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The schematic model of nuclear matter proposed by Gomes, Walecka and Weisskopf
which was generalized to finite temperatures including interacting Fermi particle aspects
is extended here to include nuciear matter with neutron excess. We calculated the level
density parameter as a function of neutron excess. We also calculated the temperature
dependence of the equilibrium Fermi momentum.

1. Introduction

Thermal properties of nuclear matter have aroused great interest in recent years.
This is mainly because of a) the importance of studying excited nuclei in nuclear reactions
[1, 2], b) the study of “hot”” neutron stars in astrophysics [3].

These properties can be determined by extension of Thomas-Fermi approach to
ground-state nuclei to finite temeratures 7 > 0 [4]. If one keeps in mind the simplicity of
this model, it reproduces for example the nuclear masses and details of the nuclear surface
surprisingly well. Therefore its generalization to excited states appeared very promising.
Many authors have tried to study these properties [5-8] using different approaches.

In this work we are particularly interested in the generalization of Stocker’s [6] model.
In his work Stocker generalized the schematic model of nuclear matter proposed by Gomes,
Walecka and Weisskopf to finite temperatures including interacting Fermi particle aspects.
We generalize this model to describe nuclear matter with neutron excess using the results
of Dabrowski and Hassan [9] and of Hassan and Montasser [10] who have generalized
the model by Gomes, Walecka and Weisskopf to asymmetric nuclear matter. We also
calculated the symmetry energy as a function of temperature and the level density param-
eter as a function of the neutron excess af{ = (N—Z)/A4).

* On leave of absence from Physics Department, Faculty of Science, Cairo University, Cairo, Egypt.
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In Section 2 we discuss the theory where we got expressions for some of the param-
eters of the thermal properties of nuclear matter with neutron excess as a function of «.
In Section 3 we give the results of the calculations of these parameters.

2. Theory

2.1. The equation of state

The binding energy of nuclear matter with pure hard core interaction and with neutron
excess is given by [9, 10]
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where 7, = (1+0)V3, y, = (1—x)'/3, r, is the hard core radius.
The attractive part of the potential is taken in the form:

1 M
_ =3 (A+PHV, for r.<r<r.+b, 2
VA—{ 0 for r>r.+b, @

PM is the Majorana exchange operator. The intrinsic range b is determined from the rela-
tion [9]:

2r.+b = 2.7 fm.

From high energy scattering experiments r. can be taken equal to 0.45 fm. Therefore
b = 1.8 fm. The potential depth is fixed by the relation [9]:

MV, z
b= T, )

where the parameter s is equal to one if the two-body system has a bound state at zero
energy, which we considered to be the case. The attractive part contribution to the binding
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energy taking into account only the first order term in the perturbation expansion is
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j1(x) = (sin x—x cos x)/x>.

The above model of nuclear matter has been generalized to finite temperatures by
Stocker [6] using methods of statistical mechanics of interacting Fermi systems at low
temperatures [11]. For nuclear matter with neutron excess we used the method discussed
by Kupper et al. {7] and keeping terms up to 72 and «? we get for the entropy per particle:

T M M ety = 22 LT (1 il )
s(T,n) = DR LE K2 aT(a+7,) = 7° h2k2® 9) '
and the internal energy per nucleon:
T
1
«T,n)=e(T =0,n)+ — de'C,,(T'), 6)
n
4]
where the specific heat C, is given by
M
C(T) = e (k+ kAT (7N
The free energy per particle is
AT, n) = e(T,n)—Ts. ®)

The pressure p is given by

f of 2kg
= = —. 9
S P ©)
Expanding the entropy and the internal energy up to second order in o we get:
= s,+a’s,, (10a)
where
M
s, = n* isz k3T, (10b)
2
n M
SS = Z kBT (100)
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and
e(T, n) = e(T, n)+ao’e(T, n), (11a)
T
e(T,n) = e, (T = 0,n)+ EX Sy (11b)
, T
es(T’ n) = es(T = 07 n)+ ? Sss (110)
where
e(T =0, n) = (ER+EA)/’A = ev(T =0, n)+a2es(T = Oa.n)' (12)

The pressure as a function of density at different temperatures can be calculated from
Eq. (9) by inserting the internal energy Eq. (11a) into the free energy expression Eq. (8).
As we will see from the next section, the p = p(v, T) curves can be used to calculate the
excitation energy from which we can get the level density parameter.

