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A new set of relativistic equations for a spin 1/2 fermion-antifermion bound system
in the case of instantaneous interaction have been previously considered by the authors
(Acta Phys. Pol. B11, 413 (1980), I). In the present work the 16 amplitudes are re-expressed
in terms of three scalars and four vectors which satisfy coupled differential equations. Lorentz,
parity and charge conjugation invariance are used to reduce these equations to sets of coupled
differential equations according to their parity and total angular momentum. A detailed
solution of these equations is given and the positronium case is also studied.

1. Introduction

One of the authors [1, 2] has derived field equations of the form

Py =(S,p,+my)y = py (L.1)

which describe particles of definite mass m and definite spin s. These equations have been
derived for the finite dimensional representations of the inhomogeneous de Sitter group
SO(4, 1) with the invariant P,P, = 0. P, is the momenfum-energy-mass five vector, with
components P, = Cartesian components of momentum, P, = iP,, P, = energy and
Py = m. The S, 5 = (S, S,s = 7,) are the generators of the homogeneous de Sitter
group. Several general field equations have been proposed by different authors!. How-
ever, equations (1.1) have the advantage that they follow from a symmetry principle.
In the previous paper (hereafter it will be referred to as I) the authors studied a generali-
zation of equations (1.1) in the case of a two-fermion system. The selfconsistency of the
equations obtained have been studied and the case of the ete~ bound system has also been
considered. In the next section the radial equations are presented and the states are classi-
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fied according to the total angular momentum-J, J; and the parity. For a classification
of the states into singlets and triplets, we refer the reader to e.g. references {3, 4]. In Section
3 the positronium case is considered and the solution of the radial equations obtained
is given. A discussion of the resuits obtained is given in Section 4.

2.1. The wave equations in vectorial form

The notations used here will be the same as (I). Now let us consider the two-body
equation with Breit interaction

Ey = Hy,

H=a P +a, P,+mpyi+myy + v,

ee @ - r)(ay-r)
VB_—.’r—Z[ -—%(al-az—i-(f—k—r?z——)], r=ry—r,

9
P,=P P,=-P, P=—i—,
or
H = (a;—a;) - P+my5" +mys? + V3,
and £ = M is the mass of the composite particle. We can classify the states according

to the parity P and the total angular momentum J? = j(j+1) and J, = m, where the
total angular momentum

J=rAP+5(6,+0,)

and the parity operator

(.2
P = yOyPm,

where
y(r) = y(—r)

commute with H.
Following the previous paper (I) the wave equation in the mass-centre system

My = [(2;—a;) - P+mpsV+myy2 + Vi ]y
is written in terms of the tensorial components a and w5 as follows:

eje
(M+ : 2)Xo = —2ua,

7

eje,
M+';- @o = 2K,
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3e,e,

2idivH = <M~ >r;——2xq5o,

. . ie;e;
2Vn = 2ip¢p —iMH + —— rH,,
r

3e e,

2idivE=(M—

) a+2uxo,

. €,€3
2iVa = 2ky+ME — gy rE,,

. 2e,e; €183
2icurl ¢ = 2kE+ { M~ - " x+ r—zr;(,,

—2icurly = —2uH+ (M- 2e;e2> o+ %;2, ro,,
where
2k = my+m,, 2p=my—m,, E =E-rr
The states of definite parity ¢, y5"75w(—r) = ey(r), are given by thz following relations
a(—r) = ea(r), Xo(—r) = &xo(r),
Po(—r) = —epo(r),  n(—r) = —en(r),
H(—r) = eH(r), ¢(—r) = ed(r),

E(—r) = —¢E(r),  x(—r) = —ex(r).
2.2. Charge conjugation for equal masses

For equal masses if we write ¢ = »C, the wave equation reads
en o~ ~ ~ -~ ~ €16, ~T ~
i0p = P (@p+Pa)+m(yoP —Pro)+ — = (P +a- Pa).

If we take the transpose of this equation, and multiply by C and C-* from the left and the
right and denote

§=cp'c

we obtain
i~ — _ o €€  _ —
i0,p = —P - (ap+Pa)+m(yoP ~Pyo) + . (P+a- pa).

