDy (L —t, - o) 29)

obtained in [I9] for the system of two particles by means of a series expansion of the
half-sum of the retarded and advanced Lienard-Wiechert potentials.
The equations of motion (25) in this case have the following form

Dmgybe = € Y, e § dO exp (0Dy) {2ru(1 =10, 0,)8'(0w) —Dvyd(0m)}- (30)
b

(*a)

After some transformations they get into the standard form with the Lorentz force

Dmgyv, = ¢, Y, {EY™(x)+v,x HY™(x,)}, 31

b(#a)

where E7™(x), H;™(x) are vectors of electric and magnetic fields due to the particle a at
the point x.:

E2™(x) = 2e, § d6 exp (6D,) (R,+0v,)5'(6> —RJ),
HY™(x) = 2e, | d0 exp (0D,)v,x R, 8'(0°—R}), R, = x—x,. (32)
These fields may be obtained in the standard way from scallar and vector potentials
g™ (x) = e, | d0 exp (0D,)5(8% —~R3),
AT"(x) = e, | dO exp (6D,)v,5(0” —R7), (33)
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which are, as one may be easily convinced through the direct calculations of integrals, the
half-sum of the retarded and advanced Lienard-Wiechert’s potentials. Equations (31)
agree both with general conclusions of the work [1] and with the results of [17] where the
concept of Fokker-type action was not used explicitly.

Let us consider now the case of electromagnetic interaction described in expression
(20) by the retarded Green’s function (see [2, 8]) G*' = 20(x) — x)3(0.5) (O(x) is Heavi-
side’s function). Although this function depends on particle four-coordinates not only
through the invariant g, it is, as it is known, Poincaré-invariant. In our three-dimensional
denotations it is equal to 20(6)d(g,s) and the corresponding interaction Lagrangian has
the form

U=F e X (D7 GD-DI(L-1, 0™ (34)

a<b

Tt should be noted that unlike Eq. (29) it contains both even and odd powers of the velo-
cities v,. It can be symmetrized by taking 2 = 1/2 only. The equations of motion for this
case differ from Eqs (30) by the factor 2 by the presence in the exponent of #,, and by the
fact that integration is performed from O to co. They can also be reduced to the form (31)
with the Lorentz force, however, the common formula for the fields due to an arbitrary
particle in a given space point can no longer be written. These fields are determined by the
potentials

Pu(Xa) = 2e, § dd exp (1,9D,)8(6” ~r2), (35)
Ay(x,) = 2¢, 6[ d0 exp (14,0Dy)e,0(0° —rgy),

which in the case of b > a(y,, = 1) are purely advanced

i
Ms

gi(x) = 2¢, [ d6 exp (0D)3(0°—R;) = ¥, (sH7'DyRy™,
0

5=0

A3 (x) = 2e, | dO exp (D)0, 0(0°—Ry) = Y (sH ™ 'Div, Ry, (36)
0 s=0

and in the case of b < a(y,, = —1) are purely retarded:
@ (x) = 2e, g d0 exp (—0D,)3(6° —Ry) = Zo () '(=Dy)Ry,

5'(x) = 2¢, [ dO exp (—0D,)v,5(6> —R}) = Zo (DI (=D u,Ry (37
0 s=

Thus the indicated choice of Green’s function corresponds to the model in which each
pair of particles a and b (suppose for definiteness that a < b) interacts in the following
way: the advanced field of particle a acts on particle b and the retarded field of particle b
acts on particle a. Such models for a two-particle system were considered in {8, 20]
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Naturally, if in expression (20) one takes the advanced Green’s function G***
= 20(x7 — xy)3(0,) instead of the retarded one, then particles a and b (a < b) will change
their roles.

6. Expansion in ¢!

The structure of the expressions found in the present work, which have the form
of a power series, enables us to obtain the expansions in powers of ¢-!, a few terms of
which may be used for the description of weakly relativistic systems.

