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INTERNAL FIELDS OF THE LYTTLETON-BONDI SPHERE

By A. Npuka
Department of Physics, University of Ife*
( Received June 12, 1980)

We obtain a solution of the relativistic field equations for a static Lyttleton-Bondi
sphere. We establish the following results: A static Lyttleton-Bondi sphere is a charged
dust. In particular we demonstrate that under certain conditions, the sphere cannot exist.

PACS numbers: 04.50.+h, 04.20.Ib

1. Introduction

In 1948 Bondi and Gold (Bondi and Gold, 1948) suggested that the Universe obeys
“a perfect Cosmological Principle” — that the Universe looks the same not only at all
points and in all directions, but at all times. To explain the observed expansion of the
Universe Lyttleton and Bondi (Lyttleton and Bondi, 1959) modified the 1948 theory slightly
by suggesting the possibility of a general excess of charge in the Universe. This excess of
charge may arise from the difference in magnitude of the charge of the proton and that
of the electron, or from the difference in the number of protons as compared to the number
of electrons.

Further, if the charge excess exceeds a certain critical value, expansion would result.
If this expansion alone occurred, the space density of material would steadily diminish
and the acceleration of expansion will decrease with it. To off-set the decrease in density
implied by the expansion, Lyttleton and Bondi postulated the creation of matter, and
also necessarily charge, everywhere in space. This creation process will then keep the density
invariable. Since charge is not then conserved in the strict sense some modification of the
Maxwell equations must be made to permit the resultir{g breach of conservation of charge.
This is what is normally called “the steady state model of the Universe” in the literature.

However, through the work of Penzias and Wilson (Penzias and Wilson, 1965) it is
now generally believed that the Universe has evolved to its present state from an initially
dense and hot configuration. This observation confirms the “Big Bang” origin and ‘“de-
stroys” the ‘“‘steady state model” of the Universe.
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In a recent paper (Nduka, 1979) we re-examined the assumptions of the steady state
model and modified them to conform to experimental observations of Penzias and Wilson.
Specifically we rejected the “perfect cosmological principle” assumption and replaced it
with the usual “cosmological principle” and then retained the other assumptions of Lyt-
tleton and Bondi. The implication is that we can now use Einstein’s field equations. Thus
we investigated the Lyttleton Bondi sphere, in the circumstance we allow creation of matter
and charge, on the basis of Einstein’s field equations. We established that if the charge
distribution throughout the sphere attains a certain critical value, the creation rate vanishes
and the sphere becomes static, otherwise the sphere expands indefinitely.

In this paper we investigate the nature of the internal fields of our modified Lyttleton-
—Bondi cosmology for the case of a sphere which has evolved to its final static state —
and hence its expansion halted. It is shown that the only possible final state of such a sphere
is characterized by the condition p = 0 so that the final state is characterized by the require-
ment that the attractive gravitational field of force is balanced by the repulsive electro-
static field of force — a charged dust. In the extreme case that the evolution of the sphere
is such that the static state is characterized by a Lorentzian metric, we find that g = p = E
= ¢ = 0 (see below) throughout the sphere; which means non-existence of the sphere
itself.

2. Field equations

The appropriate metric form to describe a static, spherically symmetric space-time
considered in our investigation is given by

ds* = e'dt* —e'dr* —r*(d0* +sin> 0de?), 2.1

where v and y are functions of r only. Throughout this paper units are chosen so that G
and C are each unity.

The static condition is characterized by u' = e~ */28',. The Maxwell ficld is restricted
by spherical symmetry to be a radial electrostatic field. Thus the only non-vanishing
components of FY are FO! = —F10,

The Einstein-Maxwell equations are (Lyttleton and Bondi, 1959)

G\ = —8nT%, (2.2)
Fy = Ai;k—Ak;b (2-3)
%, = dns, 24
J=q. (2.5)

Here T", is the energy-momentum tensor for the system and we express it in the form
T’ = MY+ E), (2.6)
where M', is the energy-momentum tensor of perfect fluid:

M’y = (o+ p)u'uy—pd'y Q.7
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and E', is the electromagnetic stress-energy tensor:
4RE{ = _Fqul +§1,‘ 6ithlF,,g + A(A‘Ak “"‘;‘ 5ikAlA!). (2,8)

The quantity g is the rate of creation of charge per unit volume and .#* is defined by

S = ou' A A
wd 2.9)
In these equations p is the internal pressure, ¢, o are the densities of matter and charge
respectively and ./l—” 2 is a physical constant of the order of the radius of the Universe.
We note from J' = ou', ' = e */?§'; and equation (2.5) that ¢ = 0, in agreement with
our previous conclusion (Nduka, 1979).
The field equations that follow drom the above are

