Vol. B11 (1980) ACTA PHYSICA POLONICA No 8

COHERENT PRODUCTION ON NUCLEI AND MEASUREMENTS
OF TOTAL CROSS SECTIONS FOR UNSTABLE PARTICLES

By W. Czyz

Institute of Nuclear Physics, Cracow*

AND M. ZIBLINSKI
Institute of Computer Science, Jagellonian University, Cracow**
( Received March 3, 1980)

The Kolbig-Margclis formula is fitted to some explicitly nonperturbative models
of diffractive production. It is shown that, in spite of the fact that the standard procedure
of fitting the integrated cross sections may give acceptable fits, thus obtained “cross sections
of unstable particles”, o2, grossly disagree with the “true” cross sections known exactly
from the models.

1. Introduction

Therz have been many “measurements” of the total cross sections of unstable particles
from their diffractive production on nuclear targets [1-4]. It has also been clearly realized
that these “measurements’” are model dependent because the numerical characteristics
of attenuations of produced uastable particles have been determined from an optical
model analysis of diffractive production {5].

This approach is reasonably reliable in the case of e.g. photoproduction of vector
mesons on nuclei [6, 7] because of the perturbative nature of such processes. The situation
however is not at all clear when the incident particles are hadrons, as it is the case in experi-
ments of Refs [1-4]. There is even one well known example of hadronic diffraction on
nuclei where the model of Ref. [5] gives wrong cross section for an unstable particle: This
is K; — K regeneration. The explanation is also well known: The relevant attenuations
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are not the attenuations of K; and K but, rather, of K° = (K. +Kg) and
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— 1 :
K°® = \/—i (K —Kjy). This means that this process, in spite of being weak (in the sense that,

on one nucleon, oy, ks < 0k, roTar), c€annot be treated perturbatively but, rather, in
a nonperturbative way proposed long time ago in Ref. [8].

The nature of diffractive processes in the case of incident pions or protons [1-4]
is indeed an open problem [12]. The existing analyses [13] treat these processes perturba-
tively, following [5], and obtain cross sections of unstable objects, a,, strongly vaiying
from channel to channel. Thus a relevant question arises what happens when the standard
formulae of [5] are forced to fit an explicitly nonperturbative mechanism of Ref. [8].
What shall we get then for cross sections of unstable particles? Shall we be able to get
reasonably good fits to the optical model formulae o>f Ref. [5]? Will thus obtained cross
sections of unstable particles have physical meaning they are supposed to have?

Such questions were already asked in Refs [9, 10]. This paper employs a well defined
and soluble nonperturbative model of diffractive excitations to test the physical meaning
of the standard parametrisations of the experimental data of diffractive dissociation on
nuclear targets.

2. The model

The model we employ is a specific nonperturbative realisation of the scheme of Ref. [8].
We reject the assumption [1-5] that diffractive production occurs on one nucleon at a de-
finite point inside of the target nucleus, and that the attenuations inside the nucleus are
merely the attenuations of the incident particle and of the produced physical object de-
tected outside of the nucleus. Rather, the propagation inside of the target nucleus consists
of a multitude of diffractive transitions between various possible states and the relevant
attenuations are not of the physical states but of the “eigenstates of diffraction”, which
states diagonalize the diffractive part of the S-matrix (the “bare particle” states of Ref. [8]).
The unitary transformation between the physical states |1, [2) ... [k) ... and the “eigen-
states of diffraction™ |y,>, [w,) ... [y ...

> = 31K <kl = T Uulk, Uy = <Kkl (2.1)

diagonalizes the matrix of all possible amplitudes of diffractive transitions in hadron-
-nucleon collisions y = {y}

U yU=| 4, |. (2.2
The operator of diffractive transitions in hadron-nucleon collisions is

R ‘
T(B) = =21 [ A(B) <l T(B) l9s> = 2u(B) |97 (2.3)
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where N is the number of the “‘eigenstates of diffraction” and B is the impact parameter.
2,(B) we call the profile of the n-th eigenstate of diffraction.

