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The bearing of QCD on spectroscopy is illustrated by a discussion of the following
topics: the parameters of QCD, QCD Sum Rules, QCD and Current Algebra.

PACS numbers: 12.40.Cc, 12.40.Bb, 12.40.—y

The theme of these lectures is the inter-relation of QCD and spectroscopy. This is
a far reaching subject and what follows is a very brief and selective survey [1]. The topics
covered are: The parameters of QCD, QCD Sum Rules, QCD and Current Algebra.
Aside from passing references, there is no mention of the very considerable amount of
work using potential [2] or bag models [3].

1. The parameters of QCD

The deep reasons for favouring QCD have been rehearsed many times. As a candidate
for the theory of the strong interactions it is clearly the front runner and we are now mainly
into the phase of seeking quantitative confirmation. That is not to say that all predictions
have been realised at a qualitative level; in particuiar, much work remains to be done in
order to establish the physical properties of the gluons [4]. Here, however, we adopt
a book-keeping attitude and ask: What are the parameters of QCD; do the various measures
of them which are available agree?

For the present phenomenological purpose, a sufficient list of parameters comprises:
(a) the quark masses; (b) certain parameters which characterize the QCD vacuum; (c) the
running coupling: constant «(g2). We begin with a very rapid tour indicating the role and
what is known as to the value of these quantities.

* Presented at the XX Cracow School of Theoretical Physics, Zakopane, May 29 — June 11, 1980.
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1.2. Quark Masses

(i) Mass parameters enter the QCD Lagrangian via the quark mass-matrix

H = Y mggq;, (i=ud,s,cb..). (L.1D)
flavour
The quantities, m;, thus defined are the current quark masses. They are the sole means of
introducing explicit symmetry breaking into QCD, since the strong interactions which
couple to colour are supposed to be flavour blind. Eq. (1.1) imposes a very simple underlying
pattern of symmetry breaking which it is important to verify in the observed spectrum of
hadrons.
(if) Ratios of current quark masses are estimated in terms of those of the light pseudo-
-scalars using current algebra (cf. also §3), e.g.

2
md+mu my

~ ~ 0.040. (1.2)

2my 2myg
In this way, and making due allowance for electromagnetic effects, the ratios of m, to my
to m, can be estimated. To fix the scale, Weinberg [5] has proposed the approximate
formula

M, = mog+mNy (1.3)

to express the mass of an ordinary hadron h which contains a number Ny of strange quarks
(these being the only constituents of appreciable bare mass). This yields the estimates [5]

m, = 42MeV, my=75MeV, m,=150MeV (1.4)

with the universal contribution, m,, which is attributed to spontanecus symmetry breaking,
or equivalently to the effects of confinement, taking a value in the neighbourhood my,
& 350 MeV. Similar results have been found by a number of authors [6]. One outcome
of this kind of work has been the search for noticeable isospin violaticn effects stemming
from the substantial departure of m,/m, from unity [7].

(iz'i) Thus far we have spoken of the current quark masses which feature in the QCD
Lagrangian. A secondary, less precise concept is that of constituent quark masses, M.
These are the masses which have to be attributed to the constituents in the naive quark
model. Since residual effects of binding are supposed to be small, masses are typcially
estimated to lie in the ranges

M4~ %M, ~ %My, ~ 370 MeV,
M, ~ $ My~ 510MeV; M, ~ 3 M, ~ 155GeV,
My ~ 1 My ~ 4.7 GeV. (1.5)
Such masses coexist quite well with the observed magnetic moments of baryons, if standard
Dirac moments are attributed to the constituent quarks. An alternative approach to the

concept of constitutent masses [8] is to tie them to rises in the ratio R (o(e*e~ — hadrons)
Jo(ete~ — ptu-)) suitably smeared in energy to erase localized resonant structure.
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(iv) Eq. (1.3) gives an explicit expression to the idea of constituent masses being the
combined result of confinement and of a bare (current) mass input. In the MIT bag
model [9], the corresponding result takes the form

, const pare
M —7?— +(m®)?, (1.6)

with R the bag radius. Just how far this deviates from the linear formula, Eq. (1.3), de-
pends on the extent to which R adjusts to changes in m®". If the observed electronic
widths of vector mesons (I'(V — ete™)) [10] are taken as a measure of the “concentration”
of the corresponding qq wave functions using the Van Royen-Weisskopf formula [11]
(I'.+.- = known factors x [9(0)|?>/M?), then a considerable compensation is indicated.
Magnetic moments of baryons (cf. remark below Eq. (1.5)) are readily understood in the
bag model [9], since the confined quarks acquire effective moments g/2M with g ~ 1.