-y )” 1 1 2 v
e -r— - ? -+ ;’2* = 87EQ+E+).¢ e, (2.10)
- v 1 1 a2
e T+;3 ——'.—2-=87IP—E+/L(I) e, 2.11)
e_y (Vll + v12 vr_yl N V’—"y' 8 E l -
5 2 y 5 )= np+E+Ad*e’, (2.12)
dr®t 2 P+
4ne = l: + 7F‘“+ £—2—1F°‘+/1¢] e’? (2.13)
and
(¢e") = Fo,, (2.19)
where ¢ = A° and
E = —F°'F,,. 2.15)

It has already been established (Nduka, 1979) that the static condition is characterized
by the requirement that

¢ = Iy, (2.16)

where I'y is a constant. It then follows from equations (2.14) and (2.15) that

3ry, \?
E = (7° v') e, Q.17

Equations (2.10), (2.11) and (2.12) may be rewritten in the forms

vl ’
8n(o+p) =€ (—7 + )’7> ~2i'%e?, (2.18)
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8n(o—p) = e 7 X’l'_i_;_iyl_v_”_f._i +i (2.19)

4 2r  2r 2 4 2] ¥ ’
S IRR] LA AL AU SN N 2.20

= g — e e - -3 .
2 4 4 2r 2r  F r (220)

and
vy w3y 3y

dne = - .- _ . _ - A v/2' 2.21
" [" ( s 2 27 % ) * °]e 221

3. Solution of the field equations

Equations (2.18)(2.21) constitute a system of four equations for the six unknowns
0, p, Lo, v, 7, and o. We solve them subject to the additional constraint that g is a constant.
Two of these variables are completely arbitrary. We take v and y as the arbitrary variables,
and we choose them in the form

wWr) = ar?, 3.D
v(r) = Br?, (3.2)

where « and f§ are arbitrary constants. Then from equations (2.18)~(2.21), (3.1) and (3.2)
we obtain

—ar2 2 1 1 272,282
1670 = e Blo— Y™ + 50— ;5 + r—z' — 24 Ge™ ", 3.3)
—ar2 2 1 L 22,2802
167p = e p(B—ayr“+4f—a+ el Rl —2Alge™"", (3.4)
-~ ar? 2 1 1 <
2E =e pB—oyr*—a— 2 + E 3.5
4no = {e " [3P(a—2B)r* —9B] + A} e P, (3.6)

The requirement that g, defined by equation (3.3), be a constant dictates the possible
values the constants « and § can take. As was stated earlier the model sphere we are dealing
with is one which has evolved to its present static state from an initially dense configuration.
Thus as the sphere expands we expect that both v and y tend to zero as » tends to infinity.
This is quite reasonable because we expect the metric to be Lorentzian at infinity. Equation
(3.3) shows that ¢ is a constant only if both « and § are small quantities. Thus to first
order in the small quantities « and B, equations (3.3), (3.4) and (3.6) yield:

8@ = 3a—Al2, 3.7)
8np = (2f—a)— A2, (3.8)
4rne = (A—9B)T,. 3.9)
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4. Boundary conditions
We note from equations (3.7) and (3.9) that ¢ and o are positive provided that
3a > AT, 4.1
= 9. 4.2)

Next, we fix the constants of our problem in terms of the physical constants of mass,
charge and radius of the sphere. To achieve 'this we impose the usual conditions at the
boundary r = r, of the sphere:

(i) p(ro) = 0. From equation (3.8) we conclude that

22— = A’k (4.3)

(i) E(ro) = Q% rg, where Q is the total charge of the sphere. Equation (2.17) then
gives for r = rg

3pTy = Qfre. 4.4)
We also establish from equations (2.17) and (3.5) that
3o = af2. 4.5)
Equations (4.4) and (4.5) lead to
o« =2Q/r;. (4.6)
(iii) The mass distribution is defined by (Nduka, 1979)
8m(r) = 42— 227 “@.7n
where in the present case € = r?. Putting m(r,) = M, we find that
o = 2Mjrg. (4.8)
Use can now be made of equations (4.3) and (4.4) to obtain
Fo = 2Q/34r)'7, B = (AQ*[6r§)"/>. 4.9)
Equations (3.7) and (3.9) then give for the charge and matter densities the expressions
dno = (204%/3r5)' >~ (3Q/rd), (4.10)
4mg = (3Q)rd) - 503" @.11)

Equations (4.6) and (4.8) show that M = Q, so that the total charge of the sphere
equals its total mass. We note further that the first term of equation (4.10) and the second
term of equation (4.11) are both small compared to (3 Q/rg) and hence may be dropped.
We then reach the usual conclusion for charged dust that the ratio of matter to charge
density is unity. It is to be noted from equation (4.10) that the charge density is negative
so that the condition (4.2) is violated and must be replaced by the requirement A < 98
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instead. In the extreme case that the radius of the sphere is infinite, we find from equations
(4.6) and (4.9) that « = f = I'g = 0, so that the metric becomes Lorentzian. For this
special case the solutions of equations (3.3) to (3.6) give ¢ = p = ¢ = E = 0, implying
that the sphere no longer exists.
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