Thus P(—r) satisfies the same equation as .
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Thus
CPH(=nC™" = ecy(n),
i.e.
a(—1)+3 CS3pC  pup(—1) = ec(a+7 Sup¥an)-
Hence,
a(—r) = eca(r), Yu(—1) = —&cPu(r),
and

Yao(— 1) = &cPas(P).
Combining these results with spatial parity we find that, if we define
& = Ectp
then for ¢ = 1 (gc = €p)
H=y =¢o=1n=0
and for ¢ = —~1 (g = —¢p)
E=3=¢=a=0.
Thus we are left with the following classifications:
a) e =1, ep = (=1),
$po=n=xo=H=0a#0,
b)e=1, g =(=1)Y"",
lo=¢o=n=H=0, a=0,
c)e= —1, gp = (=11,
E=y=¢=a=0
and we obtain the splitting into three cases, as discussed in the following sections.

2.3. Eigenvectors of definite total angular momentum

The eigenvalue equation J,y = my gives

. Oa . 0E, E
i —— = ma, —i = mE,,
O o

—i 56— (E,+iE,) = (m+1) (E,+iE,)
P
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with similar equations for the other scalars and vectors. Furthermore, the eigenvalue
equation J?y = j(j+ 1Dy gives

L’a = j(j+Va, L*E+2iL A E+2E = j(j+1)E.
As is well known [5], the eigenfunctions are a ~ Y, for the scalars, and the three ortho-

gonal vectors rY,,, PY,, and LY,, for the vectors of parities (— 1)/ **, (—1)*! and (—1)’
respectively.

Now we write

a = f(r) Jm’ ’7 - g(r) jme

Xo = h(r) Jm> ¢0 - k(r) Jjm>

¢ = u,(r)LY;,+rv,(r)PY;, + Vl() Y.

jm?

2()

A = uy(r) LY, +rv,(r)PY;, + rY

jme

w3(r)
E = us(r) LY, +rvs(mPY,+ ——— rY;
r

jm>

H — u4(r) L)/:’m + rU4(r)P )):im + W4(r)

rY;

jm>
and we classify the solutions into two families of definite parities
e=(=1"" and &= (-1).
For ¢ = (—1)'*", we get
a=yo=0, ¢o= kY0, ), n=_grY,.

E = u3L jm> 1= uZ(r)L Jms

w w _
¢ = <rle+ 71 r) Y, H= (rv4P+ ﬁri r) Yim
and for ¢ = (—1)/, we get

¢0='1=0, a_f(r) Jm> XO—‘h(r) jmo

¢ = ulLij’ H = u4LY

Jm?

Wy W3
q = (rva+ - r) Yim E= (rv3P+ — r> Yime
r r
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Thence, the radial equations for ¢ = (—1)’*! are:

Case (i)
€2
(M— A> k(r) = 2xg(r), 2g = 2urv,—Mru,,
\ ¥
eZ
—2ig" = 2uw,— (M+ ) Wa,  2KU,+Muy =0,
. F
—j(j+1 i d 3e?
2|: J(j» ,,_) Vgt 5 (r2w4)] = (M+ ——) g—2xk,
r re dr r
2j(j+1 S
—!Q )u2 = —2uw,+ (M+ —) Wi,
r r
d 2e*
2i —(ruy) = —2urvg+ | M+ —— | roy,
dr r
and

w, i d 262
254 = 5w ) = 2wk (M4 s
r

r r r

The above equations reduce to two coupled equations in u, and g; whereas the other six
functions are expressed in terms of these two functions as follows:

J( e2
uy = —2ku,/M, k= 2Kg/\ M— — )

f d ) 2¢*
oy = 24 ug—iM — (ruy) |/ 4 —M{ M+ — )],
L dr r

2¢* o d ﬁi , 262
rog = 23| | M+ — g—2tud—(ru2) W4 —M{ M+ )|,
r r -

~

Wy

) 2 2\ 2
wy = —2[1’ M+ %) g +2ui(j+1) ﬂ/[zml— <M+ ‘ir) J

il
I
[\
1
N
=
QQ\
+
_
<
~ 1%
~—
=
| .
\i+
Iz
=
(3]
| E—
S
-1
N
=
N
=
+
- | ®
[
~N
—
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and the two coupled equations are

d
2iug+M — (ruy)
dr
+ _—
5 262
4u"~-M|{ M+ —
-
and
. 3e? 4x? )
rs M+ — - 5 rreg
r e
M- —

