Vol. B11 (1980) ACTA PHYSICA POLONICA No 8

PLEBANSKI CLASSIFICATION OF THE TENSOR OF
MATTER*

By G. SoBczyYk
Institute for Theoretical Physics, University of Wroclaw**
( Received March 22, 1980)

This work presents a unified approach to the Plebanski classification of the tensor
of matter by showing how all the polynomial, tensorial, and spinorial objects used by Ple-
baniski arise from the study of a single linear operator, a derivation, on the real Clifford-Dirac
algebra. In particular, we show that the classification of the tensor of matter is equivalent
to the Petrov-Penrose classification of the conformal Weyl tensor, by way of the principal
correlation which exists between them, which gives a positive answer to Plebanski’s question
of whether such a correlation exists. A new interpretation of spinors as elements of a com-
plex projective plane of bivectors emerges. Our approach makes extensive use of the method
of simplicial and multivector differentiation, and this method is explained in a series of
appendices.

Introduction

In his by now classical paper [1], Plebanski thoroughly studies the structure of the tensor
of matter considered as a symmetric, traceless matrix, and as a spinorial object, recognizing
the relationship of this problem to the problem of the classification of the Weyl tensor
using the spinorial methods of Penrose [2]. In [3], we have shown that a far more powerful
formalism! can be successfully employed in the Petrov—Penrose classification of the Weyl
tensor, considered as a bivector operator, and more generally in studying properties of the
Riemann curvature tensor. The purpose of this paper is to show that the virtues of our
formalism are even more apparent when applied to this related but more complicated
problem; it allows us to find the principal correlation whose existence was suspected

* Research supported by NSF grant § GF41959 through an exchange program with State University
of New York at Stony Brook, USA. ’
** Address: Instytut Fizyki Teoretycznej, Uniwersytet Wroctawski, Cybulskiego 36, 50-205 Wroclaw,
Poland. )
! We are referring to the Spacetime Algebra (STA) of Hestenes [4, 5], and more generally to the
multivector calculus extensively developed in the book From Clifford Algebra to Geometric Calculus:
A Unified Language for Mathematics and Physics, [6].

(579



580

by Plebanski. It will be seen that our methods are distinctly different than those employed
by all others, for example [7, 8], and whereas the results of others can be elegantly restated
mn our formalism, the converse is not true.

In Section I, we geometrically extend the inner and outer vector products in the real
Dirac algebra so that they apply equally well to “complex’ vectors in the real Dirac algebra.
By a “complex” vector we mean that vectors and pseudovectors (or trivectors) in the real
Dirac algebra are treated as a single mixed quantity. This geometric extension is necessary
because we wish to retain the geometric interpretation of complex eigenvalues of symmetric
operators that was given in [3] when studying the bivector operator equivalent of the con-
formal curvature tensor. The extended inner product, when considered on the space of
complex vectors, turns this space into a complex 4-dimensional Euclidean space. We
take steps to reveal the relationship between this complex 4-dimensional space and Pen-
rose’s twistor theory [9].

In Section 2, we study a symmetric trace-free vector operator by extending it to a deri-
vation (see Ref. [10]) on the full Dirac algebra. This derivation, when considered as a bi-
vector operator, is anti-dual symmetric, which corresponds to an anti-linear transformation
from the space of “dotted” spinors to “undotted” spinors in the spinor formalism. The
derivation, when considered as an operator on compl:x vectors, is dual symmetric and
its characteristic equation is the same as for the trace-free vector operator, but now *“com-
plex” eigenvalues take on the geometric meaning of “scalar + pseudoscalar” in the Dirac
algebra. The importance of this geometric interpretation is that it allows us to find the
principal correlation of this operator to the Petrov-Penrose classification of a dual symmet-
ric bivector operator coastructed on a subalgebra orthogonal to a real space-like eigen-
vector.

In Section 3, we study basic properties of Hermitian forms, such as the law of inertia,
both on the complex 4-dimeasional Euclidean space of complex vectors, and on the com-
plex 3-dimensional Euclidean space of bivectors. By the Riesz theorem, which is directly
established by multivector differentiation, to each Hermitian form there corresponds
a unique anti-dual symmetric operator. We give examples of Hermitian forms which
are preserved by the respective isometry groups: U(4), U3, 1), U(2, 2), U(3), U(2, 1), and
U(2. 0). The unitary group U(2, 2) is associated with Penrose’s twistor theory [9]. See
also references [11, 12, and 13].

A rather extensive series of appendices is included. The author feels that this is justified
by the fact that most readers are unfamiliar with the mathematical details of the Spacetime
Algebra (STA) formalism used here. In fact, some of the material was worked out in
a thesis [14], and has not been published elsewhere. Appendix A gives the Pauli algebra
homomorphism which is utilized in Section 2. Appendix B explains the method of simpli-
cial differentiation which was first developed in [14], and later more extensively in [6].
It is shown how the method of bivector differentiation employed in [3] is a special case
of the more general multidifferentiation defined herein. Appendix C relates the differential
scalars of the derivation, defined in Section 2, back to the differential scalars of the trace-
-free symmetric vector operator in terms of which it is defined. Appendix D relates formulas
in the STA formalism to more familiar equivalent formulas in other formalisms, and in
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particular, to formulas used by Plebanski. In addition, a new interpretation of spinors
as elements of a complex 2-dimension projective plane of bivectors is given.

In conclusion, whereas Plebanski studies properties as reflected at the spinorial or
tensorial level, or in the “world” of polynomials, there is a natural, simple and direct
relationship between these various worlds, as is exhibited in the study of so simple an
object as a derivation on the Dirac algebra. It would seem reasonable to expect, therefore,
that whenever the former methods are employed in Physics, great advantage can be gained
by exploiting the Spacetime algebra techniques used in this paper.

(In this paper we assume the familiarity of the reader with the results and symbolism
used in [3].)