The operator of diffractive transitions in hadron—nucleus collisions we define as
follows '

N
TA(B) = ;1 Iwn>rn(B) <Wn|a
I(B) = 1-[1~ | d*si,(B—s)D(s)]", 2.4

where D(s) = | dzo(s, z), ¢ — single nucleon density in the target nucleus, 4 — atomic
-

number. Thus the transition amplitude between two physical states is

KkITy(B) Ip> = Y <kly> [1—(1~ 2, * DY ] <wilp>

n

= z U;”I[I —(1—']&1 * D)A]Uuk’ (2.5)

where A, * D denotes the convolution (see Eq. (2.4)).
From (2.3), (2.4) and (2.5) follow the well known formulae for the total and the inclu-
sive diffraction cross sections

or = 2[&B 3 <ily>4(B) Cwill> = 2 [ °BAB)

N I .
op = Jd’B Zl | ;1 Kl padAn(B) <, 131% = [ d*B(2*(B)—A(B)") (2.6)

KF

for hadron-nucleon interactions, and
oW =2f d*BI'(B),
of" = [ d*B(T*(B)~T(B)") @7

for hadron-nucleus interactions. 1,, I' etc. aie the averages taken over all eigenstates of
diffraction with probabilities of their coupling to the incident particle state: P, = |{1|y,>|>.

Two qualitative features of a nonperturbative description, with many eigenstates of
diffraction at work, can at this point be emphasized. The first is that the orthogonality
condition satisfied by

(U™ Uy = X <Kly,) <lpd = dip (2-8)

implies that, in general, Uy, = <k|y,> fluctuate as one varies : with fixed k.

The second is that 4; must vary as one vari:s i, to have a non Zero inclusive diffractive
production on one nucleon (compare Eq. (2.6)). In fact, in the numerical examples given
below, one has to have as large as possible fluctuations of 2’s in order to account for the
observed diffractive production on one nucleon. These fluctuations of Uy and 4; result,
in general, in a somewhat irregular dependence of the exclusive diffractive nuclear cross
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sections on both, the nuclear density (strictly speaking on the variable £ = 4D, see below)
and on the number k which labels produced physical states, even if the underlying attenua-
tions of the physical states do not depend on k& at all (see Fig. 2). This should be contrasted
with the standard description [1-5] of such processes which would give, for all exclusive
diffractive production channels, the same A-dependences of the cross sections — if it
reproduced correctly the true attenuations of produced states we assumed in our numerical
examples givea below.

Thus if nature realizes non perturbative mechanisms of diffractive production and
we try to fit them by the standard [1-5] perturbative parametrisations, we should expect
a mismatch. Our quantitative analysis shows below that this mismatch results in fluctua-
tions of the “total cross sections of uastable particles”, ¢,, which reflect this mismatch
rather than very different attenuations of physical objects diffractively produced: In the
next section we discuss this point in more details.

3. Determination of the cross sections of unstable particles

We shall limit our discussion to very high energies where the longitudinal momentum
traasfers and the invariant masses of the diffractively produced objects can be neglected.
Although this approximation excludes any quantitative predictions and comparisons
with available experimental results, it may be good enough for a qualitative analysis.
In fact, this is our conj:cture that one can extend our qualitative conclusions to energies
as low as several GeV, where large body of the available data comes from.

We shall discuss the formulae for 4 > 1 (in the optical limit), but there is no problem
in doing everything with 4 small. The standard [1-5] parametrisation of the cross sec-
tions in the impact parameter representation for the incident hadron, with the nucleon
cross section ¢, diffractively producing unstable particle (defined e.g. by its mass and
quantum numbers) with the nucleon cross section ¢,, is

2

(e—-i-anD(B) _ e—éa;AD(B)

) 2
o4(0.0,;B) =c (e ¥~ %) | (3.1)

0'1_0'2 01—0'2

where c¢ is an adjustable constant and ¢ = AD(B).
On the other hand in our nonperturbative calculations the cross section for producing
the k-th state from the incident hadron (labelled 1 # k) is (from (2.5))

64(01, k; B) = | Y, Cklyp, e M PBy |15 = | Y Cklpde Py D% (3.2)

In (3.1) and (3.2), for the sake of simplicity, we neglected the spatial extensions of ail
the objects propagating through the nucleus but this can be correctzd, if necessary, by
using convolutions instead of products (6D - ¢ * D, A,D — A, * D, compare (2.4) and
the discussion of the finite size effects of 1,(B) at the end of this Section).

In order to see how the standard procedure [1-5] works, we calculated explicitly
(3.2) for the two specific models described in the Appendix (Case I, Case 11, see also Ref.



