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ANOMALOUS DIMENSION AND INFRARED BEHAVIOR
FOR HIGH ENERGY QED

By J. Z. KAMINSKI
Institute of Theoretical Physics, Warsaw University*
( Received December 5, 1979)

The generalization of the Sudakov results for real photons is abtained. It allows one to
calculate the anomalous dimensions for the Coulomb and the electron—electron scattering.
The formulas AE = Eexp (—7(E/m)) for the Coulomb case and AE = 1/5 exp (—n(s/m?))
for the electron—electron case are given. These formulas give anomalous dimensions which
depend on the energy. This dependence, which comes from the Sudakov double logarithmic
behavior of QED, disappears for semi-inclusive scattering. These results can be extended
to other models of QFT like scalar QED or QCD and they partially justify the eikonal
approximation.

1. Introduction

Sudakov has shown [1] that in order to obtain the leading logarithms of the vertex
function (without vacuum polarization diagrams) it is sufficient to consider only the infrared
part of the virtual photon integration. In particular, he has shown that to obtaia the leading
logarithms one can make the substitution

1
e +
i Lo phm 0

i 1
(p— _Zl ki)z_m2 2p Zl k;

where p is the electron momentum on the mass shell and k; are virtual photons momenta.
After such a substitution the leading logarithms are obtained from the integration over
the infrared region of virtual photons momenta. In this paper I shall extend Sudakov’s
results to the real photon integration. As an example I shall consider the Coulomb scattering
in the Born approximation stressing that my results can be extended to other processes
as, for instance, electron—elzctron scattering. I shall consider the scattering with high mo-
mentum transfer. Processes with the scattering angle equal to zero have been considered
elsewhere [2]. In the Coulomb case the situation is complicated. In addition to the electron
propagator, there is also the energy conservation d-function and the Fourier transform
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of the Coulomb potential which depend on the momenta of real photons. My statement
is that to obtain the leading logarithms one can make the substitution (1) and the repla-
cement

MEETED ee-r) "

i=1

I introduce the photon mass 4 as an infrared regulator. Using perturbation theory we
obtain the following asymptotic results tor semi-inclusive Coulomb scattering in the Bomn
approximation [3]

do\* _ (4o V' wiiFHlEj 3
(&5) ‘(m)o[ *Z“Z A0 (1o /'")]' ®
i=1 j=o0

The leading logarithms approximation means that we keep only those powers of In E/m
which are equal to the powers of the coupling constant o, i.e.,

do \* do \* ; ;
<dQ )L = (dQ )0 [1 + Z Fi(6)a'(In E/m)] . (4)
i=1
I shall show that to obtain (4) it is sufficient to integrate over the intrared region of real
photons momenta, i.e.,
w < E. )
The relation
B~ 4 (6)

means that the leading logarithms of B are given by 4.
My statement is true for one real photon [4]. In order to prove it for an arbitrary
number of photons, I have to estimate the integrals

oo J dskl \iE 5(E-E’_ i; (1),—‘*60) E27sp2nti=2)+s -
nl = i ——— - o
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where all k¥ and k; are on the mass shell and
0 <s < 2n+1+2). )

It is shown in the Appendix that only Cy'] gives the leading logarithm and that
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2. Purely inelastic diagrams

In previous papers [3, 4] 1 have studied the semi-inclusive scattering at high energy
in QED. I mentioned there that these processes are more suitable to study the high energy
scattering than those with a very small resolution energy because their cross sections are
relativistically invariant (not for the Coulomb case where one deals with external fields)
and positive in every order of perturbation theory. I have conjectured there that if we want

Fig. 1

to calculate the leading logarithms we may treat the real photons as the soft ones. At the
beginning 1 prov: this for purely inelastic processes. Let me take as an example the diagram
in Fig. 1. The diagramatic representations of the transition probabilities are drawn according
to rules given in [5, 6]. This diagram has the following contribution to the transition pro-

bability
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where the summation is over all the possible permutations ot the set {1, 2, ..., n}. We have
the estimate

D, < Z,E*™*4, ¢5))
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with
J\ Z 3kl I_', 5(E E - lzz w,-) 1
n ) 2_ 2
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and Z, is an n-dependent number.
Let me divide the integration region in (10) on R and R. R is such a region where for

every electron propagator the following expansion

< 2
1 1 (i=21 kl)
_ . BT L (13)
2 Y ke (Y k) 20 Yk 2P Y ks
i=1 i=1 i=1

< { < n). Therefore, we have

is allowed (for instance, for w; < E, 1
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P, =2p Y k, (16)
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Kam = (L kew)’ (17
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I have the following estimate