1. Geometric extension of operations in Spacetime Algebra

In this section we briefly review and geometrically extend operations on vectors
in the Dirac algebra to “complex” vectors in the Dirac algebra.
By a complex scalar in the Dirac algebra 2, we mean

T = a+1f, ()]
where « and § are real numbers and 7 is the unit pseudoscalar element of @ with the
familiar property I = —1. By 7, we mean the complex conjugate of 7. If e, is a unit

timelike vector (e = 1) in 9, then we can define the conjugate of 7 in terms of e, by

T = ey18 = a—If. (1.2)
By a complex vector in 9, we mean an element Ze 2~ = 9 _,, ie.,
3
Z =u+lv =Y 1, = vector+trivector, (1.3)
u=0

where u,v€ 9,, and {e,} is an orthonormal basis of 2, (see [3; (I.1)]). The complex
conjugate of Z is best defined in terms of the operation of reversion (+), which reverses
the order of the geometric products of vectors in terms of which Z is expressed. A discussion
of the operation of reversion in STA can be found in [4]. For our purposes, we need only
note that

Z =Z72" = u—1Iv = 7", (summation convention). 1.49)

Note, that when the operation of reversion is applied to a bivector Be 9,, we get

B=B"=(aAb*=bara=—anb= —B. (1.5)

Complex conjugation in @ satisfies the following important properties:
1Z = Z%, (1.6)
1Z = (1Z2)* = Zt = 7Z (note that t+ = 1), a.n

and

2,Z, = (Z,2))" = Z,Z,, (1.8)
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which are easy consequences of the definitions (1.2) and (1.4), and the property that
Iu = —ul, i.e., vectors and pseudoscalars in the Dirac algebra anticommute.
We now define

Zy 2y ={2122014 = 32\ 21+ Z,Z)) = 111580, (1.9)
where g(e,, e,) = e, ' ¢, = g,,- Next, we define
ZyANZy=(2\2y), = 3(Z,Z2,—2Z,Z,) = tithe, A e, (1.10)
It is easy to check that for Z, = u,+ 1, (k = 1, 2), that
ZZy=u;cuy—vy vy +HI(uy vy tuy cvy) (1.11)
and
ZiNZy=ug ANuy—vy Avg+I(ug A vy—uy A vy). (1.12)

Combining (1.9) and (1.10), we find that
2.2, =2, Z,+Z, A Zy = uyuy—0v,v, + (w0, +v,u,), (1.13)
which reduces to the familiar geometric product of vectors, [3;(1.5)]:
Uy = Uy " U+ Uy AUy,

when Z, and Z, are real Dirac vectors, i.e., when Z, = Z, for k = 1, 2.
The complex inner product (1.9) satisfies the following important properties:

C(Zl, Zz) = Zl * Zz = ZZ * Zl = C(Zz, Zl)’ (1.14)
(xZ)) 2y =1Z,-Z, = Z, - (1Z,), (1.15)
2, 2,=2,"7,, (1.16)

and turns 2~ into a complex 4-dimensional Euclidean space with the symmetric complex
metric C(Z,, Z,). It follows from (1.11) that (local) Lorentz transformations preserve
the metric C(Z,, Z,). Twistors can be ideatified with the elements of this complex 4-dimen-
sional space endowed with a Hermitian form with signature (+ + — —). Hermitian forms
on our complex 4-dimensional space will be discussed in Section 3.

The outer product (1.10) of complex vectors satisfies the following important prop-
erties:

(MZIANZ,=1Z, AZy=2Z, A (1Z,), (1.17)
ZI N Zz = ‘-Zz A Zl = Zl A Zz, (1.18)

which can be easily established from the definition (1.10), and (1.5).
For Z = u+Iv, we calculate, using (1.11) and (1.12),

ZZ=Z-Z=u"—v*+2Iu-v, and ZAZ=0 (1.19)
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and
2=+’ 2unveZ-Z=u+v>, ZAZ=-2u~nrouv (1.20)
An important consequence of (1.19) is that
ZZ=0<wu*=0v" and wu-v=0. @1.21)

There are basically two kinds of complex null vectors, by which we mean a complex vector
Z satisfying (1.21). By inspection, we find that

Z, =ge'n, and Z, = o(a;+Ia,) for 0,0€R, (1.22)

where 7 is a null vector (#* = 0), and a, and a, are orthogonal unit space-like vectors
(a,f = _1 and. alaz = _azal)-
Similarly, with the help of (1.20), we find

2*=2-Z+ZAZ=0<Z=1tn = ge'n, (1.23)

where 7 is a null vector. Thus, (1.23) corresponds to a complex null vector of the first kind
in (1.22), and is a more restrictive condition than (1.21). Note also that

Z-Z=0=2"Z<Z=r1n= g, (1.24)

and hence the left hand sides of (1.23) and (1.24) are equivalent. To prove (1.24), note
that the left hand side of (1.24) is equivalent to

ZZ+D) =0u*=0=0v> and u-v=0,

which says that « and v are orthogonal null vectors, but this is only possible in Minkowski
space-time when they ars colinear. For an equivalent argument, see [1; p. 980]. The rela-
tionship (1.23) or (1.24) can be used to define the notion of a complex null line as used
in [9;p. 258].

Finally, we note that any formula involving the operations of dot (-) and wedge (A)
can be appropriately extended to apply to complex vectors. For example,

2, (Z,ANZ)=2,Z,2,—-2,2,Z,
= 3(2,2,Zy-2,2,2,~2,Z,Z,+Z,Z,Z)). (1.25)
Similarly,
ZiANZy N2y =3(Z,Z2,2,~2,Z,2,+2,Z2:2,~2Z,Z,Z,). (1.26)
Definitions (1.25) and (1.26) imply
22,2, =2, (Zy NZ)+Z, ANZy A Z,. (1.27)

Great care must be taken when using the extended dot and wedge, since they only reduce
to the ordinary dot and wedge when applied to real vectors. In terms of components,
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letting Z, = 1je,, (1.26) can be expressed by

79 1} 1%

2
IZE €y A 3% A €y

[SR=]
3
N

Zi ANZy AZy=1iT513€, A e, A e, =T
\

T

wo
—_

r
] 2
T3 Tsl
+lleg Aeg Aes+| leg Aey Aest] le, Aey Aes (1.28)

It follows that Z,, Z,, Z; are linearly independent iff (1.28) is non-vanishing.

