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Padé approximants are used to solve the dispersion relations for the pion photo-
production amplitudes. The proposed modification of the [0, 1] Padé approximant leads
to a satisfactory description of the nonresonant amplitudes. No free parameters are consid-
ered in the calculations. Some of the calculated multipole amplitudes are in better agreement
with the experimental data than those obtained by other methods of solving the dispersion
relations.

‘A detailed investigation of the process of pion photoproduction on a nucleon is very
important because such a study gives valuable and, often, unique information for verifi-
cation of the particle models and the field theory concepts, for the development of the strong
interactions theory. Considerable success in the dynamical description of the process has
been achieved with the help of the dispersion relations (DR) method. DR for the photo-
production amplitudes derived in Ref. [I, 2] have been solved by different methods [3-5].
However, due to some features of these methods, a certain ambiguity is involved in results
of the calculations. For example, adjustable parameters appear, when DR are solved
by the Muskhelishvili-Omnes technique [3]; the omission of imaginary parts of the non-
resonant multipoles in dispersion integrals is an important point for the conformal mapping
technique [4], however, their contribution to the dispersion integrals can be noticeable
[5], etc. It seems to be of interest to apply the method of Padé approximants (PA) for sum-
ming up the iterative series for the photoproduction amplitudes obtained on the basis
of DR and the unitarity condition. This method gives reasonable results when applied
to a number of problems in the strong interactions theory [6]. The absence of free param-
eters, the possibility of taking into account the contributions of imaginary parts of
nonresonant amplitudes to the dispersion integrals enable us to calculate the photopro-
duction amplitudes in a more definite manner than usually. In this paper two modifications
of PA are discussed and the nonresonant multipole photoproduction amplitudes are calcu-
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lated in the low energy region (up to the photon lab energy E, ~ 500 -MeV). Unless
otherwise stated, the units used are i = ¢ = m, = 1.
DR for the photoproduction amplitudes have the form

Re M(w) = MB(W).|. — P f dw’ E Kij(w, w Yim M ;w), 1
M+1
where M; are the multipole photoproduction amplitudes, M} are their Born parts, K; are
the known kinematical functions, w is the total c.m. energy, P denotes the principal value
of the integral, M is the mass of the nucleon.
If the Born amplitudes are chosen as the first approximation for the iterative proce-
dure, the first PA is not in agreement with experimental data [7]. However, our calcula-
tions have shown that in this case the solution for the resonant amplitude M /2 is similar
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Fig. 1. ReM}{? in units 103 Ji/msc. The solid line is the particular solution of Muskhelishvili-Omnes
equation [3]. The dashed line is the prediction of the first PA if M i/fB is chosen as the first term of the
iterative procedure. The dash-dotted line is M3/?B

to the particular solution of the respective Muskhelishvili-Omnes equation (see Fig. 1)
which is a starting point for obtaining a resonant behavior of the amplxtude M2 3],

It should be noted, that in the case of the amplitudes M }'? and E}'? which descrlbe
the transitions to the resonant P;; state, contributions of the non-resonant amplitudes

to the dispersion integral can be neglected (since these contributions are less than 1%

of the Born multipole amplitudes M }/2® or E3/28, respectively). Therefore DR for these

amplitudes can be separated from the rest of the system and can be written as

/ Lo ,
Re M2 (w) = M3I2B(w)+ —P ‘ dw [Kppag(w, W) Im MY 2(w")

M1

+ Kpe(w, w') Im EV2(w)],
i

Re E} 2 (w) = EY (n)+ — P f dw'[ Kgp(w, w) Im EYHw)

M+1

+ Kpp(w, ') im M3 2(w)]. #))]
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At present these amplitudes are well known from multipole analyses [8-13] at energies
up to E, = 800 MeV. Substitution of the experimental data on Im M}’? and Im E¥/2
into the dispersion integral shows that the sum of the Born term and the integral is very
close to the experimental values of Re M}/? and Re EY/Z, respectively. In particular, the
double crossing of the energy axis for Re M f/ ? (see Fig. 2) and the double zero of Re E3/2
at the resonance energy are reproduced. This shows that a CDD-zero of the amphtude
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Fig. 2. Re M’l2 in units 102 fi/myc. The solid line is experimental data interpolation, the dashed line is
the result of substitution of the experimental data to the right hand side of expression (2)

M’} occurs at E, ~ 800 MeV. Its location is important for DR theory [3, 14]. As follows
from the calculatlons the CDD-zero of the amplitude E3’? should be located at an energy
higher than 800 MeV.

Thus, the solution of (2) can be considered as known.

Now let us consider the nonresonant amplitudes. As noted above, the Born multipole
amplitudes are not an adequate first approximation for the iterative procedure. This is
due to the appreciable contribution of Im M }/? to the dispersion integral. Therefore, it
is reasonable to choose the first approximatlon as M} = MP+ M, (33), where M; (33) is
the contribution of Tm M2 and Im E3'? to the dispersion integral.

