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SYMMETRIES AND CONSERVATION LAWS IN THE SINGLE-
-TIME LAGRANGIAN FORM OF THE FOKKER-TYPE
RELATIVISTIC DYNAMICS. II

By V. 1. TRETYAK AND R. P. Gaipa
Institute of Applied Problems of Mechanics and Mathematics of the Academy of Sciences Ukr. SSR, Lvov*
(Received January 29, 1980)

Symmetry properties of the single-time relativistic Lagrangian of an N-particle-system
corresponding to the many-time action of the Fokker-type, which are a function of deriva-
tives of particle coordinates with respect to time up to infinite order, are investigated. The
conditions for quasi-invariance for such a Lagrangian, with respect to a representation
of an arbitrary group in infinite continuation of configuration space of the system, are
discussed. Using these conditions a general expression for the Lagrangian, securing Poincaré
covariance of corresponding equations of motion, is found, and the conservation laws
related to this covariance are formulated. In the case of tensor interaction, the expansion
of conserved quantities in ¢~ up to terms of the order ¢* is performed.

1. Introduction

The authors’ previous work [I] shows that an arbitrary Fokker-type action integral
may be put in correspondence with an action in the form of a single integral over the coordi-
nate time 7 of a relativistic Lagrangian function L. The closed expression was found for
the latter, which is an infinite series including derivatives of the particle coordinates up to
the infinite order. The agreement of this approach with known results, obtained in different
ways, was seen from some special cases considered.

However, the transition to the single-time formalism, allowing one to regard the
ordinary differential equations as equations of motion (in general case of infinite order)
was performed at the cost of loss of the manifest Poincaré invariance, inherent to many-
-time Fokker-type formalism. Therefore, in spite of the expected relativistic covariance
of description of a particle system constructed in such a way, its symmetry properties
should be formulated in terms of the group-theoretical analysis and should be studied
irrespective of the invariance of the initial many-time expressions. The necessity of such
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analysis is conditioned also by the fact that the conservation laws obtained in the framework
of the Fokker-type action approach [2, 3] are expressed in the form which is essentially
distinct from one typical for the single-time theory. To derive the motion integrals in the
latter, it is more convenient to start from the invariance of the single-time action and cor-
responding equations of motion rather than from the conservation laws in many-time
formalism.

The purpose of the present paper is to prove the relativistic invariance of Lagrangian
dynamics based on the single-time representation of the manifestly relativistic invariant
Fokker-type action integral, as well as to find the corresponding integrals of motion.
This invariance, as will be shown in Sections 3 and 4, consists in the covariance of equations
of motion with respect to the representation of the Poincaré group in space where the
Lagrangian L is defined. Before regarding these special questions constituting the main
subject of the paper, we shall give in Section 2 the most significant results of the symmetry
theory of particle system dynamics for the general case of arbitrary single-time Lagrangians
depending on derivatives of arbitrarily high order. (A more detailed discussion of these
questions together with all proofs will be published in Teor. Mat. Fiz.). By means of these
results in Section 3 the quasi-invariagce conditions of such Lagrangians for any r-param-
etric group %, are written, and also the formulae for the corresponding motion integrals.
The following sections contain the discussion of the Poincaré invariance, formulae for
energy, linear momentum, angular momentum and the integral of the center-of-mass
of the particle system as well as the investigation of the special case of the tensor interaction.

Inasmuch as this paper is a direct continuation of [1] we shall use many definitions
and notations introduced there without explanation. References to the formulae of [1] will
be marked by I before the formula number.

2. Symmetries and conservation laws in the single-time Lagrangian formalism with higher
derivatives

As was shown in [1], the single-time relativistic interaction Lagrangian, corresponding
to a given action integral of the Fokker-type (formula (I. 10)), depends on the particle
coordinates and their derivatives up to infinite order, taken at the same time moment Z.
Analytical mechanics for Lagrangians including higher derivatives to some finite order
n has been constructed by Ostrogradsky as far back as 1848 [4] and thereafter it was redis-
covered and generalized by many authors. Many of its results may be generalized for the
case n — oo (see Ref. [5]). For investigation of the symmetry properties of such a theory
under some r-parametric group %, one needs to have a representation of that group in
the space E2Y of the particle coordinates x.(¢) and their derivatives x(t) up to infinite
order!

EX = X9 ]a=1,..,N;i=1,2,3;5s=0,1,...;te R}.