(v) Thus far we have regarded the quark masses as constants; however if they are
taken to be the parameters controlling the corresponding quark propagators [12] (for
example at large space-like Q7?), then they assume the role of an additional effective coupling
constant. As such, their leading power dependence as a function of ¢ is calculable by
standard renormalizable group metheds. In this way, Politzer [8] derives the formula

bare s(Q) spom % (Q)
miQ) = mP(M,) (71‘—%—)\ +m o)( 5 )(X%)

(d = 4/9 for N; = 3). (1.7)

Eq. (1.7) encapsulates the whole philosophy of effective masses in QCD. At low @32, the
spontancous symmetry breaking contribution m;"™ (which correspornds to (0|g,4;/0)> # 0)
is large and, in the case of the light quarks, dominant; at high Q?, the bare masses, which
correspond to explicit symmetry breaking, take over.

(vi) Finally, and to sum up this sub-section, where do the various masses enter sensi-
tively ?

(a) As already mentioned, the light current quark masses play an important role
in current algebra applications (cf. §3); my,—m, feeds isospin violation [7] and is thus
a crucial ingredient in formulae for n = 3r decay (cf. discussion preceding Eq. (3.17)).

(b) Constituent quark masses are obviously key parameters in naive potential model
calculations [13] (which are not discussed here).

(c) For the present discussion, and especially for the QCD sum rules of §2, the most
important mass parameter is m,, the charmed quark mass. Operationally, it enters as the
mass which is fed into the theoretical formulae which constitute the “left-hand side” of
the QCD sum rules. How should it be viewed? As a current quark mass, since it enters
quantities calculated perturbatively from the QCD Lagrangian; or, recalling Politzer’s
definition [8] invoking smoothed ete~ — hadron cross-sections, as a constituent quark
mass; or just as an “‘effective” mass which functions in duality relations. The same question
comes up in other duality applications involving charmed quarks, for example in discussions
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of the photo-, neutrino- and hadro-production of charm [14] which tend to favour rather
small values of m_ (values as low as m. =~ 0.8 GeV have been proposed). Probably the
most sensitive probe (presumably of the constituent) charmed quark mass, M., comes from
the study of semi-leptonic charm decays [15]; both the rate and the spectrum shape are well
fitted for M_ = 1.75 GeV.

1.3. Confinement — Parameters of the QCD Vacuum

Confinement of colour appears to be a fact albeit an unexplained fact {16]. A number
of promising mechanisms (not necessarily inequivalent) have been advarced {17]; in
particular, as we have heard at this school [18], there has recently been very considerable
progress in reproducing confinement in lattice calculations {19]. Thus, fundamental attacks
on this problem appear to be prospering.

For phenomenology, the question is how best to parameterize confinement and a num-
ber of schemes have been popular:

(a) Potential Models

Much work has been done with a variety of potentials motivated by QCD [20]. This
whole approach is well exemplified by the charmonium studies of the Cornell Group [21],
whose central potential

r coul conf

V(r) = 5 = V() +V(r) (1.8)

k
— +
r

a

comprises two terms: a short range Coulombic part governed by a parameter k (k = (4/3)o
for the static potential arising frcm one-gluon excharnge); ard a linear corfining part
correspording to a constant string tension which is scmetimes pictured as arising from
a colour flux tube of fixed transverse dimensions externding between well separated sources.

(b) The MIT Bag Model ]22]

Here, colour sources are supposed to be confired to small island regions (bags) by
a uniform isotropic (relativistic) pressure which pervades the vacuum. This is accom-
plished by confining the field components of QCD (quarks and gluons) to the interior
of bags and substituting

Lacp —* (Zqcp— B)by(x), (1.9

where the bag pressure, B, functions as an extra contribution to the stress tensor, 8,,
(dimensions [M*}).