619

{1]) and then fitted (3.1) to these curves in a similar manner as one fits the experimental
data: (dBo (0,0,; B) is fitted to {d>Bo ((¢,, k; B) by adjusting o, and c. Since we know
the cross sections for all states of our model, we can see whether the standard procedure
gives o,’s which are realistically close to their true values.

Figs 2,3 and Table I present some examples of the fits of (3.1) to the Case I, where
a,b',c',d are the transition amplitudes for hadron-nucleon diffractive processes: ' —
elastic, b’ — excitation of the “first” excited state, ¢’ — of the “second”, d’ — of the
“third” (the prime means integration over B, ¢.g. @' = [d*Ba(B)). Thus on one nucleon
only three states can be excited, all the others can be reached only through some inter-
mediate states e.g. the “sixth” state can be reached by first exciting the “third” from which
the “‘sixth” can be reached. The complete transition matrix, y, between the physical
states is given in the Appendix (AS). This transition matrix is diagonalised by

2 . mkl
Kkly) = Uy = [ ———si

n—-, 3.3)
N+1 N+1

where N is the number of diffractive states (the rank of the transition matrix). The eigen-
values of y come out to be

nn

Ay = a—c+2(b—2d) cos — - +4c cos® +8d cos® —
N+1 N+1 N+1

(3.4)

One may easily construct many similar and more complex models but for qualitative
discussion Case I is quite adequate as an illustration of a few relevant points.

PALCY:Y

€ (fm?)
Fig. 1. The differential Kolbig-Margolis (KM) cross-sections 04(g,0,, &) for o; = 40 mb and different
values of the parameter o, (60, 40, 20, 0, —20 mb) which labels the curves. Fach curve is normalized to
1 at its maximum
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In Fig. 1 we show a typical sequence of o ,(0,0,; &) for fixed o,, and varying o,.
We can see that the curves vary systematically with o, : for o, > 0 all of them have one
maximum which shifts with decreasing o, towards larger &’s. We also continue to g, < 0
curves which are monotonically increasing everywhere.

In Fig. 2 we show a sequence of o (0, k; &) for fixed o, and various excitations k
(solid lines). All these curves cortespond to similar attenuations of the produced physical
states (o, = 48 mb for k = 2—9). The amplitudes a, b, ¢, d were chosen to give a reason-
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Fig. 2. An example of the model results for differential diffractive production cross-sections, ¢ 4(¢,, k; &),
for the states & = 2—9 (solid lines). The curves result from Case I with the amplitudes 2’ = 2 fm?, b’ = ¢’
=d = 0.4fm? and N = 10 (see the text for more details). Each model curve is compared with the
corresponding KM cross-section o 4(0,0,, &) (dashed lines) with o, fitted to the integrated cross-sections,
see Fig. 3 (the values of o, are given in the figure). Also shown are the KM curves corresponding to the
true total nucleon cross-section of each state (o2 = 48 mb, dotted lines). The normalization is fixed by
the model “data” for the integrated cross-sections at 4 = 112, similarly as in Fig. 3. Below the figure the
values of & corresponding to central densities of some nuclei are marked

ably large diffraction on one nucleon and the same o, as in Fig. 1. These curves are
compared with ¢,(0,0,; &) both for o, obtained from the standard fit (dashed lines;
the values of &, are given in the figure), and for the true value of attenuation (dotted lines)
which is 6, = 48 mb in all cases.
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A comparison of the curves of Fig. 2 clearly shows these important characteristics
of our nonperturbative production mechanism: The character of the wave function of
the produced object, {k|yp,>, is very essential for the shape of o, (0}, k; &) .The oscilla-
tions of <{kly,> and of A, with n (compare (3.3) and (3.4)) can cause some dramatic changes
in shapes of the curves with neighbouring k’s. As we can see more than one maximum is
possible. Thus the differential characteristics of ¢ 4(6,0,; &) and o 4(g4, k; ) can be very
different.

However, the standard fitting procedure is done [1-4] with the integrated cross sections
through their dependence on A. Fig. 3 shows that such fits can look quite respectable!
Yet they give wrong o,’s! Not only that o, may come out very different from the “true”

0.3

0.2

0.1
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Fig. 3. A-dependences of the total production cross-sections for different states, k£ = 2+9, resulting

from the model (solid lines; the parameters are the same as in Fig. 2), and the corresponding Kolbig-Mar-

golis fits (dashed lines) with normalization fixed by the model “data” at 4 = 112. To set a scale, 10%
“error” bars of the model “data” are also shown

-cross sections, they may also become negative! This collapse of the Ko&lbig-Margolis
(K~M) description has its origin in the oscillations of the wave functions <{k|y,>. They
often lead to misfits in the differential behaviour of ¢ ,(0,0,; &) and o (o,, k; &). But
not always; e.g. an excellent fit of the differential shapes in the case & = 3 of Fig. 2 gives
nevertheless wrong ¢, (= 78 mb) because of these oscillations. On the other hand in the
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case of k = 8 we have a clear case of a gross misfit of the differential shapes and again
wrong 6, (= 0).