-

! Here and henceforth the three-vector subscripts and superscripts i, j, k = 1, 2, 3 are completely
equivalent. Summation over repeated indices is meant.
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The general tangent transformation of the space E.Y into itself (called Lie-Bécklund
transformation [6, 7)) in the infinitesimal neighbourhood of the identity transformation
may be written as follows

X = x4 Y SrDUN),  zeE, (1
a=1

where 04 are infinitesimal group parameters, D is an operator of the total time derivative.
A more general case of Lie-Bicklund transformations, when the independent variable ¢
is also transformed, can be reduced to Eq. (1) (see for instance [8]) and, therefore, it will
not be considered. In order transformations (1) should determine the representation of the
group %, in the space E2Y, the vector fields {}, should satisfy the set of equations securing

for generators
E E (D¢, 3 l(s), a=1,..,r, 2)

the fulfilment of the commutation relations

r
X X;— XX, = Y cyX,, o, f=1,.,r, 3)
y=1
where ¢z, is the structure constant tensor of the group %,.
For the invariance of the Euler-Lagrange equations %L = 0, corresponding to the
single-time Lagrangian L : E2” — R, the existence of such r functions Q,: E3¥ - R,
a =1, ...,r for which relations

X,L = DQ, (4)

representing the conditions of quasi-invariance of the Lagrangian L under ¥, are satisfied,
will be sufficient. These relations, regarded as linear nonhomogeneous equations for L,
will be consistent if functions Q, satisfy the relations:
X Q,-X830,= Y Q.. (5)
y=1

Let Q) and Q? be two different solutions of ‘this set of equations. It may be shown
that for any Lagrangian L, satisfying Egs. (4) with Q, = Q; there exists Lagrangian
L, =L,+DV, V:E > R, satisfying Eqs (4) with Q, = Q2 dynamically equivalent to
it. Therefore, any partial solution of set (5) may be substituted without any loss of general-
ity into Eq. {4) to obtain the equations for L expressing the invariance conditions under
the group 9,.

Finally, from the identity [4, 7]

X,L-DQ, =Y {i,% L +DG,, 6)
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where

6.=3 3

ng

gal SDS aa QI’ (7)

3

. . oL
Caiys = (~Dy PRI (8)
n=0

we see that the set (4) of r invariance conditions corresponds to r conservation laws of
quantities G, which are expressed by formula (7) through the single-time Lagrangian
of the system. This constitutes the subject of the Noether theorem for our case.

and

3. General symmetry properties of the single-time Lagrangian corresponding to the
Fokker-type action

Let us employ the above facts to the single-time Lagrangian corresponding to Fokker-
-type action (1. 9)
L=L-U

= - Z ma?a - Z Z j de exp {B(AD Da)}Xab(rab’ va9 vb9 0) (9)

pa<b

When substituting expression (9) into Eqs (4) we assume that functions Q, are decomposed
in two terms Q, = Q,— v, where £, is the free-particle term and y, involves the coupling-
-constants. Then Eqs (4) are replaced by a pair of equations as follows

XLy = DQ;,, X U= Dy, (10)

Both systems of functions €, and y, should satisfy separately a set of equations of form (5).
Making use of an explicit form of operators (2) as well as of a free-particle Lagrangian
L; one may write Eqs (10) as

Z i%a}’al’m‘DC:;za = DQ{a’ (1 1)

Assuming (as it is in fact in most 1nterestmg cases) that vector fields (&, depend on variables
of particle g only (and, eventually, on time 1) and vsing formulae (I. 13) for derivative of U
one can transform Eq. (12) into the form

[ a N L :
Z Z J di exp {Q(AD—D“)} 'z axx::,_ exp(_() é_t) gla l b~ Cqb
a<b

Ot 0 i Ol
= -0 — | D, — D = Dy,. 13
+ 6[}:1 exp( 6t> éam+ a i Cab wa ( )




527

The set of equations (13) expresses the conditions of quasi-invariance of Lagrangian (9)
under the group 4,.