{c) Spontaneous symmetry breaking [23] — the parameters of the QCD vacuum

We have already encountered the concept of products of field operators having non-
-vanishing vacuum expectation in connection with the generaticn of quark masses

@, = (Mgqi)o # 0. (1.10)
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In the approach to QCD sum rules pioneered by the Moscow (ITEP) group [24] to be
discussed in §2, the non-vanishing of @, defined above and especially of the analogous
expression for the gluon field

o,
O = <—s G:vG"‘"> #0 (1.11)
n 0

play a key role in parameterizing confinement. Both @, and & yield non-vanishing (iso-
tropic) contributions to the stress-energy tensor for the vacuum [25). In particular, according
to the QCD sum rules phenomenology to be described in §2, @ is large (in relation to
other effects) and positive and thus reproduces the all pervading vacuum pressure invoked
by the MIT bag model [25]. It operates irrespective of flavour and thus for example affords
a link between charmonia and light quark compounds. In the derivation of the QCD sum
rules (§2), ¢ emerges in an operator product expansion [26], wherein it is naturally ascri-
bed to long range fluctuations of the gluon field (the G’s in (1.11) obviously carry zero mo-
mentum). Its authors often refer to the physical phenomenon underlying (1.11) as the “gluon
condensate”, in analogy with the Bose condensates of low temperature physics. In the
language of the operator product expansion, @ (and @) is the coefficient function of a
power correction or ‘“higher twist” [27] addition to the leading perturbative contribution.

Besides being theoretically interesting (it would be good to know its value frem lattice
calculations), @ and its associated contributions to operator preduct expansions are
phenomenologically very convenient when combined with noticns of ¢2 duality [28, 76]
(§2). Both @ and @, are of course the first of a series of terms involving vacuum quantum
number bearing products of fields. In principle, these higher products (yet higher twist)
are independent parameters characterizing the vacuum; in applications to date, they
have been approximated by saturating the operator products with vacuum intermediate
states. The scope for invoking even higher terms in 1; Q2 is limited by the onset of short-
range fluctuations associated with instantons [29]. It is therefore fortunate [24] that there
appears to be an interesting range of energies for which simple controllable pcwer correc-
tions dominate the sum rules.

An important parameter of the QCD vacuum which will not feature in the present

discussion is the coefficient 8 which controls spontaneous CP-violation [30] (.?QCD = Lot

o, .
= $QCD—0—8—— GG>. However, the operator,
T

o oy
Dinom = GG (1.12)
4z

which 6/2 multiplies has an important role in discussions of the inter-relation of QCD
and current algebra (§3). As the notation anticipates, D2 is the “anomalous” con-
tribution to the divergernce of the singlet axial-vector current. There has recently been much
discussion relating various properties of 1 and 1’ to the existence of large matrix elements
of D?.... between these states and the vacuum (§3).
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1.4. The running coupling constant u«(g?) [31]

(a) Definitions and formalism

It is no accident that by far the most discussed parameter of QCD is the running
coupling constant, o (g?). Properly speaking it is not a parameter at all (indeed to the ex-
tent that all quark masses approximate either zero or infinity the theory has no parameters)
but rather an expression of how the full interacting theory evolves as one adjusts external
momenta; and it is universal because one is in a gauge theory with an irreducible symmetry
group [31]. In so far as one can perform realistic perturbation calculations in QCD, it
controls all (leading) departures from elementary parton model predictions for high
energy processes (scaling-violation), all violaticns cf the OZI rule (e.g. hadronic decays
of J/p) and all interactions attributable to gluon exchange or emission.

The primary occurrence of the strong coupling constant, g, in the QCD Lagrangian

Laco = —% Go,G"*+1 Y §yDg;+ docp+gauge terms (1.13)
q

mass
terms

is straightforward, since the field tensor, G},, and the covariant derivative D, are given
by the formulae

Gy = 0,4y— 0,45+ gf e Ap(X)A5(x) (1.14)
)
and g
i
D,=d,— 5 gAM (1.15)

with f,,. the structure constants given by
[4% A"] = 2if i (1.16)

Feynman rules [32], in particular the expressions for the elementary vertices of the theory
(Fig. 1.1), are thus controlled by g. Furthermore, because we are working in a (strong)