The remnants of this overall mismatch of perturbative and nonperturbative descrip-
tions which one still sees in the integral characteristics of diffractive production are strong
fluctuations of the fitted o,.

Now we shall briefly discuss a limiting case where the K~M description has a chance
of being acceptable. First we have to comment on the role of the finite spatial extensions
of the diffractive eigenstates which is reflected in the impact parameter dependences of
the eigenvalues 1,(B). So far we have used the approximation that 1,(B) are much narrower
than D(B), thus the convolution of Eq. (2.4) can be approximated as follows

§ d*si(B—5)D(s) ~ ,,D(B), %(B) = 4,f(B), |d*Bf(B)=1. (3.5
At first one may think that introducing strong ‘“‘spatial fluctuations®, i.e. strong variations
of f,(B) with n, one can achieve a nonperturbative realizations of the K-M parametrisation.
Indeed, one may accept all A, approximately equal and generate large enough op for
hadron—nucleon diffractive excitations by drastically changing f,(B) with n:

op = 2’ § d*B(f(B)—f(B)"). (3.6)

Using the approximatior. (3.5) and the approximate equality of 1,’s one obtaias (3.1)
from (3.2), hence one recovers the K-M formula, for the excited states which have suffi-
ciently large probabilities of being excited in one step. Such are the cases k = 2, 3, 4 of the
third, fifth and seventh rows of Table I. Note that in all other cases, even when fluctua-
tions of A, are small, one does not obtain correct K-M fits.

One should remember, however, that such mechanism of elementary diffraction
leads to forward dips in @/ differential exclusive cross sections which fact disagrees with
experiment. Indeed, from (2.3) we get the following amplitude for the exclusive excitation
I - k in the high energy limit

Fu(q) = %J d’Be’® z <klpn>2a(B) {yall>

ip iq- ’
= o szBe i E Akl pal151(B), GB.7D
where q is the momentum transfer and p is the incident momentum. As A Ay, we get

from (3.5) and the completeaess relation Y. |,y {y,| = 1, the following forward ampli-

tudes
ip

Fkl(O) = Ec_

at ip T
Z Anlklyn) <yl = E’l kil =0, k#1 (3.8)
Thus for all k¥ # 1 we have dips in the forward direction which are not observed. One

should also point out that this special case leads to disappearance of the inclastic shadowing
contribution to the total cross section which again contradicts the experiments which
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clearly established its existence [14, 15]. So, the case of diffractive production generated
exclusively from “spatial fluctuations™ seems to be rather unrealistic.

This does not mean that the “spatial fluctuations” can be neglected altogether. One
can even argue that they do contribute appreciably to diffractive production [16]. But
even in this case it turns out that they cannot save the K-M parametrisation [9]. Although
the role of “spatial fluctuations” as one of the mechanisms contributing to diffractive
production deserves further analysis we shall not discuss it here. Let us only state that
our numerical results do contain some contributions trom “spatial fluctuations” because
they are present in our 4,(B) (see Appendix).

Table 1 gives a sample of fits of (3.1) to Case I (see Appendix) with various elemeantary
diffractive amplitudes a, b, ¢, d and to Case 11 (see Appendix). We shall not discuss Case 11
in any details because, though it gives larger diffractive production on one nucleon than
Case 1, it leads to very similar conclusions. If anything, the overall mismatch of Case I
with perturbative description is still worse than of Case 1.

Although in Table I we do have B-dependence of 1,(B) which comes from the con-
struction ot the amplitudes @, b, ¢, d (see Appendix) and which is reflected in the single
diffraction on one nucleon (dsp), but in calculating the nuclear cross sections we accepted
the approximation (3.5). From Table L we can see that small o, does not lead, in general,
to a K-M description: Even in the cases of negligible diffractive production on one nucleon
we get for high enough excitations negative ¢,. The nonperturbative character of our model
leads to an overall mismatch which does not disappear in the limit o5, — 0.