2. Derivation of a trace-free symmetric operator
Plebariski begins his work {1] by expressing the Riemann tensor in the form:
Ry = W=7 0um(RY — % 67) +17 OR.
In [3; (5.18)], we have shown the equivalence of this expression to the following expression
involving bivector operators:
R(B) = W(B)+ U(B)+S(B), (slightly different notation) 2.1
where
W(B) = R(B)-% B+ d,[R(v)—% Rv] 2.2)
is a dual symmetric bivector operator, equivalent to the Weyl tensor, and
U(B) = B 3,[R(v)— % Rr] (2-3)
is an anti-dual symmetric bivector operator, and
S(B) = ¥ RB 24

is the identity bivector operator times 1/12™ the scalar curvature R, and is thus, also, dual
symmetric. Therefore, the study of the algebraic structure of the curvature tensor splits
into the study of these three bivector operators. The dual-symmetric Weyl operator was
studied in [3], together with the bivector operator S(B). From the expression (2.3), we see
that the study of U(B) reduces to the study of the vector operator ¢: 9, — 9,

#(v) = R()~1 Ro<> U’ = R(e,) - € — % &R, 2.5)

where R(v) = 0, - R(a@ A v) is the Ricci operator, and R is the scalar curvature, see
[3; (5.14), (5.17)]. From [3; (3.28)], it follows that #(v) is trace-free and symmetric, i.e.,

8,1(v) = 0<> 8, t(v) = 0 = 3, A 1(v). (2.6)

Before we start the classification of #(v), recall [3; (3.34)], that a general bivector opera-
tor can be expressed in the form

F(B) = W(B)+S(B)+ U(B)+J(B)+D(B).
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The operators W(B), S(B), and J(B) ([3; (4.9)]), were classified ia {3}, and from [3; (3.31)]
it follows that the operator D(B) can also be classified by studying a trace-free symmetric
vector operator ¢’ (v). It therefore follows that the general classification of a bivector operator
F(B) is complete, once the classification of trace-free symmetric vector operators is known.

Our study of the symmetric, trace-free vector operator #(v) will be based neither on
spinorial, nor matrix, nor Sach’s null-leg techniques, as used, by Plebanski, but rather
on the extension of #(v) to a derivation (w.r.t the outer product) on the full Dirac algebra 9.
This extension is defined by 7: @ —» 2,

T(4) = A" - 9,t(v) for all Ae9. 2.7)

Note that the definition uses the operation (+) of reversal, also called the main antiauto-
morphism of & and hence, strictly speaking, the extension T(4) is the outer-derivation
of #(v) followed by a reversion. This is evident in the relationship

T(A") = A-9,1(v) = [T(D]", (2.8)

which is easily established from the definition (2.7).
For scalars and pseudoscalars, we find

T(1) =0 and T{U)=1-8é,t(v) = 1d,(v) =0, 2.9
as follows from (2.6) and definition (2.7). For bivectors @ A b, we find by using (2.3),
(2.6), and (2.7),
U(a Ab)y= —T(a A b)y=1{(a A by -0,t(vy =1t{a) A b+a A t(b). (2.10)
Finally, for complex vectors Z = a+ Ib, we calculate
T(Z) = T(a)+T(b) = t(a)+ It(b). 2.11)
The second equality is a consequence of the following steps:
TIb) = —(Ib)- 0,t(v) = —Ib A 0,t(v) = —Ibd t(v)+1Ib - 0, t(v) = It(b).

The extension of #(v) to the derivation T(4) should be contrasted with the extension of
t(v) to an outermorphism #(4), which is given in Appendix B.
From properties (2.11) and (2.9), and the linearity of T(4), it follows that

T(:Z) = tT(Z) and T(Z,) - Z, = Z, - T(Z,), (2.12)

i.e., T(Z) is dual symmetric when considered as an operator on complex vectors Z € 2.
On the other hand, when cousidered as a bivector operator on 2,, we find that T is anti-dual
symmetric, i.e.,

T(UB) = —IT(B) and T(4)O B = A O T(B), (2.13)
as has already been proven in [3], or as can be directly established in steps similar to those

following (2.11). In Section 3, we shall study the Hermitian form Q(4, B) = 4 O T(B),
which T(B) defines. An immediate consequence of (2.13) is that

T?(B) = IT*(B) and T*4) OB = A0 T*B) (2.14)
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which says that 7'? is dual symmetric, and hence the Petrov—Penrose classification as worked
out in [3] applies to 7T2. Plebaniski has used this fact to obtain a classification of #(v),
[1; p. 1001]. Although our formalism can be used to simplify Plebasski’s considerations,
we will only refer the reader to Appendix D, where we discuss the relationship of our
formalism to that used by Plebanski and others.

An important result obtained by Plebanski and others (see [7] for relevant historical
comments and recent references to the literature), and that will be used in the following
consideration’ is that #(v), and hence T(Z), will always have at least one real space-like
eigenvector; there will always exist a vector a; € Z,, and a real eigenvalue 7; such that

T(as) = t(a;) = 1;a; and a3 = —1. (2.15)

Although there may be more than one eigenvector satisfying (2.15), different selections
lead to essentially the same classification scheme.

Let us now show how the Petrov—-Penrose classification worked out in {3] can be
applied to #(v) to obtain what Plebariski has referred to as the principal correlation of
Kv), [1; p. 1018]. First, we obtain a factorization of the pseudoscalar I by writing

1= lay = a,a,a, = —asl or I = ayl, (2.16)

where a, and a, are orthonormal space-like vectors orthogonal to the unit time-like vec-
tor a,. Thus, i is a unit trivector orthogonal to the space-like vector a5, and it is easy to
check that i2 = —1. The vectors a,, a;, a, generate a Clifford subalgebra of the Dirac
algebra & which we denote by &. This subalgebra is homomorphic to the Pauli subalgebra
of the time-like vector aq, as is explained in Appendix A. We will now define an operator
on & which has the same structure as a dual symmetric bivector operator on the Pauli
algebra by way of the homomorphism.
First, we define

'(v) = (t+%13) (V) = t©V)+5 150 (2.17)
Next, we define the vector derivative on & by setting
a; = 5v+a3a3 * 59. (2.18)

The vector derivative &, can also be defined as the projection of the vector derivative
0, of the Dirac algebra, i.c.,

3, = P(8,) = —ii-a,

Applying the operator equation (2.18) to (2.17), and using (2.6) and (2.15), and (B. 5)
from Appendix B, we find that

0 (@) = [6,+asas - 0, [1(0)+5 130] = O, 2.19)

so t'(v) is a trace-free symmetric operator on &. Just as #(v) was extended by (2.7) to
a derivation on 2, we can use (2.7) to extend ¢'(v) to a derivation

T'(A) = A" - 3,£'(v), (2.20)
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on all of &. However, we are most interested in the structure of 7’ when restricted to the
subalgebra &. Tn the same way that we proved the properties (2.9) and (2.11) of T(4),
we can show that

(1) =0 = T1'¢), 2.21)
T'(4) =iT'(4) forall Ades. (2.22)

Because (v) is symmetric, 7" is also symmetric. Property (2.22) shows that 7" is self-dual
on both vectors and bivectors, and this should be contrasted with the corresponding pro-
perties (2.12) and (2.13) of T. Because of the algebra homomorphism, given in Appendix A4,
T" has the structure of a dual symmetric bivector operator, and thus the Petrov—Penrose
classification as worked out in [3] can be applied to 7.

