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The A particle energy in nuclear matter is calculated with separable S state AN and
NN potentials of Puff’s type. By solving the Bethe-Faddeev equations, the three-body
ANN cluster energy Exs is calculated with the repulsive result Epx; ~ 3-4 MeV, which is

less than 109% of the magnitude of the two-body AN cluster energy. The result suggests
a satisfactory convergence of the reaction matrix method of calculating By.

PACS numbers: 21.65.4+f, 21.80.+a

1. Introduction

The binding energy of a A-particle in nuclear matter (NM), B,, is a quantity of consid-
erable interest in the phenomenological analysis of the A-nucleon interactions Vuy
(see, e.g., the review [1]). Most of the existing calculations of B, have used the low-order
Brueckner reaction matrix method (LOB). By LOB, we understand a reaction matrix
calculation within the two-hole-line approximation, and with the “standard choice” of
pure Kinetic single particle (s.p.) energies in the intermediate states in the equation for the
reaction matrix. The LOB is the first step in the hole-line expansion in which energy
diagrams are grouped according to the number of hole-lines, i.e., to the number of inter-
acting particles. In the case of pure NM, it is essential to include three-hole-line dia-
grams, as was demonstrated by the extensive calculations by Day [2]. In the case of B,,
the contribution of the three-hole-line diagrams has never been calculated with a sufficient
accuracy. A rough estimate was given in [3], and an approximate calculation for pure
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attractive AN and NN interactions was presented in [4]. Only the so called rearrangement
term, a special part of the three-body ANN contribution to B,, was considered in [5].

In the present paper, we present a calculation of B,, which includes ali the two- and
three-hole-line diagrams, i.e., two-body AN and three-body ANN correlations. The con-
tribution of the three-hole-line diagrams is expressed in terms of solutions of the Bethe—
Faddeev (BF) equations. To simplify these equations, we assume for both AN and NN
interactions a separable form of Puff’s [6] type. Both interactions are spin-independent,
contain a hard shell repulsion and the Yamaguchi [7] type attraction, and act only in the
S state.

In case of pure NM with separable spin-independent NN interaction, three-body
NNN correlations have been considered by Bhakar and McCarthy [8], whose procedure
is followed in the present work. Modification of the procedure for the problem of B,
has been outlined in [4].

The paper is organized as follows. In the next Section, we outline our formalism of
calculating — B, which consists of three parts: the LOB part E,,, the three-body cluster
energy E,;, and the rearrangement energy Eg. In particular, we write the BF equations
for determining E, ;. In Section 3, the formalism is applied to separable S state interactions
which introduce drastic simplifications, in particular in calculating E,,. The two-body
NN and AN interactions used in our calculations are described in Section 5. Our results
are presented and discussed in Section 6. Our notation and kinematical relations are ex-
plained in Appendix A, and expressions for two-body ¢ matrices in case of separable two-
-body interactions are given in Appendix B.

2. Formalism

2.1. General scheme
The binding energy B, is defined by

—B, = E(A+NM)—E(NM) = E, +Eg, @1

where E(NM) and E(A+NM) are the ground state energies of NM and of the A+NM
system. We calculate E(A+NM) and E(NM) with the reaction matrix method and re-
strict ourselves to two- and three-hole-line diagrams, i.e., to contributions from interactions
between two (AN and NN) and three (ANN and NNN) particles. Contributions to
E(A+NM), which involve only nucleons, cancel the corresponding contributions to
E(NM), and we are left with only those contributions to E(A+NM), denoted by E,,
which involve the A particle. However, this cancellation is not complete because the NN
reaction matrices in pure NM and in the A+NM system differ slightly. This difference
produces the rearrangement energy Ey [5].
With the help of the three-particle ANN reaction matrix I’ we may write

<kg

E,= % Z (P1P2P3IT(16—4Py5) |p1p2P3)s 2.2)

Pnps
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where particles 1, 3 are nucleons, and particle 2 is the A hyperon, P, is the exchange
operator of the spatial coordinates of the two nucleons, kg is the Fermi momentum, and
p; is the momentum of the i-th particle. Obviously, we have p, = 0. We assume that all
interactions are spin- and isospin-independent. In this case, summation over the nucleon
spin- and isospin-states in the direct and exchange term leads to the factors 16 and 4 re-
spectively.
We decompose 7' into
T= Y TY (2.3)
i,j<1,2,3

where T¥ is the part of T for which particles j and i are spectators of the first and last inter-
actions respectively. The T* satisfy the BF equations:

TV = 3,6 +¢(Qle) ¥, T, (2.4)
k#i

where ¢' is the two-body reaction matrix for an interaction in which the particle i does
not take part, i.e., is a spectator, Q is the exclusion principle operator, i.e., a projection
operator onto nucleon states above the Fermi momentum, and —e is the excitation energy.