A AKX

Fig. 1.1. Basic vertices of QCD (ignoring ghosts)

field theory, all Green’s functions and in particular three point vertices get (appreciably)
modified by higher quantum corrections (Fig. 1.2) and this is calculable because the theory
is renormalizable [33]. The effective strength of a vertex thus depends on the values of the
external momenta; to leading order, it just @epends on the big momentum involved

2
= a,(q%). 1.17)

o =

A‘cm
B
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The nature of the theory makes the variation with scale of «, peculiarly susceptible
to arenormalization group equation (RGE) analysis [34] which yields the following explicit
formula [35] useful at small and moderate §’s:

dg . Bog®  Pig’
g = B = =75 - dey T (1.18)
= + wwé .
N

+ s e

Fig. 1.2. Modification of gqg vertex by higher quantum corrections

For all practical purposes, the coefficients i, and ; are gauge and renormalization scheme
independent [36], the explicit values being

Bo
By = 102—-32 N, (1.19b)

11-2N,, (1.19a)

with N; the number of (active) flavours. The scale parameter, A, is conventionally intro-
duced as an integration constant [37]
;2

dg*

= In (Q%/A%). 1.20
ogﬁ@ n(Q°/A%) (1.20)

Solving to lowest order (i.e. dropping f; and all higher terms in (1.18)) gives the familiar
lowest order approximation [38]

o _ 471_
T Boln(Q*A4%)°

The corresponding second order approximation is most conveniently expressed as an
implicit relation for o [39]

(1.21)

4 B, 4nfo\ 2) 42
Boos B Bgln (1+ ﬁl“s) = In @74, (22

The resulting dependence of « on Q2%/A? from (1.21) and (1.22) is shown in Fig. 1.3 for
N; = 3,4 and 5.
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Since «, is presumed not to be very small at presently accessible energies (just how
small or large is currently a matter of debate, as will be discussed), it is important to exer-
cise the options left in its definition so as to optimise perturbation expansions for various
physical quantities. The options in question are principally to do with which renormaliza-
tion scheme is adopted (“minimal subtraction” (MS), “modified minimal subtraction”
(MS) and “momentum subtraction” (MOM) being popular, practicable schemes [40]);

08

06+

0.41

- — B ) 1
1 10 100 .. 1000 10000
Q“/Ae

Fig. 1.3. Functional dependence of the strong coupling constant e,(Q?): according to second order for-
mula (1.22) with N¢ =3 ( ~), N¢g= 4 (—.—) and Ny =5 (— — —), and according to the first
order approximation (1.21) (- -+ )

and there is also gauge dependence within these schemes (such dependence is rather slight
for reasonable choices of gauge). Since to the order we are working, f(g) of Egs. (1.18)
and (1.20) is independent of scheme, all adjustments concentrate into a re-scaling of 4 [41]:

AWS = 0'46AM0M = 2'66AMS' (1.23)

Note however that this simple conversion formula does not suffice to translate determina-
tions of «, from data according to one (truncated) perturbation scheme into those according
to another.

Comparisons and codifications of the effective coupling in QCD in various physical
situations are bedevilled by the choices and ambiguities inherent in a strong coupling regime.
The scale parameter, 4, which has been a popular vehicle for phenomenology, exposes
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all these problems in magnified form. To lowest order, it is inherently ambiguous [42],
since changes of scale (A’ = ¢A) only modify higher order corrections which are in any
case being ignored. This in no way prevents the use of formula (1.21) as a rough approxima-
tion over a limited energy range; however, it is difficult to achieve any great precision
since the defining formula involves an exponential

A = @ exp [—2n/Boas(Q)]. (1.24)

Finally, there is the scheme dependence exemplified in Eq. (1.23), but this complication
is shared by o,(g?) itself.

(b) Determinations of «; briefly reviewed

Most of the phenomenological determinations of &, to be touched on in the following
brief survey do not expose the complications alluded to above. One simply implants a fixed
coupling constant into the perturbation calculations which is supposed to serve for the
energy domain in question (see for example Eq. (1.26) below). To date, the most important
exception is the analysis of deep inelastic lepton scattering (DIL) [43] where the range
of momentum transfer (g2) investigated and the precision of the data makes a more sophis-
ticated approach necessary and worthwhile.