2.2. The temperature and neutron excess dependence of the equilibrium
density of nuclear matter

The equilibrium Fermi momentum was discussed before by several authors {12]
for zero temperature nuclear matter with neutron excess. We will now generalize this
discussion to the case of non-zero temperature. The equilibrium Fermi momentum for
a fixed neutron excess o and finite temperature 7 is trated as the solution of the equation

oo T k) _, (13)
Ok

Now, we assume the knowledge of the solution to Eq. (13) in the case « = 0 and T = O,

and we denote this solution as kgy, where kg, satisfies the condition

of(a=0,T =0, kg)
oky

= 0. (14)

kro

Then we expand the derivative in Eq. (14) in power series about kg, neglecting terms of
higher order than first. We obtain:
af(ds T$ kF) . 6f(a3 T: kF)
ok kg

2
, k
+AkFaf(a’ T, kg)

e = 0. (15)
kro ak%

kro

To solve this equation we have to expand the derivatives in power series of « and
T. Neglecting terms of higher order than x? and 72 and making use of equations (8), (10)
and (11) we get

kE de(0,n,) M )
Akp = — —E (2% T2 ), 16
F K (a ke RKE *‘) (16)

where K is the compressibility and #n, is the equilibrium density.
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3. Results and discussion

The equation of state p = p(V, T) following for nuclear matter in this formalism can
be calculated. It consists of a term representing the free nucleon gas part and some correla-
tion parts which take into account the nuclear attraction and the short range repulsion
correlation. In Fig. 1 the isotherms following from the equation of state (9) are displayed
for @ = 0. The difference between these isotherms and those done by Stocker is due to the
fact that the hard core radius r, in our calculations is fixed to the value 0.45 fm and the

18 r
p(MeV fm™3)

T=160 MeV

—— e —————

Fig. 1. Nuclear matter isotherms in the v, p diagram r. = 0.45fm, m*/m =1, =0

effective mass is taken to be equal to the free nucleon mass. This choice of the effective
mass is justified by the fact that the effective mass at the Fermi surface in nuclear matter
may be well approximated by the free nucleon mass. This is in agreement with the results
of investigations of heavy nuclei [6]. In Stocker’s calculations he fitted three parameters
(C, B and d, in his paper) and took r_ to be a free parameter.

As shown in Fig. 1, there are often two different densities for given p and 7, corre-
sponding to the liquid and vapour phases. The dashed parts of the isotherms where p
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decreases with increasing density of homogeneous nuclear matter represent a region of
thermodynamic instability. The zero pressure configurations of homogeneous nuclear
matter, corresponding to the right-hand side intersections of the isotherms with p = 0
line, correspond to metastable configurations with negative compressibility.

Neglecting nuclear curvature effects, excited nuclei correspond to thermodynamical
systems with vanishing external pressure. Thus in the plot of isotherms of Fig. 1, excited
nuclear matter corresponds to the first isotherm intersection with V-axis, this represents
a state of minimal free energy. The excitation energy per particle as a function of nuclear
temperature:

e*(T. %) = (T, no(T, %)) —e(0, (0, @)) (17)

(no(T, o) is the equilibrium density at temperature T and neutron excess 2) may be approxi-
mated by

eX(T, %) = a(e)kiT?. (18)

no(T), can be calculated from the first intersection with the V-axis of the isotherms which

is calculated at different neutron excess a. We can calculated the level density parameter
a(x) using these isotherms and Eq. (18). The results are shown in Fig. 2. It is worth mention-
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Fig. 2. The reciprocal of the nuclear level density parameter in MeV as a function of

ing that when « increases the model approaches the finite nucleus case. Then it is to be
expected that the value of @' decreases with the increase of «. This effect is reproduced
in Fig. 2. Of course, the inclusion of curvature effects will improve the model much further
near to the finite nuclei [5].

We also calculated the volume and symmetry energy at equilibrium density n4(7, @)
as a function of temperature up to 7% and we got the result:

Ew(T) = —14.34+0.053k2T?, (19)
E,n(T) = 46.11-5.9x 1073 T?k3. (20)

These expressions were calculated by Sauer et al. [8] using Skyrme interaction and they
got the value 0.055 for the coefficient of 72 in the volume energy and the value 6 x 103
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for the symmetry energy, but with positive sign. The value of the symmetry energy at
T = 0 is larger than the experimental value which is around 30 MeV. This may be due
to the choice of the attractive part of the potential and neglecting higher order terms in
the perturbation expansion.

The temperature dependence of the equilibrium Fermi momenta can be obtained
from Eq. (16) (for « = 0)

2

k L K M T2
kch(T) = kpo( T = 0) hzk—K sT°, 2n
F

where we calculated the compressibility K and we got the value 149 MeV which is in agree-
ment with Stocker’s calculations. Eq. (21) can then be written as:

Keeo(T) = Kpeg(0)—1.06 x 103 Kk3T2. (22)

It is worth mentioning that the choice of the interaction and the 72 approximation
need further investigation. This investigation is under progress.

One of the authors (M.Y.M.H.) would like to thank Professor Abdus Salam, the
International Atomic Energy and UNESCO for hospitality at the International Centre
for Theoretical Physics, Trieste.
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