6(E ~E—~

dski 1 Z ( )
i k) ] [ Qr'k, k;) (2pky)
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) (Z 2wk 2pki) '
i=1 i=1

In a similar manner one can estimate d7, d. etc. In order to obtain (17) I have used the
formulas (see the Appendix)

ldy| <

(19)

(3 Ky | LI
] _;=1m < 2m? Z 3 "k , 20)
Izp'zkiﬁ i=1 P
i=1
and [1]
1 1
z 112 @1)
A1) a1yt 8g2) - (@oy+ -or +8om) L 1 a
Theretore, from (7) and (9)
dy ~ dy, (22)

since in d,, d7 and so on, there are integrals such as C3} withn >1or /> 1.
Using formula

b b
Jf0g(x)dx < f(%) § g(x)dx, (23)

where a < x <C b and f(x), g(x) are bounded, monotonic and continuous functions of x,
and assuming that at least one w; does not satisfy condition (5), I have from (9) that

1
dy < — E™"73F%0, In E/A) (In E/m)"™ 1. (24)
n:

This means that all w; have to fulfil (5).

R is such a region where, for at least one term, say (( Y. k)*+2p' Y. k;)~!, the expan-
i=1 i=1

sion (13) is not allowed. This means that
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Therefore, there is at least one k;, i <j < m, that condition (5) is not fulfilled. In the
region R I have the following convergent expansion:

z 2 =z -1 [ 2p i k;
(o3 =) e
(X k?

) i (Z k;)?
and from (25)

— “wE~—ﬂ_f‘~ ~~~~~ 27
UH | iy <2pk)(2pk) @

Since the integration over w; is not from zero to w, < E, therefore |dy| is estimated in the
same manner as in Eq. (24). In a similar way oae can study d., d? and so on, and obtain
the same result. This means that the integration over R does not contribute to the leading
logarithms, which ends the proof of my statement for diagrams with only real photons.
Of course, other types of diagrams with the only real photons may be treated similarly.

3. Diagrams with virtual photons

The fact that one can obtain the leading logarithms treating the real photons as soft
ones also means that in a diagram which gives a contribution to the leading logarithms
a real photon has to be emitted by the fermion on the mass shell. For instance, the diagram

S C

Fig. 2 Fig. 3

of Fig. 2 is not leading. Let me take as an example the diagram of Fig. 3. Its contribution
to the full transition probability is

d%a, 5E E ,
j‘ ( k)4) r ()’0(1’ +m)y*
2 +E+m —k+
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where I',(p, p-k, k) is the 1enormalized vertex function. The renormalization condition
shows that

lim I,(p, p=k, k) = 7,0 (29)

The renormalized vertex function fulfils the renormalization group equation [7, 8]

o d ) i) ) .0 5
(K Ew —ﬁ(a)da—a (1 +ym(e)m - +( +h(d))/»5)~' + (d))

x I' (kEq, kg, n, ny, o, m, A, ) = 0, (O

where n and 7, are momenta directions of electron and photon, respectively. k is the scaling
parameter and E = xE,, ® = kw,, E; and w, are arbitrary parameters of the mass dimen-
sion. Moreover, from perturbation theory we have

B() b,
Pm() — i o 41 ) (31)
() =1 hy
(o) d;

From these equations it follows that asymptotically for a large x, the vertex function has
the form of (at the end we put k = Eym)

r(p,p~kk)=y,+ Y Y 4% (n, n, o/E, In E/A)a(In E/m)". (32)
I=1 ngl!

Since we use the photon mass A as the iafrared regulator, A;‘,", as functions of w, are boun-
ded. Moreover, from the renormalization condition (23) it follows that

A¥'(#, 1y, 0, In EJA) = 0. (33)

From the explicit calculations 1 have

]AS'I(—';, —;lk’ (D/E, In E/A)l < % 22'1(-;!’ ik’ In E/}“)’ (34)
1,12 = Sl tE Vo

A2, oy 0fE, In E/D) < 2 A4, Ty In EJA), (33)
u E s

and 4p'!, 4;' are bounded functions of #, n,. From the renormalization group equation
(30) it follows that for all functions 4} conditions like (34) and (35) are fulfilled. Therefore,
from (7) I obtain that only the bare vertex 7, comtributes to the leading terms. In a similar
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way one can show that the diagrams of Figs. 4 and 5 are not leading in higher orders too.
The conclusion is that only diagrams shown in Fig. 6 contribute to the leading logarithms
of the Coulomb scattering in the Bora approximation.