Let us suppose that for some group ¥, equations (I11) and (13) are satisfied. Then
we derive the formulae for the. corresponding integrals of motion (7). To start with, we
find the auxiliary functions &,;, (8) (the so-called “Ostrogradsky momenta”). By means
of Eq. (I. 13) we have, after some transformations

éai,s = ma?avai(so,s_ .[ do cXp (giD) {z exp (_gDa)

b(>a)

[:(l_l)sgs 5)(.1 (}’_l)n+s+16s+1
X

{ v N YTY 7 Copyey,
U o st D) X”]

n=

Asos aXba in+s+los+1 .
+ exp (—6D,) o + (=6D)"Z sixa | - (14)

o', (n+s+1)!
b(<a) n=0
Substituting this formula in (7) we obtain a rather bulky expression for G,. It becomes
considerably simpler if one acts formally on the involved in it terms with x,, by the unit
operator represented in the form D-'D, and if one uses Eq. (13). Then

Gaz = z mayavaiC:za—qu

+D— ! Z bz j' dG{Z::m CXP (ng)gaiXab'*'C:zb CXp (_ODa)gbiXab}' (15)

The operator D! was introduced here for compactness of the notes only: the expression
on which it acts is a total time derivative as one can easily verify by means of Eq. (13).
A similar formal method with operator D was employed in [5] when calculating the motion
integrals in classical electrodynamics.

The expression (15), as it should be, does not contain an arbitrary number 1, entering
the Lagrangian (9) (it was pointed out in [1] that two Lagrangians (9) which differ by
a value of 4 only are dynamically equivalent). It is interesting that integrals of motion
written in our form (15), do not include explicitly the functions v,. Making use of the
equations of motion (I. 15) one easily verifies directly that on their solutions DG, = 0.

4. Poincaré invariance conditions

All considerations in Sections 2 and 3 referred to any r-parametriq Lie group 4..
For the ten-parameter Poincaré group 2 (1, 3), vector fields ¢}, have the following form [9]

Ti i Si i Ri __ i _k Li _ i i
a = U ja = 51', ja = EjXg, ja = -t5j+xajva (16)

for time and space translations, and space and Lorentz rotations, respectively. It is not
difficult to verify that generators X, (2), as defined by Eqs (16), satisfy the commutation
relations (3), where ¢} is the structure constant tensor of the group 2 (1,3).
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Substituting these vector fields in Egs. (10) we get the Poincaré-invariance conditions
for the Lagrangian (9). It is easily seen that for the free-particle Lagrangian L; equations
(11), when substituting in them relations (16), convert to identities by the following choice
of functicns €¢,:

Q-fr = Lf, -Q?l = 0, Q?E = 0’ Qh = Z ’naxaiYa_la (17)

which satisfy, as it is easily seen, the conditions of the form (5). Substitution of expressions
(16) in Eqgs. (13) leads to Poincaré-invariance conditions which have the form of the equa-
tions for functions y,,. For definitness of these equations one needs to make the form of
the functions v, concrete. In the case of time and space translations and space rotations
we put, respectively

v =U, 4 =0 f=0. (18)

Then corresponding to this choice Egs. (13) are satisfied if functions y,, do not include
e‘xplicitly time ¢, and depend on particle coordinates through r,, only and are three-scalars.

The investigation of the Lorentz-invariance conditions is more complicated. First
of all we note that functions

1/’!“ = Z Z j dﬂ €Xp {o(lD'_Da} [Axai+(1"'i)xbi]Xab (19)

together with (18) satisfy the set of equations of the form (5) for the Poincaré group. Using
this function in the case of Lorentz transformations? one can write Eqs. (13) in the form

Y ¥ [d6exp(—6D)M., =0, (20)
a<b
where
S Ay o 1. o v, .
Miy = 2 (St thog)+ o (=3t b — (vt )+ 0 22 i, 2% (a1
vy Oy o o0

Since the functions y,, and, consequently, M, depend, for different pairs @, b (a < b) on
different variables, Eq. (20) demands that each term of the sum on its 1. h.s. be equal to
zero. A sufficient condition for this will be the fulfilment of the following equations

M, = 0. (22)

Let us find the general solution of the Eq. (22). Because of the translation and rotation
invariance conditions indicated above, the functions y,, may depend on their variables
only through the following seven expressions

2 .2 .2
Fabs Vgs Vp, ¥y " Uy, Fop * Vg, Fop * Up, 0. (23)

2 According to the affirmation, stated after Eqs. (5), the special choice of the functions g, in the form
(18) and (19) does not restrict the generality of the results.
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Treating quantities (23) as independent variables we obtain from Egs (22) a set of three
equations, the general solution of which found by the Jacobi method [10] has the form

Xab = (1 =05 * 0)F 3(Qup> D> Gops Opa), 24
where F,, are arbitrary functions of the arguments indicated, the expressions for which
through variables (23) were given by Eq. (1. 18),

The solution found coincides with the expression (I. 17) for x,, obtained in [1] from
the functions A,y = @uF,, describing the two-particle interaction in Fokker-type action
Therefore, we have proved that the single-time interaction Lagrangian corresponding to
manifestly invariant action of the Fokker-type determines equations of motion which are
covariant under representatlon of the Poincaré group in E>" (16).