That said we now proceed to list examples:

(i) Charmonium and related studies [44]

(a) Spectrum: Extensive potential model analyses have been made, notably by the

k 2
Cornell group [45]. The form of potential which they use V(r) = — — + LZ—— has already
r o a

been mentioned (Eq. (1.8) above). If the coefficient of the Coulomb piece is interpreted as
arising from one gluon exchange in static approximation, then the value emerging from
the phenomenology corresponds to an effective coupling

“ou )’ =3 k ~ 0.4, (1.25)

(b) Hadronic transitions: Motivated by the prospect of a(y) being relatively
small in accord with motions of asymptotic freedom [38], Appelquist and Politzer [46]
proposed at a very early stage that OZI violating decays of (cc) compounds such as the Jjp
be computed perturbatively as is done for positronium decay. Hadronic decays are con-
ceived as proceeding via an intermediate stage comprising the minimal number of gluons
(3 for a 1~ colourless compound, 2 for a 0~ initial state). The initial wave function depend-
ence (the [(0)|? factor) is eliminated by taking the ratio with the leptonic width to yield
the famous formula [46]

I(J)yp — hadrons)  I'(Jjy »3g)  10(n*—9) o]
gy »e'e) TIJy—octe) 8lmel o’

(eq = %, a7 &~ 137), (1.26)
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which on inserting the observed experimental branching ratios leads to the estimate
afy) = .19+.02. 1.27)

The hadronic width entering the above formula is understood to have all non-hadronic
processes, including J/w — intermediate *“y” — hadrons, removed

rhad = Ftol—Nle.p_F“y"hadrons—'Fem
= r!ot{l *(Nl+Rcomimuum(W))Bp} _rem' (128)

It is interesting to compare this estimate with the corresponding determination for the
Y (9.4) by the PLUTO group at DESY which was presented at this School [48]. Inserting
their measurements, I'Y, = 1.10+0.05keV, R(Y)eoningum = 3.70£0.12, B, = 3.5+1.4%
(where I',, = 35%75 keV), they obtain

1 (Y) = 0.16%95%. (1.29)

Taken together, these two estimates (1.27) and (1.29) by exactly the same method and for
values of Q2 differing by a factor of 9.2 begin to constitute an interesting test of the predic-
ted variation of x(Q?). Comparing with Fig. 1.3 one sees that the observed variation of
«, is somewhat less than that suggested by any of the curves. (Note, howeves, that if we
were to switch from the N; = 4 curve at the Jjy to the Ny = 5 curve at the T (9.4), the
variation would be slightly /ess than that observed).
There exist analogous formulae involving the 1, (2.98) {49]. For example
20
r, =~ —7rI,y (1.30)
aS
which suggests that I',_ should lie in the range 2 to 5 MeV whilst new measurements by
the “Crystal Ball Group™ at SPEAR indicate a larger value I'tX" = 201 MeV [50]
corresponding to a rather small a.
The simple perturbative formula for the J/y—m, mass-splitting [51] provides another
relation

1 My \?
am = Lo (1) re. (1.31)
2 m,
which on inserting the observed mass splitting, 4, = 115 MeV yields
“a(p)”’ x 0.28m2 = 0.6  (for m, = 1.5 GeV). (1.32)
Finally, there is the analogue of (1.26) [49]
r a\?
"M =71 _ “g_(__) , (1.33)
r(n. — gg) %

which will be very interesting once the experimental yy branching ratio for 1, (2.98) is
known.
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A further interesting prediction for which there already exists some relevant data [52]
concerns the decay Jjy — v + hadrons. In QCD terms, this is interpreted as J/y — yeg
so that the branching ratio compared to the all-hadronic decay reflects the simple substi-
tution g — y. The theoretical prediction [49] is

Fdw - vew) _ o, T2ex 0023 (1.34)
I'(Jjy — 3g) 100, a(y)
The observed branching ratio (after allowance for “hadronic” y’s from 1’s and n®’s) comes
out roughly of the expected magnitude for o, & 0.2 but the spectrum shape is not in accord
with simple theory [53].

