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The binding energy of nuclear matter with excess of neutrons, of spin-up neutrons,
and spin-up protons (characterized by the corresponding parameters, @, = (N—Z)/A4,
@y = (NT—N|)/A, and ap = (Z1—Z|)/A), contains three symmetry energies: the isospin
symmetry energy ¢,, the spin symmetry energy &,, and the spin-isospin'symmetry energy &q;.
Relativistic correction to the non-relativistic Skyrme effective interaction to order 1/c? is
used in order to calculate the relativistic corrections for the binding energy of polarized
nuclear matter. The relativistic corrections to &, ¢, and &4, are found to be —2.06, —2.6
and ~0.89 MeV respectively. The relativistic correction to the compression modulus is
—10.8 MeV.

1. Introduction

The ground-state energy of nuclear matter with an excess of neutrons, spin-up neutrons
and spin-up protons was considered by Dabrowski and Haensel (DH) [1, 2], using the
K-matrix method and applying the Brueckner—-Gammel, the Thaler, the Hamada-Johnston
and the soft-core Reid nucleon-nucleon potentials.

Another approach to study the properties of nuclear matter is by using effective
interactions [3-5]. Dabrowski [4] analyzed the problem of spin instability of nuclear
matter with the Skyrme interaction.

A number of relativistic calculations of nuclear matter can be found in the literature.
One approach which stems from field theory and the relativistic Bethe-Salpeter equation
might be used to describe the scattering of two-fermions. As this equation is very difficult
to solve an approximate equation is given by Blankenbecler and Sugar [6] which is tractable.
Relativistic correction for the volume energy (g,,) of nuclear matter has been calculated
by Brown, Jackson and Kuo [7], and Richards, Haftel and Tabakin [8] using Blankenbecler—
—Sugar equation. In their work a modified potential is refitted to the phase shifts and the
resulting change in the B.E./4 is computed using nonrelativistic Brueckner calculation.
Hence, their results can be considered as a special case of phase-shift equivalent potentials
[9-11] and are not related to the effects considered in the present paper. Other field theoretic
approaches to the study of many-body problems have been attempted by e.g. Chin [12],

(629)



630

Moszkowski and Killman [13], and Boguta and Bodmer {14] which are again irrelevant
to the present work.

In the literature a second approach using relativistic quantum mechanics has been
discussed extensively [15-18]. In this approach one identifies the Hilbert space of a relati-
vistic system as a representation space of the inhomogeneous Lorentz group (IhLG);
then the problem of finding a relativistic theory is equivalent to a search for a set of Hermi-
tian operators satisfying the well known commutation relations for the ThLG [17, 19].

In the present work we attempted to calculate relativistic corrections to the binding
energy, symmetry energies &, and compression modulus by a method [I7, 19] which is
based on the requirement that the Hamiltonian, together with the correction, remain
approximately invariant to the second order in v/c under Lorentz transformation. This
method has been used previously in calculating the relativistic correction for the binding
energy of the triton [20]. In the next section the theory and method of calculation are
presented. Section 3 gives a summary of the results obtained.

2. Theory

Coester, Pieper and Serduke [21] gave previously a detailed discussion of the relativistic
corrections in nuclear matter calculations with realistic N—N potentials. They used
Bruekner theory supplemented by some requirements of relativisitic invariance. In fact
a fully relativistic many-body Hamiltonian within their framework is not available and
also is not needed. For our purpose we shall use first order perturbation theory with a purely
phenomenological effective Skyrme interaction. Equations (4.18) and (4.19) of the above
reference will be enough to calculate corrections for the binding energy of polarized nuclear
matter up to (v/c)? terms [17, 19]. This is justified if all velocities are small compared to
the speed of light and that the interaction satisfies the separability condition as discussed
by Foldy and Krajcik [22]. The Fermi momentum k¢ & 1.36 fm~' is not large in comparison
with the nucleon mass M = 4.8 fm~!; therefore, the motion of nucleons below the Fermi
surface can be described non-relativistically. But when two nucleons collide relativistic
effects on nucleon motion might not be negligible. However, because the total momentum
P involved in the calculation is relatively small (|P| < kg < M), an expansion in terms
of P/M will be justified.

In our calculations the use of a Skyrme type of interaction makes the nuclear matter
calculations quite simple. However, the Skyrme force being an effective two-body interac-
tion, it includes relativistic as well as many-body effects. This does not worry us as we
are lumping our ighorance of the correction for the two-body potential into the phenome-
nological interaction [19, 22]. We shall be interested only in calculating first order correc-
tions of order 1/c2. Other terms of order 1/c? will be ignored for the sake of simplicity
(e.g. those given by Eqgs. (2) and (3) of reference [22]).