Let us consider here the case of the tensor interaction (20), for which all series contain
only even powers of ¢~*. For the interaction Lagrangian U we have from (24) up to the
terms of order ¢*

1
U= y Z 8a8b{wb(rab)+ 02 {[‘”a ' "b+(n“‘1)”a2b]Wo("ab)

load

a<b

1 dWO(rab) 1 . .
+(rab : va) (rab ) vb) IT_ — + a;z (47[—' l)va ° vbW1(rab)

w drg
+[@n* —dn+3)cie; +22n° —4n+1) (v, - v,) +(n>—1) (&% + %)
+2(n—1) (1=2n) (v, " v) (2 +05)+22n—1) (ra - 1) (v, * v,)

—4(n—1) (rap " ©) (5 0)+4(1—1) (o - 0,) (¥, * 1) =220 —1) (rap * v,) (v, * 9,)

— 07 (e " 0) + 05 (P~ 00)—(Fap * 0,) (ap * 0)]1Wo(rap)

+[2(n— D2 (ras * va) (rap " vp)+ (0] + Far " 05) (Yo - 0p)°

, . 1 dWy(r,
+(vl‘72~'rab ) vb) (rab ' va)2] - 0( b)
Vap drab
2 2 ! d : -6
F(Fap  0) (rap - 0) | — Wo(rap)p +0(c™ ). (3%)
Tap drab

Here the dot denotes the derivative with respect to t.

The terms of order ¢~2 written above were found by many authors in different ways.
(The method of the works [12, 14] is similar to that used here). These terms give Bopp’s
and Bagge’s Lagrangians, respectively, for scalar and vector interactions if # = 0,1. The
latter, after the substitution of Eq. (28), gives Darwin’s Lagrangian for electromagnetic
interaction and the linear combination

Ugr. = 2U|n=O_U|n=2 (39)

gives the linear terms of the Einstein-Infeld-Hoffmann Lagrangian for gravitational interac-
tion (more detailed discussion of similar correspondence problems for terms of the order
¢~? is given in [14, 21]).
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The terms of order ¢~* for arbitrary n are written here, as far as we know, for the
first time. They give the second order corrections for the interaction Lagrangians mentioned
above. For electrodynamics, putting n = 1 and taking W (r) from (28), we obtain the expres-
sion coinciding (if all charges e, = ¢) with the Lagrangian found in [22] from classical
electrodynamics. Finally, the linear combination (39) is in agreement with the linear approxi-
mation of Lagrangians of the order ¢~* for the gravitational interactions proposed
in [23, 24].

The equations of motion (27) up to terms of the order ¢c—* may be reduced by recur-
rence relations (23) to the following form:

. dw, . .
mpy, = g, Z 2 {—— Tab ——ﬁfi) + -1— {[(1—2n)v,,+2(n—1)va]W0(ra,,)

Fap drg 2¢2
b(+#a)

.o 1 dW(r,
+[2v(nrg - v+ (1 —n)r,, )+ ((2—n)? —nvf +2n, - Vptra 0| — —M

Fan di‘ ab

(1 4\ 1, 1-4n- 1, .
= Fap(Fap * V) ;;:bdrab WO(rab)J + Ro? Wi (ra) + é;Z{Ahjb[”nrab'va

+(3n—1)ry - v, +4(n—Dr (vl — rop, - 0,)+22n = D8,[(2—n)e? —(n+2)0?
+ 210, * v+ 31y, 0,] +4dv,[2n(n— o, - v,4+n(3—2n)v, - v,

+(n—=1)2n+ v, - 0,—(n— Dty * 0,]+r,[(1—4n)e} +4nv,, - v,

1 . .
+rab ) vb]}WO(’-ab)'*- é-;i {4('1 - l)va(rab ' vb)z +2vb(rab : vb) [4nrab T v,

+3(1=2n)ry - 0] +4nv,(r, - ) [(n—2)v] +nvg +2(1=n)v, - v,—r, - 0,
+4(n— 1) (rg, - 0,) [(2— )0} —(n+2)0F +2n0, - v,+3r, - 0]

+ 7202 —n)oZv; —dn(n—1) (v, - v,)*> +4n(n—2) (v, - v,)0> +4n*(v, - vy)v

+n(2—n)vs —n(n+2)vy +4(re * v,) (=20, * 0,+2n+1)v, - v,— ryp * ;)

. _ . 1 dWy(r,
+(ra ) 2n —2)02 +2(n +2)v§ —4nv, - v,—3r,  v,) ]} — o(ras)

Tap drab

|
+ P {dv[nrey - v, +(L—n)rgy - 0]+ 2r,[(3— )02 —(n+2)r;

. 1 d\?
+2n0, - v+ 38, 0,1} (o - v,,)2 (~— ) Wo(ras)
rab drab
Yo 1V d 3 i
- E;i(rab ") | — Wo(ras) +0(c™ %) ¢ . (40)