Since #'(v), as defined in (2.17), and #(v) have the same eigenvectors (but with possibly
different eigenvalues), the classification of ¢'(v) and #(v) is essentially the same. A discussion
of the exact relationship betweea the eigenvectors and values of ¢ and #’, and of the eigen-
multivectors and values of the corresponding extended operators T and 77, is deferred to
Appendices B and C where the characteristic equations of these operators is discussed.
Here, it is only necessary to point out that complex eigenmultivectors (= vector + bi-
vector) of T correspond to complex eigenvectors of T.

We close this section with a diagram of the Petrov—Penrose classification of the dual
symmetric bivector operator which is the ppl. correlation of the complex vector operator
I(Z) by way of the construction involving 77 and the algebra homomorphism given in
Appendix A.

N<»n N<n
I I It
Z\ A1<->02 (
N AY
\\ N
A <>a a Qa

FI—‘_(Eo_m_p_le—)J ———————— -,l
1 T |
i A<:>Z ”A**Z ! N = (NV2)A,+IA )0 = N2)(agt+ay)
\ \\\\\ //,/ I _ _
: \,/\ Aora,! = (IV2)(A,+ A )7 = (1V2)(ag+1a,)
] AN —_
; ' A= (IN2) (A, = A) 7 = INZ)(ay-1a,)
1 a [

3
e T 1

Diagram 1

Notes about diagram 1

a) The A;’s represent orthonormal time-like eigenbivectors with real eigenvalues
of the dual symmetric bivector operator which is ppl. correlated to T(Z). By way of the
algebra homomorphism they correspond to real cigenvectors of T(Z), e.g., A3 — ag, etc.
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b) Null eigenbivectors and the corresponding real nuil eigenvectors of 7(Z) are re-
presented by double solid lines at an angle of 45°.

¢) The real eigenvector a; of T(Z) is dashed-in because it is outside the Petrov-Penrose
diagram of the ppl. correlation of T(Z); thus a; does not correspond to an eigenbivector.

d) The subcase type I’ applies only when there are complex eigenvalues, and is in
the dashed box. In this case, the orthonormal time-like eigenbivectois 4 and A'correspond
to 2 complex unit time-like eigenvectors Z and Z of T(Z).

3. Hermitian forms

In the last section, we were interested in classifying the complex vector operator T(Z)
by studying its ppl. correlation to a dual symmetric bivector operator. We have seen how
this reduces the problem of the classification of a dual symmetric operator on complex
4-dimensional space to the classification of a dual symmetric operator on complex 3-dimen-
sional space, once a real eigenvector of #(v) has been found. In this section, we will see
what properties of #(v) can be learned by studying properties of the Hermitian form associa-
ted with #(v) by way of its derivation T(B). Plebanski [1] has used the method of Hermitian
forms as the basis for an alternative classification scheme of #(»), but our objective will
be only to study the role played by Hermitian fornis, both on the complex 4-dim Euclidean
space of complex vectors, and on the 3-dim complex Euclidean space of bivectors. We will
first give several examples of Hermitian forms to point out the various well-known unitary
and pseudo-unitary structures involved.

Hermitian forms are associated with anti-dual symmetric operators. If L is an anti-dual
symmetric operator L: @~ — 2, then by definition L satisfies the properties

L(1Z) = i(Z) and L(Z,)-Z, = Z, - L(Z,), (3.1)

and the Hermitian form associated with L is

H(Z,Z,))=Z,-L(Zy) = L(Z))Z, = H(Z;, Z)). (3.2)
The well-known property that

H(iZ,,Z,) = tH(Z,, Z,) = H(Z,,1Z5) (3.3)

then follows trivially from (3.1), and (1.15).

The complex vector derivative 0, is very useful in getting back the anti-dual symmetric
operator L of the Hermitian form H as given in (3.2). The following relationship is easily
established from (B. 24) in Appendix B:

2L(Z,) = 0;H(Z, Z)|=2, = 0,H(Z,Z,), and 0,H(Z,,Z)=0. (3.49)

So, once properties are proven tor Hermitian forms, by using the relationship (3.4), they
can be easily translated into properties of anti-dual symmetric operators.

Properties (3.1) through (3.4) have been stated for Hermitian forms and their corre-
sponding anti-dual symmetric operators on the complex 4-dim Euclidean space of complex
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vectors 9~. However, these properties remain equally valid when stated on the complex
3-dim Euclidean space of bivectors. Thus, for the anti-dual symmetric bivector operator
T(B), given in (2.13), we have the Hermitian form

Q(4,B) = A O T(B) = T(4) O B = Q(B, 4). (3.5)
Applying the bivector derivative 85 to (3.5), we find that
T(4) = 7 35Q(B)ls-4 = 95Q(B, 4), and 050(4, B) = 0, (3.6

which is the analog of property (3.4) for complex bivector space.
Consider now the three anti-dual symmetric operators L;: 92— — @-, defined by

L(Z) = eoZeo, Ly(Z) = Z, Ly(Z) = e;Ze;. (3.7

To each of these operators. there corresponds a Hermitian form:

H(Z,Z,)=1Z," L(Z))=L(Z) Z, = H(Z,, Z,). (3.8)

The Hermitian form H, has signature (+ + + +) and makes 9~ into the unitary space
U(4). The Hermitian form H, makes 9~ into the pseudo-unitary space U(l, 3). The
Hermitian form Hj has signature (+ + — —) and makes 2~ into the pseudo-unitary space
U(2,2), which is known as twistor space. See references [13; p. 318], [9; p. 256].

Similarly, by defining the anti-dual symmetric bivector operators

TI(B) = —EOBeo, Tz(B) = —elBel, and T3(B) = —e1E1 X(E1 XB)61 (3.9)

.and the corresponding Hermitian forms

Qu(4, B) = 4 O Ti(B) = Ti(4) O B = Q«(B, 4), (3.10)

we find the unitary spaces U(3), U(2,1), and U(2,0). The connection between U(2,0) ~ U(2)
and Spinors is well-known [11; p. 43]; in appendix D we shall give a new geometric identi-
fication of spinor space as a projected complex 2-dim bivector space.