The above results stem [49] from a combination of a simple zero range (non-relativ-
istic) approximation for the initiating annihilation (probability of the cc pair “‘presenting”
themselves for annihilation proportional to |¥(0)]?) and lowest order perturbative QCD
for the subsequent reaction which transforms the constituents. Formula (1.33) is known
to receive large corrections from this latter source [53a). The hope is that wave functions
corrections may be to a large extent eliminated by expressing predictions in the form
of ratios as above. There are certainly liable to be large corrections if this is not done
and there may be remnant effects even if it is done [54].

(i) Analysis of Jet Broadening in efe collisions

In QCD, this well documented phenomenon (cf. talk by P. S6ding at this school [53])
is attributed to gluon bremsstrahlung leading to predictions [56] of the type

{p?> x~ (known const)x x(Q%)x Q%+ “primordiai” contributions arising
from confinement. (1.35)

In order to extract a, from data on jets, one has to model the non-perturbative effects [56].
The outcome from analyzing the TASSO group’s data is [55]

2, (30 GeV) = 0.17+ 0.02 + 0.03 (1.36)

{statistical)  (systemutic)

with similar findings from other groups at DESY. In relation to (1.29) and the expected
variation with Q2 (Fig. 1.3),0.17 would be an unexpectedly large value for o, at 02 = 10 M3,

(iii} Exclusive EM Form-Factors of Hadrons

As discussed at this School by J. Gunion [57], there exist predictions [58] from per-
turbative QCD for the asymptotic Q2 dependence of EM form factors, for example

Q'Gh(Q")  ~  const [T, (1.37)

where ¢ is a known positive power. Since there is little variation of Q*G¥ over the consider-
able range of large Q7 covered by experiment, this leads to small estimates [58] for «, or
equivalently for the QCD scaling parameter, A: A4 < 0.1 GeV.
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(iv) ARyj41eay In €*e~ annihilation

In principle, the departure of R = g(e*e~ — hadrons)/(o(e*e~ — ptv-) from its parton
model plateau value, R, = 3% Y, eg affords a measure of o (Q?) (cf. §2) and there

active flavours
exist dispersion relation methods [59] which accomplish the necessary smoothing in Q2.
What is lacking is precise comprehensive data.

(v) Light flavour spectroscopy

Notional averaged values of {a,» at low Q2 may be inferred from the phenomenology
of light quark hadrons, especially from spin-orbit splittings. It is interesting to note the
spread of resulting values [60].

(vi) Deep inelastic lepton scattering

By far the best researched and most discussed phenomenon for calibrating QCD is
inclusive inelastic lepton scattering [61] (Fig. 1.4(a))

I+N - I'+ X. (1.38)

The cross-section at given incoming lepton beam energy E is a function of two variables
Q% = —¢? and v = p - g (Fig. 1.4()) (corresponding to measurement of the angle and
momentum of the outgoing lepton) which are often re-expressed in terms of the dimension-
less variables x = Q% v (Bjorken x) and y = v/E. Factorizing out the appropriate (known)
point-like cross-section, one can express the observed intensity in terms of structure
functions

o |( &o 2 p 4+ (1 "N (o —y2F, (139
— = y*x —-y— xy(1—y .
dXdy dXdy point-like y ! Y 2E ) 2 $ Y Y ? ( )

F; = F(x, Q%). (1.40)

The last term in (1.39) is absent for charged lepton scattering, has the coefficient (—)
for v scattering and (+) for v. For practical reasons, F, is not well-measured.

In the parton model [62], absorption of the incoming gauge quantum (“y” or “W*”)
is pictured as proceeding via a simple point-like coupling to a freely moving constitutent
of the struck hadron (Fig. 1.4(b)). In the absence of further interactions, the F; would
then be independent of Q2 (i.e. would “scale”) with their x-dependence reflecting the distri-
bution of parton momenta. In QCD, this simple picture gets modified by coupling of the
struck quark to the gluon field (Fig. 1.4(c)) which issues in a specific Q? dependence of the
F; (violation of scaling). Since the F; are also functions of the kinematic variable x, and
there are several of them available to experiment, they provide an exceptionally versatile
laboratory for calibrating QCD.