We already stressed the point that one should rather study the differential diffractive
cross sections than the integral. This differential behaviour can be — to some extent —
extracted from the tollowing procedure. Underneath Fig. 2 we marked regions of ¢ occu-
pied by various nuclei. We can see that th: result of the fit which gives ¢, depends oa the
choice of nuclei: For two different sets of nuclei the fitting procedure may pair diffecently
6 (0,053 &) and o4(0y, k; £). Thus the procedure of using two different sets of 4 is more
sensitive to the differential characteristics of the cross sections than the standard one.
We tried it on our model. In the case k = 9 we do get spectacular fluctuations of ¢, around
the fit which uses all A’s: For the following three groups of nuclei (27, 56, 64, 112), (64
112, 184, 207, 238), (27, 64, 112, 207, 238) we get for g,, respectively, 58 mb, —6 mb and
0 mb. For the other cases the fluctuations are much smaller.

The moral of this exercise is that it doing similar things with experimental data we
get large fluctuations of ¢,, it will be a signal of nonperturbative mechanism at work.
Unfortunately, lack of large fluctuations cannot be interpreted as a proof of a perturba-
tive nature of the process investigated.

4. Summary and conclusions

By solving completely some nonperturbative models of diffractive production and
comparing the results with the standard parametrisation of diffractive production on
nuclei [1-5] we have shown that the so called Kolbig-Margolis formula (K-M formula)
gives wrong cross sections for the unstable diffractively produced objects.
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This might be expected because the K-M formula is perturbative in its nature, except
that even in the case of weak diffraction on one aucleon, in which case the K-M formula
has a chance to work, the standard fitting procedure with K-M parametrization still
gives wrong ¢,’s for many channels of production.

1t was also shown that when one applies this standard procedure to fit a nonperturba-
tive diffraction, the fits of the integrated cross sections look as respectable as the fits in
Refs [1-4]. There remains however a clear signal of an overall mismatch of perturbative
vs nonperturbative descriptions even in the integrated cross sections. The K-M formula
produces strong fluctuations, from channel to chanael, ot the cross s:zctions of unstable
particles: a frequent occurrence of “anomalously” small or large o,’s. This feature is very
much similar to what one observes in experiment.

The differential characteristics of the production cross sections may perhaps be seen
from experimental results when one fits o, with at l:ast two different groups of nuclei.
The accuracy of the existing data is probably still too poor to do that.

It is suggested that one should make an effort to study the measured differential
cross sections avoiding the o,’s determined from the integrated cross sections.

The authors thank Professor A. Bialas for discussion and encouragement.

APPENDIX

We adopt two forms of y, called Case I and Case 11, with which we study diffraction
on nuclei.

Case T

y =9y E Lm0 = . (A1)

The unitary matrix

2 nkl
k =U;, = |——sin —— A2
klyp 1k N+1 N+1 (A2)
diagonalizes each y®:
W0

U-1yOy = A9 ), A9 = g428 ) A3
v 0 j = et 2ficos gr (A3)

Thus U also diagonalizes y

Ay O m

UhU =U"HPuu "y Pu ... = 4, |, 4;= ]9 (Ad)

0 i=1
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y of Eq. (Al) depends on m+1 independent parameters which are algebraic functions
of 2m original parameters a;, f;;i = 1, ..., m. This way one can construct y matrices
which have an ample degree of complexity built in and are diagonalized by U. We study
diffraction on nuclei using y with at most four non zero functions of the impact parameter
B: a(B), b(B), c(B), d(B), but cnc could easily construct more complicated cases. From
the product of three y we get

(a, b, c d, 0, ]
b, a+c, b+d, c d, 0,
¢, b+d, a+e, b+d, o d, 0,

"= 14, ¢ b+d, atc, b+d, ¢ d, 0, (A3)
0, d, c b+d, a+te, b+d, ¢, d, 0,
The transformation U brings it to a diagonal form with the following eigenvalues
n 2 M s
; = a—c¢+2(b—2d) cos +4c cos +8d cos . A6
’ 2 ) N+1 1 N+1 (A6)

The matrix (AS) is a model of diffractive processes in hadron-nucleoa collisions with
four amplitudes. Having chosen a, b, ¢, d, and the number of diffractive channels N,
one can study various relations between diffraction on nucleons and nuclei. Notz that the
transformation (A2) does not depend on the aumerical values of the matrix y which it
diagonalizes. In the expansion (2.1) no one state dominates, very much like in K; — Kj
regeneration. In fact, our model is a direct generalization of K, — Ky regeneration to
many degrees of freedom. When we restrict (2.1) to just two pairs of states [y,), |y,
and |13, 12> and employ (A2) we get |y, =\—;§-(I1>+12>) and |yp) = :/13 (1> —=12),
which relations are the same as between |[K°), [K°) and [K;), |K).