. r

. 2¢? o d T 2% ,
=Jjj+1) [<M+ *) g—2ip— (ruy) || M <M+ —~> —4u
r ar L

2\ 2
2 e
L ()

These coupled equations degenerate into two separate solutions for equal masses g = 0.
Case (ii)

‘l 2 [<M+ e—) g ~24i(j+1) "—]
< r, r
|

The radial equations for & = (—1)’ are

/ 62
(M— —) h = =2uf, Mu, = 2uu;,,
r

2
e

—2f = 2krv,+Mrvs,  2if = 2xw,+ (M+ ~) W3,
r

F—j(j+1)
2 L——r

d 3e*
ot 5Lt | [M+ ~-]f+2uh,
r* dr | r

d 2e?
—2i —(ruy) = 2xrvg+ | M+ — | rv,,
dr r
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j(j+1
_,iU+D
r

w, i d 2e*
—2{-—+ — —(rvy)) ) = —2uu+ { M+ — Ju,.
r r dr r

Here again these eight equations reduce actually to only two coupled differential equations
in terms of u and f; and all other six radial functions are expressible in terms of these two
functions. One verifies easily that

= ——2uf/(M~— e?) . ug = 2uuy M,
d B 2e%
ro, = —2[2xf~iM— (rul)‘!/[drx - (M'-}- -w)] )
dr r
ro, = —2[2:';:1(;-:4,)— <M+ i)f]/[4x2—M<M+ ‘7222)]
dr - r
w2=2|:2ixf’+( )1(1+1 ]/(4;& ( )]

wy = 2[2ircf’+ ( )J(J-!—l) ]/[4;\2 (M+ ?)2]

and the two coupled differential equations are

e 2 4y® d
e — - = jruy =
4 r M Y d

e2
U, = 2KW3+ (M+ ‘;.“) Ws,

and

2ucf+M (ru,)

2e?

4 —M M+ —-
J

2

. €., . Uy
2ikf +(M+ —;)](}-&-1)—
,

) e22 ’
4" - M+ —
r

and
G| 2ie L ruy— (M4 27 f]
IK—(ruy)— E—
1 M+312___ 4 2 _j] ar” r
3 2 - 2
r e 2 2e
M- — 4x —M(M+ —-—)
r r
2 )
r [(M—- e—) £ —2ikj(j +1) 'ﬂ]
+ i r r

d 25\ 2
d 4xc? — (M+ ‘i)
.
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3.1. Positronium case

For positronium m; = m, = k, p = 0. In this case the solutions are easily separable:
(i) For ¢ = (—1)’*' we get two separate solutions
(@a=y=¢=E=x=0,

w
P = [ﬁsg“ﬁok—i“ ’ ("U4P+ _rﬁ "):l Yims

where
€2
kzzxg/ (M‘_>’ vy = ~2g/Mr, w, = 2ig[(M+er),
r
and
1 d{ rg 3e? 4t N\ G+
=+ | M+ = - - i 0.
r® dr ’ M e’ Mr?
M+ — M- —
¥ r

ibyn=¢o=yo=H=0,

w
1=u,LY,,, E=uslY,, ¢= <rle+ e r) Y
r

where

u; = —2ku,/M,

) d 232 ! e;’-
l‘;l = ZL—(I‘UZ) A/I+ - 1, Wl = 2_](j+1)u2/r M+ ﬁ),
dr r r

and

1 d |dr 207 4k* JjG+1)
— — b Mt - — ) = = 0.
rodr 2¢? ‘*( r M) X A\ |
M+ — rr{M+ —
r r

(i) For ¢ = (—1)’, we still have two coupled equations, but y, = H = 0,

a=ij,,,, ¢:u1Lij’
W, W3
x=|re;P+ ~“r) Y, E={(ro,P+ —r)Y,,
r r
where

2 2¢? oood
4k —M(M+ — )| ro, = 2iM d—(rul)—4'<f,
r r
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[, 2¢? 2¢? o d
4" —-M{M+ — )y =2\ M+ — f—-4nc2-(ru1),
r r r

2

i 2 262‘2 . ’ e P Uy
4~ M+ —r-) wy = 4ixf'+2 M+7 }(}+1)7,

B 2 e22 v Uy . ez 1
4~ { M+ — wy = —4kj(j+1)— =2i| M+ — ) f,
r r

r

and the two coupled differential equations are

ey 2é2 d '