The Skyrme interaction [23] can be written as the sum of a two- and three-body terms,
namely

viy = to(L+XP7)(ry — 1)+ % t,(8(ry —r)k” +K25(r1 —r2))

1
+1,k" - 8(ry —r)ktiwg(e,+6,) - k' A 0(ry—rr)k, O
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where k = (V,—V,)/2i acts on the right while ¥’ = —(V,—V,)/2i acts on the left. The
last term represents the two-body spin-orbit force which is irrelevant in nuclear matter.
For the three-body term, we shall use the equivalent two-body term introduced by Dabrow-
ski [4] namely:

v = § t3(1+x3P%) [0+ (Qur+ Qny— 0pt = 0p) T

+ (Qnt - Qm,+ th - Qp;)S.? +(Qnt - Qn;+ th - Qp‘)Y]a (2)

where T3 = (1, +7,)3/2, S5 = (6,+62)3/2 and Y = (1,30,3+7230,3)/2, Cnt> Cnp Opy
and g, represent the densities of neutrons with spin up and down and protons with
spin up and down respectively. Relativistic effects may be included in a straight forward
manner (to second order in v/c) by using the relations [I7).
(?) the relativistic correction to the kinetic energy is given by

hk}

ATR = —
8M3c?

3

hk; is the momentum of particle 7,
(if) the relativistic correction to the two-body interaction can be written in the form:

AVR = — h [K2+ (k- K)(K i)+ (k' K)<K i)] CkIVIE @
AM2c? P !

where V is the two-body potential, k and K are the relative and centre of mass momenta
(in units of h) respectively.

Polarized nuclear matter

The expression of the binding energy of nuclear matter composed of N1(N|) neutrons
with spin-up (down) and Z1(Z]) protons with spin-up (down), with corresponding Fermi
momenta k,(4,) and k,(1,) can be written in the form [4]

E|A = eyt (a7 +8,05 +6,050), ()
where a, is the isospin cxcess parameter, «, is the spin excess parameter, and o, is the
spin-isospin excess parameter,

=(N=-2)/4, o, =(NT+Z1-N|-Z})/4
= (NT+Z|-N|-ZD)/A. 6
Terms higher than quadratic in «, (x = 7, ¢, 67) are neglected in (5). &,,, is the volume
energy.

The expressions of &, are given before by Dabrowski [4], therefore we shall give
here only their relativistic corrections:

_LLEE“"_ 031, —1)~135 —& fzk" ot (7
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and
2y,
gt = 1 ke, Wk ol t,—5t,)
x 6 M3cz 24 Mzcz 5 41 2
+1 (x5+4)/120
h?ki h2k2
+%Wgtoxo -1 + _AP?- 9213 —(9%x3+4)/120 (8)
0 3o
for
T
X =0
o1

Due to the unitarity of the Wigner rotation matrices {21] the spin traces appearnig
in the ground state energy expressions of unpolarized nuclear matter are not affected.
However, in the case of polarized nuclear matter there is no effect of these matrices on
the spin traces performed in a given reference frame in a spin one and/or spin Zero subspaces.
This can be seen from the properties of the Wigner rotation matrices {18, 21, 24]. Also
using Egs. (2.8), (4.18) and (4.19) of Ref. [21] we can see that such partial traces due to
the Wigner matrices are not needed to be calculated in the case of polarized nuclear matter
since they will only add a little contribution comparing with the main terms calculated
according to Eq. (4). One final remark is that in the presence of spin and/or isospin depen-
dent two-body potential, the relativistic (order 1/c2) interaction must generally include
three-body as well as two-body terms in order to have relativistic invariance as well as
separability to the indicated order [22]. We only calculated the two-body terms given by
equation one of the above reference which is identical to those given by references [17]
and [19] and neglecting those corrections given by Egs. (2) and (3) of that reference. In
fact as pointed out by Foldy and Krajcik [22] the theory of relativistic corrections for the
many-body system is still suffering from a substantial degree of arbitrariness and the need
for further physical input is clearly needed before any truly reliable calculations can be
carried out.

3. Results and discussions

The parameters of the Skyrme force are taken to be (SIII force) [25]: £, = —1128.75
MeV fm?3, r; = 395.0 MeV fm?%, ¢, = —95.0 MeV fm?®, ¢; = 14000 MeV fm® and x, = 0.45.
This SIII force leads to saturation of nuclear matter at kg = 1.29 fm~!. The values of
Eyo1s & £, and &, are respectively —15.9, 56, 81 and 69 MeV and their relativistic corrections
are 0.39, —2.06, —2.60, —0.89 MeV.

To our knowledge the relativistic corrections to ¢, have not been previously calculated.
However, it is clear from these calculations that the relativistic corrections are small and
this justifies the use of perturbation theory to calculate these parameters.
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The relativistic correction for the compression modulus is —10.8 MeV. The relativistic
correction to the compression modulus given by Coester et al. [21] changes in magnitude
as well as sign. This shows that the corrections to the compression modulus depend strongly
on the phenomenological potential chosen to describe the N-N iateraction.
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