To specify the off-energy-shell character of #‘in Eq. (2.4) and the value of e, it is
convenient to iterate Eq. (2.4) twice. If we do it, and take advantage of the identity of
the two nucleons, we get:

E\ = Ejy+E,s, 2.9
where
<ky
Epa =Vyi= —Bpy =4 Y (p1P:212°1p1p2), (2.6)
Pt
EA3 = —BAS = 16ED—4EX9 (2.7)

where the direct term

<kgp

Ep = Y (pyp2pslt'(Q/e) [2(T?' + T2+ T*' + T*) (Q/e)t?

PipP3
+QT* +T*' +T*) (Qle)® + RT** + T** + T??) (Q/e)t']
+1%(Q/e) (T +T°%) (Q/e)*|p,p>P3), (2.8)

and the exchange term E, is given by the expression which differs from (2.8) only by the
appearance of the P;; operator.

2.2. Expression for E,,

Let us specify the two-body reaction matrices ¢*. The NN reaction matrix 1% = fyy
in the relative NN momentum representation satisfies the equation:

<P Itan(Prs 2 1) = <P lonnl P> +(2m) 3 § dp”"(p'lonl P>
[2(Prn> P)[(zan— P2 Im)] <P | tan(Prres 20 1P 29
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where Pyy is the c.m. momentum of the two nucleons, and

Oxn(P, p) = Q(7 P+ p)Qx(3 P—p), (2.10)
where
4L for x> kg
Qr(x) = {0 for x <k @11)

The NA reaction matrices ¢! = 3 = fy, in the relative NA momentum representation
satisfy the equation:

<P ltna(Pyias 2na) 1PY = <p'lonalpd> +(2m) 7> j dp”"{p'lvaalp”">

X [QNA(PNAa P”)/(ZNA_p”z/ZﬂAN)] P |tna(Pas Zna) 1P (2.12)

where Py, is the cm. momentum (Py, = pn+Pa), P = (Mppx—Mupa)/(min+my),
Han = mizmy/(m,+my), and the exclusion principle operator

Ona(P, p) = Qr(uanP[ma+p). (2.13)

The t-matrices in Eqs (2.6) and (2.8) describe scattering of two particles in NM with
no other particle being excited. Consequently, these reaction matrices are on the energy
shell. As the energy arguments in the matrices t3y and t3y we have:

Zua = Vaten(pn) — PRa/2(mn+my). (2.14)
For the single-nucleon spectrum in NM, we assume the effective mass approximation:
ex(pn) = An+pR/2mY%  (for py < kg). (2.15)

Now, we replace pZ by its average value in the Fermi sea, {pg> = 0.6 k%, and Pg,
by (PZ,> = 0.6 kZ (notice that Py, = py, since p, = 0), similarly P2y by (Pin> = 1.2kZ.
This means we apply the approximation:

Pn = J0.6 kp, Pyp = J0.6kp, Pan = J1.2k (2.16)

(The accuracy of an average excitation energy in LOB calculation of B, was tested in [9].)
With approximation (2.16), we get

Zna = Y = Va+An+0.3kE[ 1/m—1)(my+my)]. 2.17)

Similarly, as the energy argument in the matrix z2y with approximations (2.16),
we get

Zan = — Y = 24N+ 0.3KE(2/my — 1/my). (2.18)
Expression (2.6) for E,, takes the final form:

Exr = Vi = 4(my/pan)’2m) ™3 § ap<pltna(Pras —74) 1PD- (2.18")

Since p, = 0, we have Py, = py = Mnp/lian-
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2.3. Expression for E,;

Expression (2.8) for E, contains terms of the general form:

<kr . .
Ep(i, jk, 1) = 3 (P1p2ps1(QI)T™(Q/e)( | p,p2p3). (2.19)

pip3

By introducing the vectors ¢, k,(n = i, ], k, ) of Eq. (A1), and the notation and relations
explained in Appendix A, we get:

En(i, jk, 1) = (M/mp)* (2n)™'* | dq, | dq;[db|dec
<kg <kg
x Ck TPy, —v;) e (b + m;q;/M,)> {Qi[ P;, &; (b +mq;/M)]/[y:+(b+ ’nj‘li/Mi)zfzﬂi]}
x T™[b, —&(q;+mb/M)); ¢, —eulq,+me/M)]
X {QI[ Py, enle+mg,/MY]/[7,+ (e + mk‘h/Mx)z/zlll]} {eylc+myq, /M) itl(Ph =70 kD,

(2.20)
where
up=mym/(mi+my), e =3 =63 =1, &y =¢&;3 =& = —1, (2.21)
and
ky = —pangi/ma—qs, k3 = g, +pangs/ma,
ky=~%q,+%4, 9 = —q41—4s3- (2.219
Expressions similar to (2.20) may be derived for terms
Rl i ik !
E (i, jk, 1) = Y (p1p2pslt(Q/e)T(Q[e)t Py3|p1P2P3)s (2.22)
pPips

contained in expressions for the exchange energy E, of Eq. (2.7).

The TV matrices in expression (2.8) are determined by Eqs (2.4) with off-energy-shell
two-body f-matrices, Eqs (A.9-12). With the help of the notations, and relations explained
in Appendix A, Eqs (2.4) lead to the following equations for T (g,k,; ¢.k,):

Tij(qebkb; q.k,) = 5:;‘(275)35(%_‘1‘:) <kblti[qb] ko> — k;‘ (27t)”3 5 dq

x <kblti[‘1b] leadq + migy/M)>Dy 1(‘IbQ)Tkj(qs —eul(gy+mg/My); q.k,), (2.23)
where

Di(q,9) = I +% [as/m;+(gp+ @) /(M —m;—m)+q%[m,]. (2.24)

Equations (2.23) involve two approximations: neglect of the exclusion principle
(we drop the Q operators in (2.4), and in equations for t'[g,]), and use of average nucleon
energies in the Fermi sea (in calculating e in (2.4), Eq. (2.24), and in equations for ¢'[g,],
Eq. (A. 11)). Notice that we keep the exclusion principle operators in expression (2.8).
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Neglecting the exclusion principle is justified by the fact that the 7/ matrices in (2.8)
describe scattering of particles in excited states where the exclusion principle is less impor-
tant. The use of the average energies of the occupied states appears reasonable because
in calculating E,; we have to sum over these states (an analogical approximation in
calculating E,, was tested in [9]).

2.4. Expression for Ey

A detailed derivation of the expression for the rearrangement energy E, has been
presented in [5] (compare also [9]). Here, we assume that the NN reaction matrix equation
contains pure kinetic energies in the intermediate states, and thus only the single-nucleon
energies ey(py) of the occupied states are affected by the presence of the A particle. Con-
sequently, by applying the simple and accurate approximation of [5], we may write

Er = —xxnEa2s (2.25)

where xyy is the wound integral of NM. The general expression for xyy is given in [9].
In case of spin-independent S-state interaction, we may write it in the form:

Ky = & Q(Zﬂ)"3<f dpQun(Pun, P) [{PltanPrns —¥0) [P [(rw+ P2 M) D, (2.26)

where { D> denotes the average value in the Fermi sea.
In case of the A4+ NM system, we have two wound integrals: xyy and x,y given by:

KAN = % Q(27f)_3<j dpQna(Pras P) [{pltxa(Pna> —¥a) |P>/(7A+P2/2ﬂAN)]2>- (2.27)

3. Separable interactions

Now we assume that g,y and vy are separable S-state interactions, Eq. (B.1). For the
t'[g] matrices in Eq. (2.23), we have now, Eq. (B.2):

K1) k> = 3 25 [q1Ei ke k), (3.1)

where @ [q] are determined from Egs (B.4) with
£iuldl = @m) 73 [ dpgu(p)e D)/ +a* /26 + *[21]. (32)
This means, the 7°[¢] matrices are obtained from the general t(P, z) matrices of Appendix