1 “ Vru, = — I

4 r Y dr 5 26>
a—M( M+ S }

[ d l
2ikf+ M — (ru,)
dr

r

2-

. ' € ey . ul
2ikf' + <M+ 7)](]+1) —
r

, o2\ 2
4t — | M+ —
-

T

and
o - d 2¢?
307 Jg+1D 2md—(ru1)— M+ —if
L(}\4+ _?_) Pf = . .
4 2
N r 2 2e
4k —M<M+ ~)
r
e’ u, )
Pl M+ =) =2iki(j+1) —
r r
T ar ) ( 2e2)2
" —{ M+ —
r

3.2. Solution of the radial equation for the case (i.a)

2\ 1/2
As r — o0, the differential equation for g gives g, ~ e™*" where K = (x2 - T) s

whereas for j # 0 and r — 0 we do not obtain a regular solution. Thus we are left with the

j = 0 case.
Let go = r” (as r — 0) hence
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i
The root with the negative sign diverges nearly quadratically with — and we exclude it
r

and are left with the very weakly divergent solution

3 2y 172 3“2
o={1-2) —1~ -2 <105
4 8

However, in this case v, = i will be singular, leading to a non-normalizable solution.
r

Thence we are left with the spherically symmetric solution

/ a
= g(r), ¢0=2Kg/(M— 7),

i

e L\ 2,
° Mr+o

with parity ¢ = —1.

Writing g = Ge™™, we can obtain the energy levels, for it is sufficient to consider
the asymptotic approximation G, of G. We keep only orders of r2 and r, and neglect
orders O(1/r?). Then, the asymptotic differential equation is

M?*r*G+ QM r—2M*Kr)Gl, + [2M*K —2aMK? + 1 aM?)r
—3 (M —-24*°K>—aMK)]G, = 0.

This equation holds for r » 717 7 —2—. In fact, for r < 2— , virtual annthilation and crea-
K i

tion of the positronium takes place, and the behaviour of the wave function in this region
differs very much from *the solution of our differential equation for G. Writting
N

G, = Y A,s""°. The coefficient of 4, gives the equation

n=0

Mio(o+ 1)+ 1 (@*M? —24°K* —aMK) = 0.

. 2K
On the other haud, since 4,,,/A4, > —~-— as n — o0, the convergence, as r — o,
n

requires that G, should be a polynomial, of degree N + o, say. Hence, we get the equation

for energy levels
(A_{E ' L+L\/1_ L
2K e (N+o—1P +d?

in the first order of «?, we get the usual Rydberg’s energy levels, with N—1 instead of N:

Ko

My~ 2= —esy
VE ST ANy
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and using the recurrence relation we obtain
g = r”L(ﬁ"Jrl)(ZKr)e_K',
where L™ is the Laguerre polynomial [6]. The nonrelativistic expression, obtained from
Schrodinger’s equation is given by
8o = Ly (2Kor)e ™,
where

UK

°= N

We note that K &~ K, (except that N—1 replaces N in the expression for K), and that we
obtain Schrodinger’s solution if we put ¢ = 0. In fact, in the lowest order of «, we have

AN-1)

Kot
M=2k, K=———and o~ —a0*(1—--
A4N-1)

>, which we can neglect.

o
On the other hand, for r < YR we approximate the differential equation for g neglect-

ing the order O(r?). Then, we write

gO = Z Anr"+a’

o o . .
which converges for r < Y ] EPE neglecting «? and thus also o as compared with »,
K

we obtain

. ( Mr nto
& (%)
Bo =~ Zn(n+l)(n+2)

n=1

which is the approximate function g near the origin.

o . 2k .
Now, we study the behaviour near r = R since ¢p = K8 , then we require

M-

o
that g > 0asr— e Consider the solution around the point r =

g]g ~ R

Let +oc
Letr=x+ —.
M

Then in the first degree in x (neglecting o(x2)), we get

d*’g  2uax’ g
dx* M x’
The solution for x — 0 is
A
g = e/lxlnx — x}.x’ gll o~ _g’



555

2

2K2x

hence, 1 =

. As x - 0 we find that g — 1. Thus an analytic solution around

x = 0 leads to g finite and thus ¢, — o0 as x — 0. This is excluded physically and one
cannot have an analytic continuation at x = 0. We should then have two solutions which

o ) . o o
are valid for r < o and the other is valid for r >.—M— such thatg =0 at r = — on

both sides?.