We note that expression (24) is not a general solutnon of Eqs (20). The latter are
satisfied also by the expressions of the type

O(0)0(0as)a (25
(©(6) is Heaviside’s function), where 7,, is a regular function of variable 0 and 5(Qab))}ab
satisfies Eqs. (22), i.e. it has the form (24). Really then the only extra term in M, will be
the expression, following from dy,,/00 containing 5(6)5(0%—rZ,); when integrated over
it will give a term proportional to 4(r2,) and equal to zero if there are no collisions (r2, # 0).
Single-time Lagrangians considered in [1] and corresponding to Fokker’s formulation
of classical electrodynamics with a choice of a purely retarded (advanced) Green’s function
are examples of the expressions (25). So, in this case a correspondence (in a sense of the
invariance of description) of the single-time formalism and a four-dimensional one is
stated also (four-dimensional functions of the type O(x9—x9)S[(x}— x})(x,,— x;,)] are
known to be Lorentz-invariant).

5. Motion integrals corresponding to Poincaré-invariance

Formulae for ten motion integrals corresponding to Poincaré quasi-invariance of the
Lagrangian (9) are obtained according to the general theory through the substitution of
the vector fields (16) and functions Q;, (17)in Eq. (I15). Using the properties of the functions
X Securing Poincaré invariance of the theory as stated above after some transformations

we obtain:
OXab
E 'na))a g é J‘dg {exp (ODb) (Xab A )

X
+exp (— eua)(xa.,—v et
Gv

aXab
= mgy,v,— de €Xp (GDb) -
v,
a a<b

Xab

) +D" 1[Da exp (_GDa)+Db exp (ODb)]Xab} s (26)

+exp (— BDa) + D™ '[exp (—0D,)—exp (0D,)] (;x"b } , 1))

a Yap
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J=G"= MY Xy X Vg— f do Jlexp (0D)x, x %
va
a<b

a

Ox, Oy O
+exp (—0D,)x, x e * +0” "[exp (—6D,)—exp (6D;)] (x x a’; b % %» . (28)
a va
K=G'= —tP+ E Mmyy.X,+ E > do {exp (6Dy)x, (X,,,, X“")
aXab
+exp (—0D)Xp | Xap— 05" % +D~ [exp (6Dy)
b
aXab O av ax\a.b
_ 0D _ JAab oy . _hab
exp( )] |: 69 ava Va\ Xap— Vs 5va
-1 -1 aXab l
+D7'[D™ '(exp (6D,)—exp (—6D,))—0 exp (—6D,)] 3 J . (29)
¥ap
When picking out in K the term —¢P the identity
D~ tf = tD™'f—D7?%, (30)

(where f is an arbitrary function) was used.

As usual the quantities, the conservation of which is related to invariance under time
and space translations, space and Lorentz rotations, are identified, with energy E, linear
momentum P, angular momentum J and integral of center-of-mass of the system K,
respectively.

The impression may arise that quantities (26)-(29) are strongly asymmetrical with
respect to particle variables. However, one may show that in the case of symmetrical func-
tions y,;, satisfying the conditions of Section 4 the expressions (26)-(29) are symmetrical
also. We note also that, as it is seen from these formulae, in all the operator expressions
containing D-! the latter is cancelled out when exponents are expanded in series. For
example, for the expression entering P and J, when acting on the two-particle terms we
have the following:

[e¢] en
D~*[exp (= 8D,)—exp (0D,)] = D™* Z O t-py-pi

n=0

S

Corresponding expressions in E and K are transformed in a similar manner (although the
latter is somewhat more complicated).
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Substituting in formulae (26)-(29) the solutions of the Poincaré invariance conditions
for functions y,, (formula (24)) one can obtain the integrals of motion in terms of functions
F,, from which, alongside, their symmetry under particle transposition will be seen. The
corresponding formulae, which are rather bulky, shall not be written here and we confine
ourselves to consideration of the case of tensor interaction of the rank n, discussed in [1],
to which in (24) the function F,, of the form [1]