Let us now study the properties of the Hermitian form determined by the anti-dual
symmetric bivector operator (2.13). Recall that T(B) is defined entirely in terms of the
traceless symmetric vector operator #(v) as given in (2.10). In particular, we will use well-
-known methods to reduce Q(B) to a sum of squares, [12; pp. 299, 334]. Although we will
prove these properties for the Hermitian form defined on bivector space, we want to em-
phasize that all properties can be immediately carried over to the setting of the complex
4-dim vector space 9.

First note, that because d, A T(a A b) = 0, it tollows that Q(B) = 0 for all simple
bivectors B is equivalent to the statement that Q(B) is identically 0, [3; (5.13)]. Also, note
that 7(B) does not necessarily map simple bivectors into simple bivectors, as the following
simple example shows:

teog) = —ey, tley) =e, ey = e, t(es) = —es,
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from which it follows that
T(e; A (e2+e3)) = (e2—e3) A ej+(ex+e;3) A €.

Suppose now that Q # 0, then from the above remarks it follows that there exists
a bivector A, with the property that «; = O(4,) # 0. Now define Q' and T” by

Q(B) = (1/2,)Q(B, 4,)0(B, 4,)+Q'(B) (3.11)
and
T'(B) = £ 3,0'(B) = T(B)—(1/a,)0(B, A)T(4,), (.12)
and note that Q'(4,) = 0 = T’(4,). Next we calculate
8,T'(a Anb)=23, T(a A b)+(]u)T(A)bT(A,),
which shows that
9, A T'(a A b) =0,

so that (3.11) and (3.12) can be used to define a Q" and T"' in terms of Q' and 7. Repeating
these steps, we eventually find that

3
o(B) = ZI 1/, )BOCBOC,, (3.13)
k=
where C, = T(4;), C; = T'(4;), and C3 = T"(4;), and a, = Q'(42), a3 = Q"(43).
From (3.13), by using (3.6), we calculate
3

T(B) = 3 05Q(B) = kZ (1/)BOC,Cy, (3.14)

=1

and
3
(b) = 0, T(@ A b) = ¥ (1/z)CibC. (3.15)

The (sgn («;), sgn (&), sgn (x3)) is cilled the signature of @, and was used by Plebanski
in an alternative classification of #(v), see [1; p. 1003). The relationship (3.15) shows that
any trace-free symmetric vector operator (any real symmetric second-order trace-free
tensor) can be written in terms of at most three bivectors, which generalizes the case of the
Maxwell energy momentum tensor. This result can be found in {I; p. 1004}, and more
recently in [7; p. 61].

Finally, we mention the group % of “generalized duality rotations™ ([1; p. 1004]y
defined by

Seu if  Q(S(4), S(B)) = Q(4, B), (3.16)
for all bivectors 4, Be 9,. We see that % is the unitary group of the Hermitian form
Q(A4, B). Equivalently,

Sea iff T =S'TS, 3.17)
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where S+ is defined by the equation
S(A) OB = A O S*(B) for all bivectors A, B.

The author wishes to thank Z. Oziewicz and A. Jadczyk for reading the manuscript
and making helpful comments, J. Ray for pointing out recent references in the literature,
and the Institute for Theoretical Physics, Wroctaw, for its hospitality.

APPENDIX A
Pauli algebra homomorphism

The homomorphism between the Pauli algebra generated by the unit timelike bi-
vectors {4y = @, A ao| for k = 1,2, 3}, and the subalgebra & C 2 generated by the
vectors {a,| u = 0, 1,2} that was used in Section 2, is given by

ag <> A;, ia; o A4,, iaye> —A,. (A.D

The homomorphism (A.1) can be verified by comparing the multiplication charts of
corresponding elements given below:

(10 ial iaz A3 Az —Al
a, ‘ I | -a | a | 4; [ 1 —I4, | ~I4, |
ia, a, ! 1 iay 4, | 14, 1| 14,
iaz —a1 iao 1 _Al IA2 _IA3 i 1

i = aya,ay = (—ia)(ia))ag > A, 4,45 = 1

The above homomorphism shows that a dual symmetric operator on % corresponds
to a dual symmetric bivector operator, and hence may be classified by the Petrov—Penrose
classification worked out in [3].

APPENDIX B

Simplicial derivatives and characteristic pelynomials

We begin by introducing the notions of a simplicial k-variable v, and the operation
O of differentiation w.r.t a simplicial k-variable, for k = 0, 1, 2, 3, 4.

d
v(o) = t, and a(o) = ;i—t' . (B.la)
t=0
where ¢ is a real scalar variable, and
1
Vay = Uy A ... Ay, and 9y = E{ak Ao A Oy, (B.1b)

where v;, and 0; = J,, ate respectively vector variables and vector derivatives w.r.t those
variables, as defined in [3; §2].
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The most important elementary formula (that is formulas involving derivatives of
the identity mapping) for simplicial derivatives is the following combinatorial-like identity:
0iPida = iy A BayTIpCpagirk-2F - +0G50) * day (B.22)

which is termwise equivalent to

- - K\ (4—k
D 5 G Yy R

where (;) = 0 for { < j. Thus, for example, we have

4-k
agy A Gty = ( j )a(k) = dtgy N Aw (B.3)
and
k
awy " Iy = i) = Ity * Ay (B.4)
Equating the left hand sides of (B.2a) 1ad (B.2b), we find
4
v = ( j)‘ (B.5)

Formulas (B.3) and (B.4) generalize (2.8) and (2.6) ia [3], and formula (B.5) generalizes
formulas (2.7) and (2.14) in [3]. Actually, only the right hand sides of (B.3) and (B.4) are
immediate consequences of (B.2); the left hand sides follow from the analogous left handed
identity to (B.2). The method of proof of (B.2) is to find an orthogonal basis {b;} of Z,,
with the property that ay = by, = bb, ... by, and then to express all simplicial derivatives
and variables in terms of this basis.

Simplicial derivatives are to be contrasted with multivector derivatives. Simplicial
derivatives are composed of the outer product of vector derivatives w.r.t several vector
variables. The definition of a multivector derivative w.r.t a vector or bivector variable
was given in [3] by formulas (2.1)-(2.4), and the general definition for the multivector
derivative w.r.t an r-vector variable V, is given by analogous formulas. Multivector and
simplicial derivatives are basic tools for the coordinate free study of n-dimensional linear
algebra and differential geometry. The development of these tools was initiated in [14],
and later much more extensively in [6]. For our purposes here, we wish only to point out
that for linear functions of an r-vector V,, r-vector derivatives and r-simplicial derivatives
coincide, that is

Oy F(V,) = 0, F(v()- (B.6)

Identity (B.6) is established by noting that for all a,,
ae - Oy F(V,) = Flayy) = F(ag, - Orylry) = Ay * OnF(ve).