Tab dr ab
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Naturally, equations (40) can be obtained directly from the Lagrangian (38). They form
the set of ordinary differential equations of the fourth order. Selecting from the complete
set of solutions only those which are analytical in ¢—! one can obtain the second order
Newton-type equations of motion by excluding on the right-hand side of (40) all derivatives
of order higher than one by means of the lower order equations of motion. We shall indi-
cate only some distinctive features of the expressions obtained in that way without writing
them explicitly, namely: 1) They satisfy the Poincaré-invariance conditions of motion
(Currie-Hill conditions) [6, 7] up to terms of the order ¢=*. 2) Excluding higher derivatives
on the right-hand side of Eq. (40) one obtains double and triple sums, besides the single
ones, which agree with the general conclusion as to the necessity of many-particle interac-
tions in the relativistic action-at-a distance theory on the level of Newton-type equations
of motion. 3) For values n = 0,1 these expressions are in agreement with equations of
motion obtained in various approximations for scalar [25] and electromagnetic ]26]
interactions in the framework of four-dimensional manifestly covariant formalism of
predictive relativistic mechanics.

It should be noted finally that the equations under consideration cannot be obtained
by excluding higher derivatives directly in the Lagrangian (38) and employing to it after
that the Euler-Lagrange operator (12), as was proposed, for instance, in [22]. This is
connected with the fact that the Lagrange function is determined not only on the real
particle trajectories, but also on virtual ones for which the equations of motion must
not necessarily be satisfied.

7. Conclusions

The obtained single-time representation of the Fokker-type action in which the Lagran-
gian of the system depends on the higher derivatives up to infinite order opens new possi-
bilities for the investigation of the direct interacting particle systems. The introduction
of the unique time parameter allows us to bring the theory based on the Fokker-type
action closer to the form of the classical nonrelativistic mechanics and to establish its
relationship with other approaches to the theory of direct interactions.

It should be noted that although the limits of integration in Eq. (2) are formally in-
finite, the corresponding equations of motion will be valid if these limits are finite. This
constitutes one of the main differences of our approach from the many-time one based
on action (1), in which to obtain the correct equations of motion it is necessary to consider
the double integral limits to be infinite, as a consequence of that, however, its mathematical
correctness becomes problematic [8, 27]. Thus, from the point of view of its formal struc-
ture the relativistic action (2) obtained by us differs from its nonrelativistic analogue only
by the dependence of the Lagrangian on higher derivatives reflecting the finite interaction
velocity. We have found the general form of such a Lagrangian (10), corresponding to the
arbitrary interaction (I) and the Lagrangian, corresponding to manifestly Poincaré-in-
variant many-time action (see Eq. (17)). These results may be regarded as a fairly general
solution of the problem of the Lagrangian relativistic single-time description of the directly
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interacting particle system formulated in [10, 11] as well as a proof of the relationship
of the latter with the Fokker formalism.

It seems to us that there exists one more reason why employing the Fokker-type
integrals for finding relativistic particle Lagrangians is important, namely, as we have
seen in Sections 4 and 5, it is possible in this way to establish the relationship ot the theory
based on the concept of direct action-at-a-distance with the field description. In fact, as
was indicated in [4, 14], integrals (1) for tensor interaction (20) have quite definite field
theoretical analogs.

Knowledge of the Lagrangian makes it possible to obtain the complete description
of a system (at least classical) by means of more or less standard methods. In the present
work the single-time equations of motion (14), (15), (19) are given which may be transform-
ed to Newton’s form using some selection criteria [18]. In that way the relationship
between the Fokker-type action formalism and Currie-Hill’s approach is outlined as well
as the four-dimensional manifestly covariant formalism of the predictive relativistic me-
chanics.

The expressions found in our work may be used as a basis for various approximate
approaches. Besides the expansion in ¢—2 for tensor interactions considered in the previous
section, one may investigate the expansions in the coupling constant (the first approxima-
tion is considered in [13]) or in particle masses ratio.

The question of the symmetry properties of the obtained single-time Lagrangian
description is very important. Although the Poincaré-invariance of the proposed formalism
following from the manifestly invariant Fokker-type action, is undoubtful, it is desirable
to perform the independent investigation of the invariance of the equation of motion (19)
with respect to the Poincaré group representation in the particle system configuration
space (more precisely in a certain continuation of it), which, specifically, makes it possible
to find the explicit formulae for the corresponding single-time integrals of motion. This
problem will be solved in the following work.

Further, one may hope to obtain a self-consistent quantum description of the directly
interacting particle system by means of hamiltonization of the theory and its subsequent
quantization.

The authors wish to thank Yu. B. Kluchkovsky for helpful discussions and S. N. So-
kolov for his interest in the present work.
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