B by making the special choice of z, Eq. (A.11), and*by using the approximation Q; = 1.
To solve Egs (2.23), we make the Ansatz:

Tgsko; 4oka) = 3 gilk) A3/ a:9.)80(k.), (33)
and obtain for the functions 4%, the system of integral equations,

Ajl(ba) = 5,,2n)°5(b—@)Z},[b] - T, 24[b] ¥, (2m)7° [ dgKVu(be) AT (aa),  (34)
va k#i
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where
’”(ab) = gl(ib+m a/M DD l(ab)g‘,(la-}-m /M ;). (3.5)
The kernels of integral equations (3.4) satisfy the general obvious relation:
Ki(ab) = Ki(ba), (3.6)

and the symmetry relations which follow from the identity of the two nucleons (particles 1
and 3):

KjJ(ab) = K3, (ab) = K} (ab), (3.7
K% (ab) = K3, (ab) = K3.(ab), (3.8)
Kiy(ab) = K3/ (ab) = K} (ab). (3.9
By combining these symmetry relations with relation (3.6), we get
Kab) = KN (ba), (3.10)
K3%ab) = K2(ba). (3.11)

Because of the above symmetry properties of the kernels, the functions 4%, are not
independent. Namely, we have:

A433(ab) = A} (ab) = A} (ab), (3.12)
4;7(ab) = A3 (ab) = 43" (ab), (3.13)
A3 )ab) = A% (ab) = A)(ab), (3.14)
A}%(ab) = A3Z(ab) = ATN(ab). (3.15)

The functions AN, AN*N, 42N, AMA and 4** = 422 are determined by the follow-
ing integral equations, obtained from Eqs (3.4):

AL (ba) = (21)%0(b— )DL [ 6]+ Z 2%,[b] (2n) 73 | dgK V(g A% (qa),  (3.16)

AsP(ba) = (27)°5(b—a)D%,[b]

= X 261 @7 [ da{KV3(ba) 457 (qa)+ 2K, (be) A3 (ga)}. (3.17)
AN (ba) = — ¥ 2 [6] 20)7° [ daKIL ()45 (q0), (3.18)

w(ba) = — Y, 2361 2m) ™ [ dg{K 3 (bg) 4 ga)+ KiM(bg)43i(ga)},  (3.19)
ApNba) = (27)°8(b—a)24,[b]—2 Z D4,[b] 2n) ™ [ dgK2N(bg) AN N(qa), (3.20)

where 9" = 9! = 93, 9* = 92, and
AE(ba) = A (ba)+ AN N(ba). (3.21)
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Eqs (3.17) and (3.18) are coupled. By expressing A2Y on the right hand side of (3.17)
in terms of 4%}, Eq. (3.18), one obtains equations involving only 4{}’, in which part
of the kernel is a convolution of the kernels K™ and X*™. These equations are still coupled
with respect to the index Z, i.e., we have two pairs of coupled equations for 4D, 44D
(v = 1,2). After solving these equations for A5;’, we may calculate 42" from Eq. (3. 18)
Eqgs (3.19) and (3.20) may be treated similarly. In this way we obtain equatlons for A4
After solving them, we may calculate 43* from Eq. (3.20). This procedure was followed
in our calculations.

There are additional symmetry relations which reduce the number of independent
functions. By looking into iterative solutions of Eqs (3.4), or by applying — instead of
(2.4) — equivalent equations

=5,t+ ¥ THQle)r, (3.22)

k#i

¢ may see easily that
4} (ba) = A}(ab),
A (ba) = A(ab),
N#N(ba) N#N(ab),
ASM(ba) = A% (ab). (3.23)

In the procedure followed in the present paper, relations (3.23) were used as test
of the accuracy of our calculations.