The first equality on the left is a direct consequence of the dzfinition of the r-vector deriv-
ative, and the second and third equalities make use of (B.4) and the linearity of F.
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In terms of the simplicial derivative, the theory of linear operators can be efficiently
reformulated. That part of the theory that is needed here will now be briefly given. Let
J(v) be a vector operator (by this we mean that f'is a linear mapping of Dirac vectors into
Dirac vectors). We can extend f to a homomorphism on 9([10; p. 221]), which we call an
outermorphism, by defining for r # 0

flagy) = a¢y 0 fiy = fla) A ... A f(a), (B.7)
where
ag = a; A ... Aa, and  fo) = f(v) A oA f(o).

In the case r = 0, it is assumed that f(¢) = ¢, for the scalar variable t.
We can now derive the characteristic polynomial of a vector operator f(v). First
define

[T =10 =f)-w = (f—1)@). (B.8)
Then,

i

@(v) = det (f') = 0a(f~Da) = 7504 A o A B (fi=t0) A o A (fa—T0,)

= 14""6 'fT3+6(2) 'f(2)12~(7(3) 'f(3)T+6(4) 'f(4). (B.9)

Equation (B.9) showsthat the characteristic polynomial of a linear operator is just a differ-
ential identity involving the differential scalars of f. If 1, 75, 73, 74 are the characteristic
roots of ¢(r) = 0, then we can write

4
¢® =[] (r=1) = t* = (r,+ ... +7IP+@ T +T,T3+ ... +T3T9)7°
k=1

~(T1TaTs+ oo FTRT3T )T+ T,TaT T4 (B.10)
Comparing (B.9) and (B.10) shows that
a(k) .ﬁk) = 6Vk " f( Vk) = 2 Til Tik, (B.ll)

1giyp< L <ikg4

a formula which is well known.
There is an important identity relating simplicial k-derivatives of a vector operator
to traces of compositions of the operator:

k
0wy Jay = 1/k Z,l (—1)““‘7(&—3) 'f(k—s)a I (B.12)

This formula can either be directly derived as a differential identity involving the differential
scalars of f, or surmised from the equivalent formula in the more usual approaches. Identi-
ties (B.11) and (B.12) together imply that in terms of the characteristic roots

i .fk =9, -f"(v) = —r';—}- +‘L’i, (B.13)

as is also well known [13; p. 87}
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A vector operator f(v) is said to be trace-free if
0-f=1,+1,+13+1, = 0. (B.19

Given a vector operator g(v), we can always define a trace-free operator f{(v) which will
have the same eigenvectors as g(v). Define

fv)y=[g—%2 gl () = g(v)—% 0" gv. (B.15)
If for an eigenvector a, g(a) = t,a, then we find
f@@) = (1,—(0- g)/4)a. (B.16)
An operator f(v) is said to be symmetric if
OAf=0@Ab)y OAf)=a-f(b)—f(a)-b=0, (B.17)

for all a, be 2,. Combining (B.14) and (B.17), we see that an operator #(v) is trace-free
and symmetric iff

8t=0C-t+d At =0. (B.18)

Using (B.14) and (B.12) to simplify (B.9), we find that the characteristic polynomial of
a trace-free vector operator simplifies to

p(1) =t*~10-1*1* =50 P+ 5[0 172 ~20 - t*]. (B.19)

The characteristic roots of (B.9) or (B.19) may be real or complex. In [3)], we saw how
complex characteristic roots are best interpreted as ‘“‘scalar + pseudoscalar” quantities,
but (2.14) shows that the present considerations are not independent of the results in [3],
and therefore, we retain this geometric interpretation of complex characteristic roots
here. Thus, we must reinterpret and generalize all of our considerations of vector operators
so that they apply to complex vector operators. By a complex vector opergtor we mean
a real linear mapping F: 2~ — 2~. By writing

F(Z) = F . (Z)+F_(2), (B.20)
where

F,(Z) = $(F(Z)—IF(1Z)) satisfies F,(IZ) = IF (2Z),
and

F_(Z) = $ (F(Z)+IF(IZ)) satisfiess F_(IZ) = —IF_(Z),

we decompose F(Z) into dual and anti-dual parts, just as we did for bivector operators in
[3; (3.3)]. We are interested here. in the theory of complex dual vector operators, although
examples of anti-dual operators were given in Section 3 in connection with Hermitian
forms. In Section 2, we saw how a dual symmetric complex vector operator (2.12) arises in
the study of the derivation (2.7).
We now define differentiation w.r.t the complex vector Z = u+ Iv in terms of vector
differentiation:
0z = 0,+10,. (B.21)
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We have the following formulas for differentiation,

0,Z=8<0-Z=8, and O0AZ=0, (B.22)
and
0,Z=0<«0-Z=0, and 0 AZ=0, (B.23)
which can be easily verified by using (B.5) and (1.13). Note also the formulas
Z,- 0,2 =2Z, = 0,2 Z,, (B.24)
and ~ B
0Z-2,=0=2,-0,Z. (B.25)
For F, and F_ defined in (B.20), we find by using (B.24) and (B.25),
Z, 0,F (Z) = 2F (Z)) = 2Z,-3,F.(v), Z, 0,F_(Z) =0, (B.26)
and
0,F (Z) = 20,F . (v), 0,F_(Z)=0. (B.27)
The above considerations lead us to define
Oy = BA/kNOz A ... N8z, and Zgy=Z; A ... A Z, (B.28)
in analogy to (B.1). We then find that
IurF +xy = OoF + s (B.29)

which generalizes (B.27). Because of (B.29), we can conclude that the characteristic equation
of the complex dual vector operator F, is equivalent to (B.9); it is defined entirely in terms
of the vector derivative.