To construct the iterative series

M; =M +M}+ ... 3)

the unitarity condition is used to find the imaginary part (Im M;)? of the second term
in (3)

(Im M!'?)? = (Re M} tg 8!, (Im M}?)? = (Re M} tg 83,
(Im MD)* = (Re M)! tg !, (€))

while the real part of this term is calculated from DR

ReM(w)——P j dwz K;(w, w") Im M3(w") €

M+1
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and so on for other terms. The prime above ) in expression (5) indicates that the terms
with Im M¥/? and Im E}? are omitted, 4 is the upper limit of integration needed for
numerical calculatlons. In expression (4) 6} and &; are the nN-scattering phase shifts with
the isospin 1/2 and 3/2 and with appropriate angular momentum which were taken from
the phase shift analysis [I5]. At energies higher than the threshold for pion pair photo-
production the relations (4) become approximate. However, up to E, ~ 700 MeV this
approximation is good enough because the respective inelasticity coefficients are close to
unity. At higher energies contributions to the dispersion integrals are suppressed by the
kinematical factors K;;. Therefore for calculations at the energy region discussed it is
reasonable to neglect the inelasticity and to cut the integration (5) at A = 1800 MeV.
We used the first [0, 1] PA to sum up approximately the iterative series (3)

(MDH?

Miro.ny = MI—M?E

(6

Since at the energies considered only lower partial waves are important, we calculated the
multipoles with the orbital angular momentum /<C2: Eg4, Ey 4, My, M,_E, , M,_,
E, ., M, .. While calculating, the contributions of imaginary parts of all these multipoles
to the dispersion integrals are taken into consideration (unlike calculations [3, 4]).
Numerical results regarding the amplitudes E3'Z and M?_ are shown in Figs. 3 and
4. As can be seen from the figures, the results of our calcula’uons are in satisfactory agree-
ment with the experimental data [8-11, 16, 17]*. Our calculations of the amplitude E3/? (see
Fig. 3) at the energies E, < 350 MeV give a good description of the results of pheno-
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Fig. 3. Re Eéf in units 10~ #/mgc. I — the result of analysis [8], 2 — [9], 3 — [10], 4 — {111, 5 — the

point of [16, 17]. The solid line is the prediction of the present work, the dash-dotted line is the calcula-

tion of work [3], the long dashed line is the calculation of work [4], the short dashed line is the Born
approximation

1 'We do not compare our predictions with the results of the multipole analysis [12] because the use
of pseudodata causes an underestimation of errors {9].
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menological analyses. At E, > 350 MeV the experimental points fall systematicaily above
the theoretical curves. Some ambiguities of phenomenological analyses at the resonance
energy may be responsible for this descrepancy.

The calculated s-wave amplitude E3'? coincides practically with that of Ref. [3] and

as well as for E}/7, agrees with the experimental data at E, < 350 MeV.

The amplitude Eg . is poorly defined in multipole analyses. The [0, 1] PA gives for
E3., a result close to the Born approximation, which is in reasonable agreement with the
experimental data. It should be mentioned that the threshold values of the s-wave ampli~
tudes are well known [16, 17] and the calculated values are in good agreement with the

experimental ones (see Table I).

TABLE I
Threshold values of the amplitudes of pion photoproduction in units 10-3 #i/myc

7 :
i i l

The amplitude Eoy(yp >mny | Eo, (yn—>map) | Ey. (yp —> 2°p)

|

{

The experimental data :
{16, 17] ? 28.5+0.45 § -315%1.5 —2.2+0.2

|

The results of present i
calculations ‘ 28.4 : -32.5 | - 1.8

The values of the p-wave amplitude M }’? obtained in different analyses vary consid-

erably and at present it is impossible to prefer any of the theoretical approaches which
in turn also give different results.
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Fig. 4. Re M?_. The units and symbols are as in Fig. 3

As can be seen from Fig. 4, PA (6) gives for the amplitude M 9 _ better agreement with
experiment than the calculations of Ref. [4]. At the same time PA does not improve the
agreement of DR theory predictions for the amplitude M ;2 with experimental data.
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For the amplitude M }’? our calculations describe the experiment better than the
calculations of Refs. [3, 4] do. To draw, however, more definite conclusions it is necessary

to improve the experimental data.

Finally, the amplitudes M9, E}/2, E?, derived from Eq. (6) coincide practically with

the Born approximation and do not contradict the experimental values.

Data on the d-wave photoproduction amplitudes at low energies are not available at
the moment. Our calculations show that the predicted d-wave amplitudes differ only slightly
from the Born approximation (up to 10-159%).

Thus, once an appropriate first approximation in the iterative procedure is chosen,
satisfactory agreement with the experiment for the nonresonant amplitudes (apart from
M3?) can be achieved even by the first [0, 1] PA.

Tt is worth noting that in this method there are no adjustable parameters and that the
contributions of nonresonant multipoles to dispersion integrals are taken into considera-
tion. Agreement with the results of multipole analyses is improved for some multipole
amplitudes and s-wave threshold amplitudes are well described. To compare further
the theory with experiment it is necessary to improve the multipole analyses. It would
be of interest to use a higher PA to calculate the pion photoproduction amplitudes and
also to carry out calculations in the energy region of photoexcitation of the second and
the third nucleon resonances.
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