Let us mention that with our S-state separable interactions, almost all the exchange
terms, Eq. (2.22), are equal to the ‘“corresponding” direct terms, Eq. (2.19), and Eq. (2.7)
takes the form:

Ens = 12Ep+4{Ep(1, 31, 3)+Ep(1, 33, D—E(1, 31, 3) = E(1,33,)}.  (324)

4. Two-body interactions

Both NN and AN interactions are assumed to be spin-independent S-state separable
interactions of rank two, with one (v = 1) repulsive and one (v = 2) attractive term.
For the repulsive part, we assume the hard shell form [6], and for the attractive part the
Yamaguchi [7] form:

irn _ ysin(peyn)/p, v =1,
gm‘{l/(ﬂ%&%’% v=2, @D

where Y = Afori = 1,3and Y = N for i = 2. For the strength parameter of the repulsive
part (v = I) we take the limit A} - oo. This vyy Puff potential has three adjustible
parameters: the hard shell radius cyy, the strength parameter A o= AW and the range
parameter Byy of the attractive part.
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For the parameters of the NN interaction, we take the values given by Bhakar and
McCarthy [8):

enn = 045 F,  Bun = 22785F Y,  mpydn/(20)® = —635F73.  (4.2)

This NN potential has the hard shell radius ¢yy of the original Puff [6] potential, and it
yields a binding energy per nucleon in NM of ~ 16 MeV at the empirical density. The
parameters By and Ayy are approximate averages of the corresponding spin dependent
parameters of the original Puff potential. The parameters-of the single-nucleon spectrum,
which correspond to our NN interaction, are [8]:

mydn = —2.346 F7% m¥/my = 0.5373. 4.3)

In choosing our AN interaction, we start from the singlet and triplet AN scattering
lengths and effective ranges, a,, a,, r,, r,. However, these parameters are not well deter-
mined. Here, we choose the values:

a,= —20F, a,= —22F, r,=50F, r =35F, (4.4)

obtained by the Maryland group (Sechi-Zorn et al. [10]). By applying the known relations
between a,,,, ry,, and the parameters of the Puff potential [6], we obtain Puff potentials
Uan,s and v,y in the spin singlet and spin triplet states. We assume the same hard shell
radius ¢,y in both states and consequently, the whole spin dependence is contained in the
attractive Yamaguchi part (v = 2) of this AN interaction. To obtain a spin independent
Puff interaction v,y (with the same hard shell radius ¢,,), we insist that the relation

VAN = F VAN, T3 Uanee 4.5)

holds with a sufficient accuracy. In this way, the parameters A,y and f,y of v,y are deter-
mined.

TABLE I
Parameters of the AN potentials
|
PAN Ban (F-Y) | 2AAnpan/2m) (F-)
i !
A(0.3) 1.626 Q -0.753
A(0.4) 1.891 ~1.956
A(0.5) 2.129 —4.415
B(0.3) 1.970 —1.658

We consider three values of ¢, = 0.3, 0.4, and 0.5 F, and denote the respective AN
potentials by 4(0.3), 4(0.4), and A4(0.5). For the respective values of A,y and fi,y, we have
obtained values given in Table I, for which relation (4.5) holds for the attractive part
of {plusn!p’> with a better accuracy than 0.25% for p(p") < 10 k.

We have considered also another set of AN scattering parameters:

a,=—19F, a=-193F, r,=367F, r =327F, (4.6)
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obtained by Nagels, Rijeken and deSwart [II] in their one-boson-exchange-potential
(model D) fit to the Maryland [10] and Rehovoth~Heidelberg [12] Ap scattering data. (The
final best fit values of a,, and ry,, given in [11] differ insignificantly from the values in (4.6)
of the earlier version of model D.) For ¢, = 0.3 F, we have determined the parameters
of the AN potential, denoted by B(0.3), in the same way as in the case of the potentials
A(can)- The resulting values of A, and f,y are given in Table I.

5. Numerical procedure

The starting point is the calculation of E,,, Eq. (2.18 ), which is very simple. For
fna We use expressions (B.2), and (B.4) with .#3, caleulated numerically (on the other hand,
for £} [q], Eq. (3.2), analytical expressions have been used). Expression (2.18") involves
one-dimensional numerical integration over p. Since expression (2.17) for y, contains
V, = E,,, one has to repeat the calculation of E,, at least twics to determine the self-
-consistent value of E,,. In calculating E,,, approximation (4.5) was not used, and
Eq. (2.18) was applied with £y, replaced by % fnas+3 tna,» Where fy, , and tna,e are
t-matrices obtained from vy, , and vy, ,, respectively.

To calculate Ey, Eq. (2.25), we have to calculate the wound integral xyy by calculating
numerically the p-integral in expression (2.26). Similarly, we calculate. x,y, Eq. (2.27).