The four functions a(B), b(B), ¢(B), d(B) are not entirely arbitrary because they must
satisfy the conditions which guarantee that they represent physically acceptable description
of diffractive processes in hadron-nucleon interactions. These conditions are:

(i) The total cross section should be determined by a(B)

or = 2 | d*Ba(B), (A7)
which formula follows from (2.6), (A2) and (A6).

(i) The total diffractive dissociation cross section of the incident particles which we
also get from (2.6), (A2) and (A6)

asp = { d’B(1b(B)I*+|c(B)|*+1d(B)I*), (A8)
should be close to the known experimental estimates. Also the unitarity bound

oso(B) < 7 o1(B)—og.(B) - [|6(B)|*+[c(B)|*+1d(B)|*] < a(B)~—la(B)I* (A9)
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should not be violated. This is guaranteed by (iii). Note that in the coherent nuclear proces-
ses we are considering in this paper we are dealing only with single diffraction and we
neglect double diffraction altogether.

(iii) The profiles of the eigenstates of diffraction should be within the limits

0<A(B) <1 (A10)

of complete transparency and complete absorption. We use purely absorptive amplitudes,
hence 4;’s are real.

The following example clarifies our coastruction of the amplitudes a(B), b(B), ¢(B),
d(B). Only one of these amplitudes is determined directly from experimental data. For
instance, the forward elastic proton-proton amplitude at high energies can be simply para-
metrized

a(B) = 0.75 exp (— B2 r?) (AlD)

with r? determined from oy = 40 mb using (A7). The other amplitudes are rather weakly
restricted by the size of o, and (if), (iii). To simplify matters we consider the case when
these amplitudes contribute to og, with comparable strengths. So, let us take

|6(B)| = |e(B)| = |d(B)|. (A12)

Then the problem is reduced to determining one amplitude, say b(B), with four possible
sign choices for ¢(B) and d(B) (b(B) may always be taken positive by convention). In fact,
as we argued above, the B-dependence of the amplitudes is not very critical for our calcula-
tions, hence only the integral ' = [d2Bb(B) should be evaluated with (i)-(iii) satisfied.
It is easy to determine the largest value of 4" allowed by unitarity which corresponds to the
largest possible elementary diffraction. To do this one has to find, at each B, the largest
value of b not violating (#i7), with (A11) and (A12) put into (A6). For instance, for b(B)
= ¢(B) = d(B) one obtains

b (B) ~ (1—a(B))/9, for B 5 0.96fm
T a(B)f3, for B = 0.96fm

which gives &’ = 0.4fm?, and 055" = 3[d?B|b,,.(B)|?> ~ 0.6 mb. For all cases of our

model ogp” are significantly smaller than the experimental estimates ¢SF = 2.5—3.5 mb.
The same procedure can be also carried out tor any given ratio of b(B), c¢(B) and d(B).
Case 11

In the Case I it is difficult to have large agp. The following construction provides
us with a possibility of obtaining larger elementary diffraction (o5p). We assume 1,(B)
with large enough fluctuations to produce oy and the desired ogp and then use the same
U, as in Case I. The transition matrix is in this case

Vhm = Ulgléln’annm‘ (A13)
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The largest diffraction saturating (A9) is obtained when 1,(B) = 1 for some #n, and is
zero for the others. To control the size of diffraction we may take, for instance,

hs 1 < n < nl(B)
n_n2
A(B)={h , ny(B) <n < ny(B) (A14)
nyg—n;
0, N =n > ny(B)

where, at each B, the parameters h, ny, and n, are fitted to reproduce the desired o(B)
and osp(B). N is the number of diffractive eigenstates.

One may construct, of course, many similar models. We doubt whether they would
bring anything qualitatively very different from what one can see from Cases I, 1I.
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Note added in proof. We thank dr N. N. Nikolaev for calling our attention to the paper by
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in diffractive processes on nuclei and its role in the measurements of cross sections of unstable
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