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A model of magnetoviscous fluid has been derived which is of non-degenerate Petrov
type 1. The model for viscous fluid, magnetofluid and perfect fluid have also been obtained
in particular cases. Various physical and geometrical properties of the model have been
discussed.
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1. Introduction

In our previous papers {[1-3]) we have obtained some viscous fluid cosmological
models and anisotropic magnetohydrodynamic cosmological models. Recently Roy and
Raj Bali [4] have obtained a magnetoviscous fluid cosmological model of type D. But
the main drawback of this model [4] is that the models for magnetofluid, viscous fluid
and perfect fluid cannot be obtained from it in the absence of viscosity, magnetic field
or both respectively, in particular cases. It is therefore of interest to derive a magneto-
viscous fluid model in general and obtain models for viscous fluid, magnetofluid and per-
fect fluid respectively, in particular cases. It is well known that there exists a certain degree
of anisotropy in the actual universe. We therefore choose the metric for the cosmological
model to be cylindrically symmetric. In this paper a cylindrically symmetric cosmological
model of magnetoviscous fluid has been derived which is of non-degenerate Petrov type L
It represents an expanding and shearing but non-rotating fluid flow. The expression for
the generalized Doppler effect in the model has been obtained. The models for viscous
fluid, magnetofluid and perfect fluid have also been obtained in particular cases.
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2. Derivation of the line element
The general cylindrically symmetric metric is considered in the form given by [5]
ds? = A*(dx*—dt*)+ B*dy?* + C%dz?, 1)

where 4, B, C are functions of s-alone. The energy-momentum tensor for a magneto-vis-
cous fluid distribution is given by ([6, 7])

T = (e+ p)o*+ pdf —n(,F+0* 1+ "', + 000" )
—(e—% my' (SF+ o)+ p{lh]? (vt + % 65— k) (2)

p being the isotropic pressure, ¢ the density, n and g the two coefficients of viscosity, u the
constant magnetic permeability and a comma indicates covariant differentiation. The
magnetic field vector A; is defined by [7]

1
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The dual electromagnetic field tensor is defined by [8]
*Fy = 5 ”ijkkam (4a)
and the permutation tensor
Nijkm = _\/:E i jkme (4b)

F; is the electromagnetic field tensor, ¢;,, is the numerical permutation symbol and o' is
the flow vector satisfying

g,.jvivj = —1, )

The coordinates are assumed to be comoving so that v! = v2 = v> = 0 and v* = 1/4.
We take the incident magnetic field to be in the direction of x-axis so that F,; is the only
non-vanishing component of the electromagnetic field tensor F;;. The first set of Maxwell’s
equation lead to F,; being a constant, say, H. We also notice that the components of the
electromagnetic field tensor F;; are constant in the present coordinate system but the tensor
is not covariant constant. We therefore do not call it a constant magnetic field. The field
equations

Rf—L RS*+ ASY = —8nT} (6)

for the line-element (1) are as follows:
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The suffix 4 after the symbols 4, B, C denotes ordinary differentiation with respect to ¢.
These are four equations in five unknowns A, B, C, ¢ and p. The coefficients of viscosity #
and g are taken as constants. Equations (7)-(10) are not independent, but they are related
by the contracted Bianchi identities. In the present case they lead to the single condition
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For complete solution of equations (7)~(10), we need an extra condition. An obvious
one is the imposition of an equation of state. However, in this paper we take

A = BC (12)

as a supplementary condition for the complete determination of this set. From equations
(7), (8) and (12) we get

Cse B.C, snH?
g = —{ 16ayBC + ——|. 13
C BC B+ p (13)
From equations (8), (9) and (12) we get
B C C B
24 _ %~ lemBC(— - 22). (14)
B C C B
Putting BC = a and B/C = f§ in equations (13) and (14) we obtain
o 167 H o
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and