In all these calculations, as well as in calculating Epxy(t, jk, 1), Eq. (2.20), we use for
Py, and Py their average values (2.16).

To solve the BF equations, Eqs (3.4), we write:

Ajl(ba) = 5,)(2n)°5(b— a)2},[b] + 7 (ba), (5.1
and obtain for &%, integral equations

hba) = (6= D) 3, Fi (61K (00)2%,[a]
~ X, 2301 3, m)7 | dgKVs(bg) o/ (qa), (5.2)

whose inhomogeneous terms are regular in contradistinction to the d-type terms in equa-
tions (3.4). All the symmetry properties of the A-functions remain valid also for the o/-func-
tions, and we are left with the problem of solving integral equations for o™, &NV,
AN, oA and /™A, ie., equations analogous to (3.16-20). Actually, we eliminated
™ and o™ from these equations (as explained in Section 3), and have solved separate
integral equations for &#*, &™), and ™A,

The first 6-type term of the decomposition of 4" in (5.1) leads to that part of E,,
which is of third order in the ¢ matrices, and which we denote by E,(~ t3).

For the kernel$ of the BF equations, Eqgs (3.5), we apply the angle-average approxi-
mation:

Ki(ab) = K (ab) = gi(Ib+m;a/M\)D;;" (ab)gl(la-+mb/M,), (5.3)
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where the bars denote angle averages, according to the general definition:

fab) = } | dxf(ab), (54)

where x is the cosine of the angle between a and . The averages appearing in (5.3) have
been calculated analytically. Approximation (5.3) implies that

o} (ba) = of}(ba), (5.5)

and integral .equations (5.2) for o/%, and consequently the integral equations for &%),
o), and #™* become one-dimensional integral equations. These one-dimensional
integral equations were transformed into linear algebraic equations by approximating
the integrals over ¢ by sums (with the help of Gauss-Laguerre quadrature method, with
18 points, and with an upper limit cutoff at 10 k). The linear equations were solved with
the Gauss method. Functions «/(b a) have been obtained from these solutions by applying
the Lagrange multiple interpolation method [13].

The integrals over b and ¢ in expression (2.20) for Ep(i, jk, I) were reduced to inte-
grals over b and ¢ by applying averaging over the angles between b and ¢, similar to that
described above (see Eq. (5.3)). The Q, operators in Eq. (2.20) have been replaced by the
average operators (J; of Appendix B. The integrations (over b, ¢, ¢,, g5, and g,43) in (2.20)
have been performed numerically.

6. Results and discussion

Our results obtained for kg = 1.35 F with the NN and AN interactions described
in Section 3, are given in Table 1I.

First of all we notice that the term of third order in the reaction matrices, E,(~ £3),
is much bigger than the total value of E,;. This illustrates the known fact that the 73-ap-

TABLE 11
Contributions (in MeV) to —Ba, and values of xan
VAN Ep, Eps(~1?) Eas JEA 3/Ena! Eg —By KAN
A0.3) —43.7 4.5 1.7 0.04 4.6 -374 0.09
A0.49) ~40.2 8.0 3.0 0.07 4.2 -33.0 0.11
A(0.5) -37.3 12.7 4.1 0.11 3.9 —29.3 0.13
B(0.3) -62.2 5.0 1.9 0.03 6.5 —53.8 0.09

proximation would be misleading, and that summation of all three-hole-line diagrams
(by solving the BF equations) is necessary to calculate the total correction E,; to E,,.
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It appears [9] that E,;(~ 1) is a reasonable approximation of E,; only for purely attrac-
tive interactions, in which case E,; turns out to be negative [4]. (The negative sign of E,,
for attractive forces follows immediately from the structure of the expression for E, ;(~ 13),
Eq. (2.8) with T9 = ¢'5,;.) The big positive values of E,,(~ ¢3) in Table I, compared
to the smaller values of E, 5, demonstrate a strong cancellation of the #3-contributions by
the higher order terms produced predominantly by the short range repulsion.

Our present results for E,, are eonsistent with our previous simple estimate [3], based
on the method applied by Moszkowski [14] in pure NM. The result of the simple estimate
was E,; ~ 2 MeV for local AN potentials, adjusted to Ap scattering and to binding energies
of light hypermuclei, with hard eore radius 0.45-0.5 F (an improvement of the AN correla-
tion functions leads to an increase in E,; [15]).