Predictions are most conveniently expressed in terms of moments [63] (M,(Q?

with

1
= [ dx x""*F(x, Q%) or simple variants thereof [64]) of the structure functions. For
o]
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example
M3(Q%) = A (Q*)" [1+C,Jes°(@H) + ...]
(E [MEZS(Qz)]Ieading Iog) (141)

with ¢, a known power, C, a known coefficient depending like o, on the renormalization
scheme [63] (recall the discussion above Eq. (1.23) and see Eq. (1.21) for definition of
«©) and A4, an overall constant to be taken from experiment. This is the dominant evolu-
tion pattern [65] for the “non-singlet” (NS) combination of nucleon structure functions
(FY® = F5—F}) at large Q? according to perturbative QCD; the corresponding singlet
moments (M5 = 1 (MP?*™) obey a slightly more complicated equation [66] since there
are contributions from both quark and gluon constituents and they “evolve” differently.
The non-singlet moments have therefore received most attention.

(c)

Fig. 1.4. Deep Inelastic Lepton Scattering: (a) the basic physical process (b) the parton picture (c) example
of a QCD radiative correction to (b)
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If Eq. (1.41) were guaranteed to be the whole story, it would be straightforward to
extract o, from the charged lepton and neutrino data. However, various mechanisms are
known to exist which could produce appreciable power corrections (so called “higher twist”
contributions [27])

MY(0) = [MYS(Q*)Dicasing og X [t+ Prt  Bro ] (142)
0 Y

to the leading logarithmic dependence via a{Q?) which is explicitly shown in (1.41).
In order to distinguish powers from logarithms, one needs a long lever arm in Q2; this
is achieved [67] by combining the very precise ep data from SLAC [68] with high energy
neutrino data [69] (using and verifying the famous relation [70] F$¥ = % F3). Two recent
analyses along these lines [67, 71] find a substantial o, dependence (i.e. a relatively large A)
and little scope for power corrections; if the high energy data is omitted, there is almost
indefinite scope for trading a, dependence for power corrections [72]. Since the new analyses
essentially uphold the neglect of power corrections, they find values of A similar to those
originally determined from the high energy neutrino data [73]. Duke and Roberts’ best
fit yields [67]

Awms = 0.411.05 GeV (proton),
Ags = 0.524.10 GeV (NS n—p). (1.43)

The value Ags = 0.41 corresponds (Fig. 1.3) to als“TS(lp)z 0.3; the associated Apom
~ 1 GeV (Eq. (1.23)) and yields «"M(y) ~ 0.45.

This whole area of phenomenology is still controversial; for example, Donnachie and
Landshoff [74] have pointed to the discrepant power behaviour of proton and neutron
structure functions at large x and Q2 as evidence of persisting higher twist effects [74].
Time plus improved and extended data will tell. Meanwhile, for the following discussion,
we shall take the view that scaling violation in deep inelastic scattering is largely controlled
by leading perturbative corrections and consequently that A is similar to the estimate
(1.43) given above. It is interesting that comparable values are inferred from lattice calcula-
tions [75].

2. QCD and duality

An obvious challenge to QCD is to describe the systematics of hadron spectroscopy.
This entails somehow accommodating the fact of quark confinement and adapting calcula-
tional methods to comprehend bound states. Some alternative methods were mentioned
in §1.3 [2, 3].

The basic idea is to by-pass detailed aspects of confinement and determine a simplified
set of universal dynamical coefficients by appeal to the duality principle [76]: analytic
approximations to analytic functions continue to approximate on the average. In equations,
if

1) = j M) by~ A=~ J fm I1(5)
T S —S for large s 4
So So

gy, 2.1)

s =3
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then
Im (s’ Im fI(s’
f JE) 4 . J‘ ELCOW (2.2)
s —s s7® s —s
80 So

and for (2.2) to be true, ImII(s") has to continue to resemble ImII(s’) on the average as s'
is continued below the asymptotic region. Pictorially this notion, of which a familiar exam-
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<

~
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Fig. 2.1. Qualitative illustration of duality

ple is Bloom-Gilman duality [77] in electro-production, is illustrated in Fig. 2.1. An imme-
diate consequence is the possibility of deriving a whole variety of sum rules

Of W(s") Im IT**¥(s")ds’ = }v W(s") Im IT™Y(s")ds’ (2.3)

sSo So

relating weighted sums (in the applications to be described, the weight W(s') is either
a negative power (s')"""! or negative exponential e”*/™’) of experimentally accessible
cross-sections, ImIT™**, to the corresponding relatively simple theoretical expressions,
ImII™Y which are valid at high and intermediate energies. Such relations will be useful

Current Current

Fig. 2.2. The generic vacuum polarization graph

providing there is a significant overlap between the energy regions covered by theory
and experiment.