Let us now consider in more detail properties of the complex vector operator T(Z)
given in (2.11). The operator T(Z) has characteristic polynomial (B.19), whose characteristic
roots we will denote by 74, 75, T2, T3. Suppose that t; is the real eigenvalue of the spacelike
eigenvector a3, as given in (2.15). Now recall the vector operator ¢’ defined in (2.17). The
general characteristic equation of an operator on the 3-dimensional subspace &, is

@) = 72— 1T 00y " t{ayT—0(3) * Lz (B.30)
analogous to (B.9). But, since by (2.19), #'(v) is trace-free, and using (B.12), (B.30) reduces to
P)y=13~-L0 210 -2 (B.31)

Using (2.17) and (2.18), we can express (B.31) in terms of the differential scalars of f:
P@) =P~ 0 =T 1O 41,0 =B 7)),

Let us denote the 3 roots of this equation by 7o, 73, 73, of which at least one, say 7,, will
be real since the equation has real coefficients. It follows from (2.17), that any real eigen-
vector a of ¢’ with eigenvalue t, will satisfy

1'(a) = ;8 = (1,+7;/3)a,
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or
T, = 1,4+15/3, (B.32)

where 7, is the corresponding eigenvalue of (B.19).
The relationship between complex characteristic roots 7, and . of (B.19) and (B.31)
is more complicated. Suppose Z = a,+ia, satisfies

T(Z) = TcZ <« t(a()) = T do~ Timl1> t(al) = Tra0+’cima1’

where 1. = 1,+I1;,. Now define z = a,+ia,, and 1, = (1,4 173/3)+1;ni- Then one can
casily check that

T'(z) = 1.z, (B.33)
where T is the derivation of ¢’ as given in (2.20). One can also check that
T(Z) =1Z, and T'(Z)= 1.3,
so that Z and 7, the complex conjugates of Z and z, are also complex eigenvectors of T'
and T respectively. Since 7, # T, and 1, # ., it follows that
Z:Z=0=zZ<al=—al (B.34)

The equivalent condition on the right-hand side follows from (1.20). Furthermore, we are
free to set

Z-Z=2=zz<a}l=—ai=—1, and a,-a,=0, (B.35)

as follows from (1.19), and thus we see that g, is a unit time-like vector orthonormal to the
unit space-like vector a,. See [I; p. 981].

Finally, we wish to show how the formulas involving the differential scalars of a dual
bivector operator, as worked out in [3], are related to the above formulas. Define the
(simplicial) bivector variables B, by

B(!) = By, B(m = B, XBz’ B(m) = 31 x B, O B, (B~36)

and the bivector derivatives J, by

on = 3 Og,» Oayy = 3)? — 0p,%0g,, and

2!

1
Oy = (%)3 —0; O 0,%0,. (B.37)
31

Then for a dual bivector operator L(B), with
L, = L(By), Ly = L(B,) x L(B,), Lay = L(B,) x L(B;) O L(B3),
its characteristic polynomial, given by (3.24) in [3], takes the form

1/)(}') = 13 - a(l)oL(I))'z + a(ll)oL(ll)'1 - a(lll)OL(lll)ﬁ (B38)
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which is exactly the form of the characteristic equation (B.30) for the vector operator ¢’ on
the 3-dim space &,. Analogous to (B.11), we find

a(x) O L(K) = Z /1,'1 “as lik for k = 1, 2; 3, (B.39)

1<iy < ... <ig<3

where 4, A;, A3 are the characteristic roots of (B.38). Analogous to (B.12), we have
k
0y O Ly = 1/k Z,.x (=104 OL- 00 O Ly (B.40)

Using (B.40), (B.38) can be expressed in the form
¥(4) = A* =04 OLyA* +3 [(0yO L)’ ~ 80O L)
—+[200L -300LOL* +(80OL)*] (B.41)

which is equivalent to (3.24) in [3].
If some of the above formulas seem unfamiliar, it may be of help for the reader to

refer to Appendix D where the symbolism is compared to the more standard formalism
used by Plebanski.

APPENDIX C
Calculations involving differential scalars

In this appendix we want to relate all differential scalars of the derivation 7, as defined
in Section 2, back to the differential scalars of the symmetric trace-free operator t(v), in
terms of which it was defined by (2.8). We will also discuss the relationships between the
eigenvectors and eigenvalues of z, and those of its derivation 7.

Recall formula (2.10), that

T(anb)=1tb)A at+b A t(a). (C.)
Applying the Leibniz formula, {10; p. 147], to (C.1), we find that
k
T*a A b) = (—1)* Z (’:) t'(a) A t*77(b). (C.2)
r=0

Noting that
0,t(a) A £(b) = 8- I'E(b)—1"**(b),

we can now calculate

3,T(a A b) = (—=1)* Z <’;> [8- & " (b)— (b)), (C.3)

and
k

8,9, T"a A b) = (—1)* Z (’;) [6-16-t*7"—a-1,

r=0
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from which it follows that

05T"B) = 03, T(va) = (D" % Z (’j) [0-00-¢7—0-+],  (C4)

r=0

by using (B.6). From (C.3) and (C.4), and using the Cayley-Hamilton theorem to express
traces 0 - t* in terms of traces 8 - " with r < 4, we find after straight forward calculations:

8,T*a A b) = 8-t*b, 83THB) =20-12, (C.5)
0, T*(@a A b) = 8- t*b+40 - t’1(b)+ 60 - t*t*(b)— 121*(b), (C.6a)
03THB) = —40 - t*+3(0 - 1*)?, (C.6b)
and
0sT*(B) = —60-t*0- 2+ 2(0- 3> ~% (8- tH>. (C.7)

Using formulas (C.5)—-(C.7) in [3; (3.24)], or in (B.41) by taking care to properly
normalize the bivector derivatives with factors of (), we can express the characteristic
polynomial of the bivector operator L(B) = T3(B) entirely in terms of traces of the operator
t(v). Let us denote by 1%, 12, A3 the characteristic roots of this characteristic polynomial.

Let us now see how the characteristic values A7 of the bivector operator T3(B) are
related to the characteristic values 7, of the vector operator #(v). Recall from (2.15) that
7, is the real characteristic value of the eigenvector a3, and let Z, denote the real or complex
eigenvector of the real or complex eigenvalue 7,, tfor u # 3. Then we calculate

T(Z, A a3) = H{as) A Z,+a3 A T(Z,) = —{(7,+713)Z, A a;, (C.8)
for u =0, 1, 2, from which it follows from (2.13) that
T(UIZ, A a3) = —IT(Z, A a3) = (1,+13)Z, A a;l. (C.9)

The identities (C.8) and (C.9) give up to 6 distinct eigenbivectors of T with eigenvalues
+4,.1, where

Aury = —(1,+713) for u=0,1,2. (C.10)
From (C.8) we calculate
TXZ, A as) = (1,+13)°Z, A a3,
from which it follows that
A = (1, +13)* for u=0,1,2, (C.11)

are the eigenvalues of 72.