Fop = 8,805 16(92—’”313) 31

corresponds. In this case by expanding exponents in (26)-(29) in series, taking into account
the parity of function G with respect to 0, using the definition (1.22) of the functions W,
and restoring the constant ¢ we get:

o
E=E+Y ngagb Z ¢ 2[@)1] Dy [t —nope ™+ (n— Vv, - ve” Joly  Welra)
a< s5=0

+ D221 —nvZe ™2 4 (n— Dy, - vye "2 Joly  Wylra)

_D~1(D§s+l +Dbls+1) (1_"'11 ’ UbC_ )wa— st(rab)}a (32)
P = P;+ E ? 848 E “2les] {C"ZD‘?S["vﬁ(l—n)vwf(l
a<b

=0, vy D]y W(ra) + ¢ 2Dy oy + (1= mry(1—v, - ve” *Y]why ' Wlra)

1 dW.
+D Y (DE-DB)r(1—v,  ve Haly ' — (—-—Sg—'fb—)} \ (33)

Fao  drg

J=J;+ Z Z 2.8 Z c_:"s[(Zs)!]_1 {c"zDﬁs[nx,,x v, +(1—myi(l
a<b s=0

—b, vbc-z)xb X ”a]m:lz—lws(”ab)“'”c_zl)is["xa X v, +(1 -n)y3(1

7

V" vbc—z)xa X t’b](’OZb— ! VVs(rab)_*'D— I(Dgs_Djs) {xa X Xy (1

B c2 ) 1 dW(rab)+ 5% xv,,W(ra,,):I } (34)

Fab dr ab

K= —tP+ E MYaX,+ E E 2.8p E c'zs[(2s)!]"1{c—sz’xayf[l
a a<b 5=0

—nvje” +(n—1)r, - ve” 2]y  Wilra) + ¢ 2D Ry 1 —nvpe”?

+H(n=1)v, " v,¢” ]y W (rap) + D71 [C_Z(Dfs—Dfs)vabanb_ TW(ras)
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—e 7D (L=, - vye T )l " Wi(ra) — ¢ 2D (1 - v, - vye T )0y  Wi(ray)
1 dW(r
+D7 YD —DE)ry(1—v, - ve Holy ' —- C ab)]} . (3%
Fap drg

In formulae (32)-(34) the standard free-particle expressions entering Eqs. (26)—(28) are
marked by index f. We note that series (32)~(35) include only even powers of ¢—!. For
Wheeler-Feynman’s electrodynamics we have

ga=¢, n=1 W) =r"" (36)

and the above formulae give the results of paper [5].

Concluding this $ection we discuss one more aspect of the problem of motion
integrals in the relativistic theory of direct interactions. Expressions (26)—(29) or generally
(15), are integrals for equations of motion of infinitely high order. It was pointed out
in [1] from all sets of solutions of the latter, in some cases the subset may be picked
out (just this subset is often of physical interest), satisfying also the equations of motion
of the second order. Clearly, the integrals of the latter are obtained by excluding in
initial equations (15) all derivatives higher than the first order ones using the same
equations of motion. The functions of particle position and velocities obtained in
that way are the series in terms of coupling constant powers having a very complicated
structure. Some of their general properties including differential and integrofunctional
equations which should be satisfied by them were discussed by a number of authors in
a four-dimensional formalism of the predictive relativistic mechanics (PRM) [11}. The
investigation of this problem in the framework of our fomalism demands a separate paper.

6. Expansion in ¢!

The exact formulae obtained for the integrals of motion of the relativistic system
which is described by Lagrangian (9) may serve as a basis for finding various approximate
expressions. As an example, we consider here expansion of the energy, linear and angular
momentum, and integral of the center-of-mass motion (32)—(35) for the particle system
with tensor interaction up to the order ¢—*. For this purpose it is necessary to take the first
three terms of the sum over s in formulae (32)-(35), cancel simultaneously all the oper-
ators D!, perform a simple series development in v7/c? for the expressions involved and
neglect all terms of the order higher than ¢—#. By means of recurrence relations (1.23)
between functions W, all necessary expressions may be written in terms of the two functions
W, and W,. Finally, we get:

. 2 myt? 3maz' 5m vs
E = ???aC + 2 + 8(32 848p WO(rab)

a

+ _1_— {[”a ' vb+(l - n)vrfb] WO(rab)_(rab : va) (rab vb) '1- dWO(rab)}

2¢? Fap  dra
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1 .
i {{3(1 —n?) (0 + v —203n* —2n— )20} +(120° — 100 —1) (v, - v,) (07 +1}7)