In applying the reaction matrix method in calculating B,, we follow the systematic
approach in terms of the number of hole-lines, worked out for pure NM. Simple consider-
ation suggests (see, e.g., [2]) that by introducing into a diagram an additional independent
hole line, we change its contribution to the energy of NM by a factor of the order of xyy,
Eq. (2.26), which plays the role of the smallness parameter in the hole-line expansion
method. The same considerations applied to diagrams which contribute to B,, suggest
that by introducing an additional nucleon hole-line we change its contribution to B, by
a factor of the order of kyy or K n, Eq. (2.27), depending on the location of the additional
hole-line. Consequently, we expect that the order of magnitude of E,,/E,, should be
determined by the two wound integrals xyy and x,5. For the Puff NN interaction, Eq.
(4.2), we have kyy = 0.105, and the values of k,y for our AN interactions are given in
Table II. As expected, kyy and x, are of the order of magnitude of |E,;/E,,|. Actually,
they are bigger than |E,,/E,,|, and approximately agree with |E,;/E,,| for the AN -in-
teraction A4 (0.5) with the biggest hard shell radius c,y. This is in accordance with the
considerations suggesting that the wound integrals are the smallness parameters of the
hole-line expansion. These considerations are of a qualitative character, and are most
convincing for the hard core part of the interaction [2].

Our results show a reasonable convergence of the reaction matrix method of calculat-
ing B,. For a reasonable size of the AN repulsion (c,y = 0.4—0.5 F), similar to the NN
repulsion, we get a repulsive three-body contribution E,; = 3—4 MeV. Our simplified
model of § state AN and NN interactions appears justified in calculating E,; which
is dominated by the short range repulsion acting predominantly in the S state.

On the other hand, the AN P state contribution to E,, turns out to be important
(see e.g., [9]), and thus the values of E,, in Table IT are not realistic. The same criticism
appears to apply also to our values of Ey which are proportional to E,,, Eq. (2.25). How-
ever, more realistic estimates of Eg [9], [16]lead to similar results, namely to Eg = 4—5MeV.
Consequently, we expect a total repulsive correction to E,,, E s +Ez = 7—9 MeV.

A repulsive contribution of this magnitude (together with the important effect of
AZ conversion (see, €.g., [16])) is sufficient to solve the A overbinding problem. On the
other hand, it increases the discrepancy between the values of B, calculated with the re-
action matrix method, and the much bigger values of B, obtained with the variational
method (see, e.g., [17-19]).
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APPENDIX A

Notation and kinematics

By pi, P2, P3, wedenote the momenta (in units of ) of the three particles. Their respec
tive masses divided by 2 are denoted by m; = m; = my, m, = my(my = 0.02412 MeV-1F-2,
m; = 0.02865 MeV-'F~2). For the momentum states normalized in the periodicity box
of volume Q, we use the notation |p), i.e., (r|p) = exp ’(pr)/\/ﬁ. By |p>, we denote mo-
mentum States with the normalization {p’|p) = (2n)3é(p’' — p), i.e., {r|p) = exp (pr).

Instead of p,, p,, p;, it is convenient to use other vectors to label the states of the
three particles. As one of them, we choose the total momentum P = p, + p,+ p5, which
remains constant during all interactions. Consequently, we shall work in the subspace
of our three-particle system with a fixed P. In this space, two vectors are necessary to
label the states of the three particles. Following Faddeev [20], we introduce three such
pairs of vectors:

q; = [m(p;+p)—Mp /M = mP[M—p,,  k; = (m;py—mp;)|M,; (A.1)

where the indices i,.j, k form one of the cyclic permutations of 1, 2, 3, M = m, +m,+m;,
is the total mass, and M; = M—m,; = m;+my, is the mass of the particles j and k which
we shall call the i-th pair.