599

APPENDIX D
Relationship to other formalisms

The following is a table of how some of the differential scalars, discussed in Appendices
B and C, are related to parameters used by Plebanski:

TABLE I
Plebanski [1] Conversion STA
U= HU;H (p. 971) U; = te") - eg B.18) @)
p P
U = Tr(UP) (p.971) U =20-¢tP (B.13) 9, t?(v)
U (p. 971) U = a(k) * (k) (B.11) 3(;‘) “Hiy
[k] [k]
Q (p. 973) 0 = ¥k, O Ttk (B.39) 2y O Tixy
[k] [k}

Next, we give a table showing how various spinorial objects find direct expression in the
STA formalism. Note that dotted indices always correspond to complex conjugation,
or to a Hermitian form. Also, note the relationship between upper and lower spinor and
bivector differentiation.

TABLE 1I
Spinor [1] Intermediary complex form { STA
|
¢* (p.1002) BOA4 A
Pap AQ0p A
g BOA A
Pap AO?g A
U1 (p. 964) T(4)OB (3.5), (3.6) T(4)
(p. 1002)
U T(04)0OB 4

From the above table we can construct other spinorial objects and their counterparts
in the STA formalism. For example, Plebanski [1; p. 991] uses

Qowéy = Uél}tf}' Ud.l;ow' (D.l)

Using the corresponding complex forms from the Intermediary column of the above
table, we find with the help of [3; (2.13)],

BO T(@,)T(A) O C = T(B) O 9,4 O T(C) = 2T(B) O T(C) = 2B O T*(C).
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Thus, we have the correspondence

%%« B O T*(C) > T*(C). (D.2)

We will now identify spinors and spinor space in 3 new way. Let E,, E,, E; be a time-
-like orthonormal basis of the bivector space 2,, as given in [3]. Next, define the projection
P of the complex 3-dim space &, onto the complex 2-dim subspace of bivectors orthogonal
(w.r.t. the complex metric A O B) to the bivector E;. This projection is best defined by

B' = P(B) = (BXE5)xE; = B—B O E,E, (D.3)

and we will denote the subspace of such elements by 2’ = {B’}. The subspace &' is called
the spinor space of the bivector E,, and the elements of 2’ are called spinors.

With respect to the basis {E,}, any null bivector can be uniquely expressed mn
the form

N = A E, +2,E,+ A3 E;, (D.4)
where N2 = A2+ 2+22 = 0. Now define the null bivector cone A by
N = {N:N? =0}.
The Cartan-Whittaker null bivector of the spinor B’ = a,E, +a,E, is defined by
N = 20,0,E, — (2} —a3)E, — (& +a3)IE;. (D.5)

If we choose the null bivector N, = (1+E,)E, as a point ot reference on the null
cone 4", then (D.5) takes the direct, equivalent expression

N = B'NoB. (D.6)

From (D.5) and (D.6) we conclude that any point N on the null cone can be reached
by the reflection of the reference point N, through an appropriate spinor B’ in the
spinor plane #'.

The geometric interpretation of spinors in physics has been the concern of many
authors, for example [2, 5, 15, 16], but in the view of the present author, (D.6) offers
the most direct route to the geometric understanding of the spinor concept, as will be
explored in a forthcoming paper entitled “Geometry of Null Bivectors”. We complete
this sketch of ideas by giving the spinor space a sympletic structure, which is accom-
plished by defining the sympletic matric

A OB =(A%xB)OE;=AO(B xEy), for A,Be?. (D.7)

Let us now determine the most general dual bivector operator L which preserves the form
A' O B, i.e., which satisfies

LAYOLB)=A0OB. (D.8)
By inspection, we see that L is of the form

L(B) = L,L(B’) = L,L,(B'), (polar decomposition) D.9)
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where
Ly(B') = exp (JtE3)B’ = B’ exp (—11E3),
and
L,(B) = AB" O A;A,+1]iB O 4,4,.

We can choose A4, A, to be an orthonormal time-like basis of: spinor space with orienta-
tion satisfying 4, 4,E; = I. The operator L is completely determined by t (2 parameters),
A (2 parameters), and 4, and A4, (2 parameters are needed to fix 4, and 4,), a total of
6 parameters. The equation (D.9) determines a Lorentz transformation in spinor space.

We give the following table summarizing the relationship between (usual) spinors,
and spinors as we have defined them above.

TABLE III
Spinor \ Complex form STA
| !
* | BOA A
Pa { A'Oey EyxA’
. | Bos p
?a J A'Oop Esx A’

Let ¢*, and ¢" be spinors corresponding to the respective bivectors 4’ and C’. Then the
scalar product of the spinors ¢* and y* corresponds to

¢.y"=3A 0GB OC=340(@@B O0C)=40C. (D.10)

An alternative definition of spinors as elements of a minimal ideal in the Pauli algebra,
as discussed in [4; p. 37), deserves mentioning.
Finally, consider the decomposition of a complex vector Z given by

Z =7 (e3 N egles A eq+Z “(ey A e3)e; A ey (D.11)
By noting that
es A eg = Y(es+ey) A (e3—ep), e A ey =3(e +1ey) A (ey—Tey),
we see that (D.11) is equivalent to expanding Z in terms of the familiar Sach’s leg
{ng = {eo+es, eg—es, e +1ey, e, —Iey},
and its reciprocal
{n} = {F(eo—e3), 3 (eo+e3), —5(e;—Iey), 5 (e, +1er)};
i.e.,

Z=2Z n", (D.12)
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The decomposition (D.11) or (D.12) is equivalent to decomposing Z into its component
spinors determined by the dual spinor planes e; A ¢, and e, A e;.

A complete discussion of spinors and twistors as elements of complex projective
planes will be given in another paper, but the basic ingredients have been set down in the
above considerations. The table below gives the correspondence between spinors with
a dotted and an undotted index, and complex vectors:

TABLE IV

Spinor Complex form STA

e | z-z, z

In reference [4; p. 37], four-component spinors are looked upon as elements of
a minimal ideal in the Dirac algebra, and in [5], spinors are given the geometric inter-
pretation of being an even muitivector. Reference [17] introduces twistor space as a com-
plex 4-dimensional space with a Hermiitian form, but does not identify this space with the
space of complex vectors .
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