—4(3n% =2n+1) (v, - 1) +(ry - v,) [2(1 —2n)v, - v,+ (81 —3)v, " 1,
F(An—1)p, * Dy — gy - D]+ (Fup - 1;) [(1—4n)0, - 0,+(3—8n)v, - v,+2(2n—1)v, 0,
Py * O]+ (@1 —3) [(ras - 0,) (va  0)+(Fup  00) (V0 * 0,)]
+(Pap " 8) (Fap * )} Wo(rap) +{(Fap * 0°[(41—=3) (Vap * %) +Yap " 0]
+(Fap " 05)2[(B—4n) (Vo * 02)—Fap " 0]+ (Vs * 00) (P * 1) [H(n — D)o, - vy
L dWolra)

Fap drab

—'(2'1 + 1) (U "S-Ub) 3rab vab_i} —(rab ) va) (rab : ve‘)) [(rab ' va)z

1 d\ .
+(rab vb) +(rab va)(rab vb)]( ) W;)(rab)+(1—4il)(va’vb

Fab lab

V" vb_ Uy * l:’.n)VVl(rab)}} +0(C“6)7 (37)

P AN A T (0, + 0 WolFap)
= mgy, —— 5 a b, v a
2¢2 8t 262 8a8s p/TTON ab

a<b

a

1 dWy(ry) 1 .
—Fap(Fap " Vot Fap " 0p) — o+ — 2.8 {{va[(Sn-—?;)r,,b v,
ra,, drg, 8¢
a<p

—Fup 0] 0 F s Dat(3— 80, - 1,] + 0 [(3—2n)0] +(1— 20z +22n— Do, - v,

+(4n=3)ry - (5,4 0,)] + 0,[ (1 = 2002 +(3—2m)0Z +2(2n — D), - v, +(3—4n)ra - (0,+0,)]
1 a[(1=4n)05, * (0,4 05) — Fap * (0,4 0)1} Wolra) + (8L = 2(ras * ¥a) (P~ 05)
+(@n=3) (Fap * Vap)lp - (Vat 2]+ 0L —2(rap - 1) (P * 05+ (3 —4n) (P~ Vat)Pap ™ (Vat05)]
oy * 0) [(1=20) (v =20, - 1) = (1 +2m)07 — 1y * (30, 9p)] + Pas(ran * ©) [(1 =20) (25

1 d Wo("ab)

2')a ' v,,)-—(l+2n)v§ Fab (v —3vb)]} e

2
- rab[(rab : va)
Tab drab

2 .
+(rap * ) }rab (v,+v,) (“}‘ dd ) Wo(re) +(4n—1) (”a + i’.b) Wl(rab)} +0(c” 6)’ (38)
Fap QFap

J = E maxaxva(l-i-2 ) E E gagb{ {[x X U+ Xp X U,
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+ 2(1 - n)rab X vab] wb(rnb) + Xg X xb(rab ‘Y, + Fap * vb) T
rap  drg

1 d WO(rab)}

+ é%z {{xa X0, (3= 81,y * 0,4 1o+ 0]+ X, X 0,[(80 =310 - 0, — 1y * 1,]
+4x, x v [n(n—1) 20, v,— D) +(1=n>)l +nr,, - v,]+4x, x v,[n(n—1) 2v, - v,—v2)
+(A=n?) i —nrgy - v,]+x,% v,,[(4n2 —6n—1) (t2=2v, - v,)+(4n* —2n— 1}

+(1—4n)rgy - v} +x, x v,[(4n% —6n—1) (6} = 2v, - )+ (@n> ~2n— 1)l +(dn—1r,, - v,]
43, X X, [(80 =3ty - (VaF8p) = Fop (0,4 0,) ]+ 2020 = 10, X 0(Fap * Vat Fap * 05)} WolFap)
{41 = m)x, X 0 (rap - 05) + (1= 1)xy X 0y(Fap * )+ %, X 0,[(40=3) (ryp  v,)°
—(rap " ) —2(rap " v) (1 * )] +x, X v, [ (4n—3) (rop - N N e va).(rab " vp)]

X, X Xy(F - 0) [2n—1) (vp — 20, - )+ (2n+ Dl +r, - (0,—30,)]