Each pair of the vectors g¢;, k;, according to the equations:

619K = 419K,  klgED; = E'lq'K>;, (A2)

labels the momentum states of three different bases |gk>, ( = 1, 2, 3). The interchange
between these three bases is determined by

Lklg'ky, = K@'K'|gk), = (2m)°0(q’ +m,q/M, —K)S(K' +msMq[(M M;)+mk/M,)
= (2m)°8(q +mq'|M,+K)o(k—msMgq' [(M M,)+m,k'[M,), (A.3)

and equations obtained from Eq. (A.3) by the replacements: 1 - 2,2 >3, and 1 — 3,
2 1.
Notice the following relations:

Pyslgk>, = |g—k>3,  Pislgkd, = |g—k),.. (A4)
The action of the exclusion principle operator Q in the three bases is described by:
Qlgk>: = Qiqk) Iqk>: (A5)

where
Q1(gk) = Ona(P1K),  Q3(gk) = Qua(P3—k),  Q2(qk) = Onn(P2k), (A.6)

where P, = P— p, is the c.m. momentum of the i-th pair, and Qyy, Ona are defined in
Egs (2.10), (2.13).
For the on-shell z-matrices in Egs (2.6), (2.8), we have:

4’k ltonlakd: = (21)°(q' —q) <K'|(Py, —) 1D, (A7
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where, with approximations (2.16), we have y, = y; = y,, and y, = yy. In the notation
of Section 2.2, we have

KNPy, —ya) 1K) = <k,ltNA‘(Pla =74 1k,
KPS, —ya) 1kY = (=K |txa(Ps, —72) | —KD,
KNPy, —y) k) = K (P — ) 1. (A.8)

The T" matrix of Bq. (2.8) satisfies Eq. (2.4) with an off-energy-shell two-body reaction
matrix toer Which describes the scattering of the i-th pair (particles j and k) in NM after
the i-th particle has been excited already. Consequently, at least one of the particles j or
k has been excited also before it undergoes the scattering described by 7 gg. In this situation,
the exclusion principle appears to be less important and we neglect it. This means, we drop
the exclusion principle operator Q from Egs (2.9) and (2.12). Consequently, our t&.r does
not depend on the c.m. momentum of the i-th pair, and we have

£a'kitbrelgkd; = 2m)°(q' —q) K1 (zann) 1K, (A9)
where
Zann = Va+en(pr) +en(p)— P2 [2M —¢* 2, (A.10)
where g, = mM,/M. With the help of approximations (2.16), we get
Zann = —T—q*20; = Vo +245+0.6kZ(1/ml—1/M)—q*[241;, (A.11)
For our approximate tjpr matrices, we shall use the notation
KN\(~I =g’ 2) [k = <K' [q] [k>. (A.12)
For the matrices 7%, we use the notation:
Kg'K|TY\gky; = T(q'K'; qk). (A.13)
APPENDIX B

t matrices for separable interactions

Here we assume v’ (v = 03 = vy, v2 = vyy) to be of a general separable S-state
form

Py = Y Agi(p)glp), (B.1)

v

where the number of v-terms determines the rank of the interaction.
The solution of the #*-equation (Eq. (2.9) for 12 = g, Bq. (2 12) for ¢! = 13 = #,)is:

(PIP, 2) P> = 3 9Py 2)EHPEMP), (B.2)
where the coefficients @}, = @, are solutions of the system of linear algebraic equations:

Y [Buul s+ £ (P2)]Dis(Piz) = 8,5, (B.3)
#
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Fi(Pz) = F5(P2) = —(2m)~> § dpQ(Pp)gi(p)gi(p)/[z ~ p*[21:]- (B4

Our S-state interactions lead to the appearance of the angle-averaged Pauli principle

operators Q,(Pp) = Q3(Pp) = Ona(Pp) and Q,(Pp) = Qun(Pp), where

0 for p<(ki—1Pp*»'3,

Onn(P, p) = (4m)~! j.dﬁQNN(Ps p =11 for p>3P+kg

(B.5)

(% P*+p*—k2)/Pp otherwise,

0 for p < kp—panP/my,
Ona(P, p) = (4n) ™' [ dPQA(P, p) = 41 for  p > kp+psnP/ma,

[(p+ ranP[mp)? — kE1/(4uanPp/m,) otherwise.

(B.6)

Notice that our ¢’ matrices do not depend on the directions of P;, p, p'.
For the Puff potential, i.e., for the rank two potential with A} — co, the solution of

the system of equations (B.3) has the form:
1= (Ji22+1//1;)/Ai, Dy, = fin/Ai, Dz =Dy, = —
where
4; = F(Fh+ 1) —(F1,)%
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