Fig. 4 Fig. 5

Fig. 6

4. Conclusions and discussion

I have broadened Sudakov’s results to the case of real photons for the Coulomb
scattering. In a similar manner one can do it for other processes like the electron—electron
or electron—positon scattering.

My results are also valid for piocesses where the total energy of final photons is
restricted by the resolution energy of detectors used in the experiment. Let me assume
that the resolution energy for high energy experiments depends on the energy of particles.
Therefore, for the high enetgy Coulomb scattering

AE = E exp (—n(E/m)), (36)
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where n(E/m) > 0 and can be, for instance, a constant function. This formula, for suitably
large 7, also contains the condition AE < m. With this choice of the resolution energy the
cross section for the Coulomb scattering is asymptotically equal to [3]

as do \*®
() - wlzommen].

/0

and the anomalous dimension is equal to
o
Yo, Elm) = — P (5~—4n(E[m))+0(«?). (38)

One can ask what is the 4E from the relativistic point of view. I am not able to answer
that, but I can assume that AE is a Lorentz scalar. For the electron—electron scattering

AE = 5 exp (—n(sm?)), (39

where /s is the total energy of the initial electrons in the centre of mass system. The cross
section is equal to [3]

d as d as 8
(&] - olEowmn]
with the anomalous dimension
2 160 2 2
e sim*) = — — (1=n(s/m*)+0(e?). D)

The results obtained in this paper are correct for other models of QFT-like scalar
QED or QCD. Moreover, these results partially justify the eikonal approximation. This
approximation consists in the recipe

(P*+2p 3 kit (Y k) —mH) ™ - (P*+2p ¥, ki—m*) L (42)
i=1 i=1 i=1
We see that this recipe is justified in the leading logarithm approximation.
It is known [9] that the generalized optical theorem (Mueller’s theorem) interconnects

real and virtual photons. Therefore, one can assume that my statement for real photons
can be obtained through the Mueller theorem from the Sudakov results. But it should be

IaN

Fig. 7
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done cerefully. Let me consider the diagrams of Fig. 7. Cutting the virtual line diagrams
7b and 7c can be obtained from 7a. This means that from the leading diagram it is possible
to obtain, through the cutting procedure, a non-leading one. Moreover, my results are more
general than those which could be obtained from the Mucller theorem, because they are
valid also for processes with the resolution energy AE < E-—m, whereas the Mueller
theorem treats only the semi-inclusive scattering.

1 would like to thank Professor I. Bialynicki-Birula for critical discussions.
APPENDIX
In this Appendix I show that only C{*] is leading. Using the formula

1 I'a+p) 1 x* 1 —-x)ft
ab* =~ T@r@) | “* (ra+(1=x)by*?
4

(A1)

and performing the integration over photon angles I obtain

e 2nl(n+1+3)

o 2=Sr 2(1+n)~3+s
= rIOr@ = E™

1 /
% j' |p/ldEr -!) dXddeB(E—EI'- ‘Zl a)i—z(E—m))zz(””_s”x"l(l—x)"_ly"“"l(l—y):’

2o+ 0+21g)" 13— (2g0 + Q- 2Igh" '3

0 G 4,04 0P 4D

where
Q= (l-NG-p'= ¥k +1 (A3)
4 = (E=m)z((l=y=0p+ (=0 +(1=) ¥, k) )

To calculate these integrals asymptotically in the limit £ = E/m — o0 it is convenient to
make the Mellin transformation of C. We have

CO = cj? k" C(x)dxk. (AS)
0

The behavior of C({) at ¢ ~ 0 is related to the behavior of C(x) for ¥ — 00. Specifically,
the term { ™" in C(¢), n > 0, corresponds to the term [(r—1)!]-! x~!(In )"~ * in C(x). There-
fore obtaining the asymptotic form of C(x) for high energies is equivalent to obtaining all
the pole terms in C({) at { = 0 [2]. The pole terms of C({) come from the integration over
the parameters x, y and z [2]. The integration over y is divergent if we put 4 = 0. Therefore,
from the y integration we obtain In E/A. To obtain the second order pole we must have
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two Feynman parameters. This pole we obtain if the integration in (A2) is over the regions
xx20,zx0o0orx~1l,zxO0and n=171=1.
To obtain (20) let me assume that w; = maximum {m;}, therefore,

1 1 (A6)
2" Y K 2p'k;
i=1
and
l(:;1 k)| < 2m’of. (A7)
This means that
k)? m
PR B e
- < 2m 2k <2m R (A8)
2p’ k; i = i
I p i=zl I 1
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