. . 1 dWy(r,
+ X, X Xy - 1) [(2n—1) (1 =20, - 1)+ Q20+ 1)} + 0 - (B0,—0,)]} — d"(’ )
rab rab
5 5 1 d\
+xn x xb[(rab ) va) +(vab ' vb) ]rab . (va+vb) - WO(rab)
\rab drab
+(1—4n) (x, x vy + X, X iz;,)W,(r,,b)}} +0(c™),: 39

2 3 X, + X,
K= —-tP+ E mex |\ 1+ =5 + —¢ | + E E 0854 Wolr,
( 2C2 8C4> g gb{ 2(}2 0( b)
a<b

a

1 ..
+ " {{x,,[(S —6m2+(2n—1) (2 +2v, - v))—ry - (v, +0)] +x,[(S—6n)ep
C

+@n—1) (v3+20,  vp)+ry - (v,+ 0,) ]+ 220 = 3)v,(Fap * VatFap * )} Wolray)

L dWo(rg,)

- [2(xa+xb) (rab . va) (rab . vb)+rab(rnb ' l‘ab) (rab TV vb)] Ty T
; Fap Al

+(dn~1) (v,+1y) Wl("ab)}} +0(c™°). (40)

Clearly, these expressions may be obtained also directly from the single-time Lagran-
gian (1.38) for a tensor interaction taken up to order ¢—*. Just in this way, by using various
forms of the particle system Lagrangian up to order ¢~2, the integrals of motion were
found in this approximation in [12, 13]. The terms of order ¢~2 in our formulae (37)-(40)
are in full agreement with these results.
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The terms of order ¢~* include already the second and third derivatives of particle
coordinates. To exclude them for the purpose of obtaining the integrals of equations of
motion of second order, it is sufficient to make use of the nonrelativistic equations of motion
Then, the expressions for the integrals of motion will include besides double sums, the
triple ones and the energy will include also quadruple sums i.e. the terms of the second
and third order with regard to the coupling constant. The comparison of the expressions
of order ¢—* with the results known previously is very poor because the only calculations
known to us including ¢~* terms concern electrodynamics. Substituting (36) in formulae
(37)~(40) we obtain the expressions which agree with the results of [14] and [15] up to
order ¢~*. In the former they were obtained by solution of the PRM equations expressing
the transformation properties and the predictivity conditions of the equations of motion
and in the latter the integrals of motion being obtained directly from the four-dimensional
Fokker’s action (without the terms of the third order with regard to the coupling constant)
were calculated.

7. Conclusion

The investigation of the single-time Lagrangians which correspond to the action
integrals of the Fokker-type performed in the present paper shows a possibility to formu-
late a symmetry theory for them in terms of the representation of a group by Lie-Béicklund
transformations. The application of this theory to the Poincaré group allows us to write
the conditions of relativistic covariance of the equations of motion, defined by the single-
-time interaction Lagrangian. The fact that the Lagrangian L obtained by the transforma-
tion of the Poincaré invariant action integral of the Fokker-type to single-time form does
satisfy these conditions means that four-dimensional many-time formulation of relativ-
istic Fokker's dynamics and three-dimensional single-time one are equivalent in the sense
of agreement with the Poincaré-Einstein relativity principle.

These results may be regarded from another point of view. Namely, the Lagrangian
found on the basis of the action integral of the Fokker-type and determined by Eqgs. (9)
and (24), represents a closed form of a wide class of the solution of the set of equations (4)
and (5), expressing (if it is written for the Poincaré group) the requirements of relativistic
invariance for the Lagrangian formulation of classical mechanics of the interacting particle
system. Finding such solutions by means of direct integration of the mentioned set of
equations seems to be a very difficult problem.

As it follows from the method proposed for constructing a single-time Lagrangian
the particle variables x, characterizing their space localization preserve their covariant
character. This feature is an essential advantage of the Lagrangian formalism, since in
the Hamiltonian formalism the known no-interaction theorems forbid using the covariant
coordinates as canonical variables.

The methods proposed in Sections 2-3 are suitable for investigating the covariance
not only under Poincaré group, but also under an arbitrary one for which there exists
a representation by Lie-Backlund transformations (for example, conformal group) as
well as for finding corresponding conservation laws.
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We note finally that studying the special case of tensor interaction makes it possible
to find the integrals of motion of the particle system in which the interaction is described
usually by the field-theoretical methods.

The authors are indebted to Yu. B. Kluchkovsky for helpful discussions.
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