(#B4/B)s = —16mna’B,/B, (16)

respectively. From equations (15) and (16) we get

tqq+ 16mnoo, + 161t %afp = 0. 1))

do
Let us now define F(a) = I Equation (17) then leads to

FdF ; 1)
(QempF+ 15~ X% (
which on integration gives
I R P T T 19
o = —— —— —

where 12 = 16nH?/u, P = 8nn and n is an arbitrary constant. Equations (16) and (18)
lead to

d
- (log ) = (16mnF + P)K/Q, (20)
where Q = (16ayn+1?) and K is a constant of integration. From equations (18), (19)

and (20) we get
R KdF -
T (2n JP+Dkn exp Qua? ) ’ (2D

where b is a constant. By a suitable transformation of coordinates the metric of this model
can be put into the form

ar? -
ds* = pDX? — oo +LD] [BdY? +B7 1z, (22)
where
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In the absence of viscosity the metric (22) after suitable coordinates transformation reduces
to

n®sin? IT ¥? n? sin? IT
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representing a magnetohydrodynamic cosmological model. Also in the absence of the
magnetic field the metric (22) after suitable coordinates transformation can be put into
the form

5 = n*sin® (/P T) Xt sin? 2‘(\/1’:1‘) iT?
P 4P cos* (/P T)
in /P T[bsin*"(JPT 1 —
n su:/\_/}; [ sin PK/(;,{ )de+ 'ZT PK/Z:: COSGCK/" (\/P T)dzz] R (24)

representing a viscous fluid distribution. The metrics (23) and (24) reduce to
ds* = THdX*—dT?+ T dy*+ 11 77dz? (25)

in the absence of magnetic field and viscosity respectively which represents a perfect fluid
distribution, y being an arbitrary constant.

3. Some physical and geometrical features

The pressure and density in the model (22) are given by

1 [T .. K)QPT+12)?
2
+ gg_};g"_i) +16nQT] -4 (26)
]

and
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The model has to satisfy the reality conditions [9]

@n
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which require

. 24+8
R > max | §/2, 3 ),
and
A < (3R-15)/2, (29)
where
L .. PKQPT+P)
R = ¢ (10PT+91")+ T +16moT, (30)
and
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Following the method outlined by Tolman [10] the red shift in the model (22) is given by
2KdT,
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where U is the velocity of the source at the time of emission and Uj is the Z-component
of the velocity.

The expressions for expansion 0, rotation w and shear o;; calculated for the flow
vector ¢' are given by

_ 2T
w(T)’
w =0,
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oy = T/3,
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the other components of the shear tensor o;; being zero. The non-vanishing components
of the conformal curvature tensor are
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Obviously the space-time (22) is non-degenerate Petrov type I and becomes degenerate
Petrov type I when K is zero. Thus, the metric (22) represents an expanding, shearing
but non-rotating, non-degenerate Petrov type I magnetoviscous fluid cosmological model
which tends to type D for large values of time in the absence of viscosity.

The distribution in the model (25) are given by

8 Lrs _»1 ., 35)
TPe = =5 | ~—5 — —5 | =4,
Po= 72| 312 ™ 412 (
and
sreg = L[>~ 4 36)
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The reality conditions require that
92 < min [5, (5—24T%],
and
A < (5—yH))j2T*. 37

The red shift in the model (25) is given by

1+7y
Atk T[Tl(T)+ U]

; (38)

B Tz(}%y)[Tz _ 0'2]1/2 .

The non-vanishing components of the Weyl’s conformal curvature tensor are given by

1 1 y? 3y
Cg:=ci§=_6 3 T2+2Tz+ T2 {’
1 [1 2 3y
2 V13
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2
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showing that the model (25) is in general non-degenerate Petrov type I and becomes de-
generate when y = 0.

The author adds his own sincere thanks to Dr. S. R. Roy, Reader in Mathematics
for his helpful discussions and is grateful to the referee for his remarks and expresses his
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