Since r = Y is a singular point we have to distinguish between two solutions; the

. . . x . . o .
interior solution for r < 7 and the exterior solution for r > v We seek the solutions

. o
which have the same behaviour at r ~ a

Consider now the exterior solution which vanishes at infinity, we write
G(r) =Y, G(Kr)"**

using the recurrence relation we obtain for # — + o0

2"
G, ~ — .
n!
Thus

G"(Kr)n+o' — (Kr)o'eZKr’

0

M8

it

n

which means that g —» +00. Hence, we have to cut the series at somen = +N, N > 0.
Also if one cuts the serics at # = 0, we get two recurrence series — one from below and
one from above (in ascending and in decreasing powers). One verifies easily that this recur-
renoe relation leads to two additional conditions on the coefficients, which are not self-
consistent. Thus we have to allow for n < 0 and take the infinite series for negative n.
That is

n=+N

G(r)= Y G (Kn)"*s

n=—

By considering the asymptotic coefficients G, as # - — oo and using the recurrence relation,
we obtain

G (Kr)'t* ~ —
P Ea

2 N.B. In fact, we cannot find a solution of the form g = X% for this equation.
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which converges for r > u This gives the exterior solution, which has either a singular

a .
Gatr = §Yi or a finite solution.

The energy levels are obtained from the recurrence relation taking n = N,

2 2
My\" _ L+L\/1_ .
2K 202 (N+S—1)*+a2’

since

which gives in the nonrelativistic limit

My =2k— —— .
N 2(N —2)?

. a . . . .
Now we consider the interior solution for r < — . Here the origin is included, but

r = oo is excluded. Thus we consider the solution as a power series

g= Y &(Kn"™,

where g is to be determined. The indicial equation with the condition g, # 0 gives

302
c=—-1+ [1— —.
4

The weakly singular solution is

(6 = 0 in nonrelativistic theory).
By considering the asymptotic recurrence relation as n — oo we seek a solution which

. . . o . .
gives the same asymptotic behaviour at r = 57 as the exterior solution. The recurrence

relation takes the form

vig,., = o*g,, v = MJK.
Thus

o <J_‘4_’>
Z g"(Kr)”” = % ~ (Mr)a

Mr Mr¥Fo

o

n=0 1+
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o . . o
for r< Y which has the same asymptotic behaviour at r = R then,

c=84+1 or S=0-1.

This connects the interior and exterior solutions.

4. Conclusion

In the previous section we discussed in detail the solution of the differential equation
for g (case i.a). Similarly, we obtained closed form expressions for the solutions of the
differential equation for u, (case i.b) and the coupled differential equations for #, and f
(case ii). For u, we obtained a solution of this form

U 4
uz—'_‘e P
r

where U is a polynomial in »

U, = r"I¥ '2Kre %

. : 20 . .
Here again there is a singularity at r = 73 and solutions have been obtained to match
each other at that point with
S=0-1

for the interior and exterior solutions.
For the coupled differential equations for #, and f we assumed the form
U

U, =—e
Kr

Kr

and [ = Fe ¥

In this case we have two singularities: at

aM
2K%’

and

r

= — note: i1s less than .
2k—M ( "1 ° r2)

A regular solution in the whole line r is obtained with § = 6—1 for the interior

. o . . o . .
solution (r gﬁ) and the exterior solution (r = 7[) . In this case we notice that

aM o

NS T em T

o
M



558

are such that

ry M? ry M

n ok T am

and ry < ry < r,. That is, the singularities of the differential equation (not of the wave
function) are in the exterior solution.

Finally, we note that the equations proposed look promising for studying other bound
state systems, e.g. the qq system and the confinement of the quarks [8]. Also, a great
advantage of the equations obtained over the Bethe-Salpeter formalism lies in the fact
that we were able to avoid all difficulties connected with the relative time (relative energy)
problem as well as an easier and analytically solvable set of differential equations are
obtained in our case.
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Atomic Energy Agency and UNESCO for hospitality at the International Centre for
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