Applications [78] concern various species of vacuum polarizations (Fig. 2.2), the exam-
ple which will feature most in the sequel being that associated with the charm current,
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I, defined by:
e = iK0| § dxeT{IP(x), IO} 10> = (g,9,— 48T (),
TP = zy,0). (2.4)

Alternative IT’s come from changing either the flavour or tensor character of the currents
entering (2.4). I1¥ is particularly suitable for phenomenology because its absorptive part
is directly proportional to R, the contribution to R = g(efe~ — hadrons)/o(ete™ — pru~)
from charm {[79]

R(Gs)

2
@y = >
) = 1272Q? j (s'=s) (s")* @’

Q. = . (2.5)

Before entering into details, it is worth remarking that for this case, we know a priori
that we have a good chance of deriving sensible duality relations [80]. This observation
comes from considering alternative expressions for elementary contributions to R.: on
the one hand, the dominant low-energy contribution to the left hand side of Eq. (2.3) comes
from the Jjy

92 2
Ry %~ DyrelMyd(s = M); (2.6)

on the other hand

Rparton model — 3 %

RP™, 2.7

ofp
IS
]

Defining a “duality interval”, AM? by the requirement, (R,> = (R"™), one obtains
a “sensible” number in relation to the charmonium level spacing

, 2= 2
AM = sz FeeMp = 58 GeV

~ My —M; = 4 GeV>, (2.8)

One is thus encouraged to pursue duality relations of the type (2.3) with more detailed and
realistic insertions for ImIr¥*F THY,

Two main routes have been pursued. The first [59] aims to devise precise determina-
tions of specific parameters e.g. o,(Q?); for this, the best strategy is to evaluate sum rules
at high s where perturbative QCD supplies a.simple prediction for the dominant correction
to RP™. The alternative [24] is to aim at a more global picture, evaluating the sum rules
at lower s and thereby, hopefully, achieving some overall parameterization of confinement.
Provided this is successful, one should be able to apply the same description in a variety
of situations — (cc), (bb), (cq), (Qq) --- -

This latter has been the programme of the ITEP group, Shifman, Vainshtein and
Zakharov (SVZ) [24] and co-workers. Their idea is that as one reduces s from asymptotic,
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values, departures from perturbative QCD at first enter in a simple and controlled way
via specific power corrections (higher twist contributions) (Fig. 2.3); such power corrections
arise from spontaneous symmetry breaking (§1.3(c)) expressed through non-vanishing
vacuum expectation values such as

{a,G*>y = {a,G5,G™ # 0. 2.9)

This circumstance enables SVZ to push the theoretical interpolation down into the reso-
nance region; and thence, via duality relations, to build connections between resonance

E (GeV)

26 30 34 38 42 58
+ 3 A A T
T ¥ Wmm—’zl
Continuum

05

-0.5

10 b
04 0§ 08 10
;
Fig. 2.3. Contributions to RTY (2.15) as a function of v = [1 —4mZ/s]*/2: ( ) total; (— — —) parton
contribution (2.16); (-~ - - ) perturbative correction based on (2.17); (—.—) power correction based
on (2.18)

parameters and QCD. In this way, they achieve a complete outline parameterization akin
to the bag model but much more flexible. Parameters can be determined in one situation
then applied in another.

It is instructive to follow through SVZ’s analysis [81] of II' in some detail, since
it provides their estimate of {x,G?>,. For this case, they employ simple power moments

1 R(s) 1/ 4y
= : "= —— ) o9
M= gz Jioy ® n!( ) ©

s=0° (2.10)
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An alternative to taking s~ " moments, which SVZ adopt for analyzing light quark systems
(see Eq. (2.28) below), is to use “Borel-ization”

(f)

1 d\" 1
L —=s"|-— = = | dseSIMROO 2.11
ol (n—l)!s( ds) H 12n"Q?J ¥ @4

s/n=M?2 fixed (s)

(f) = {flavour, tensor character}. For heavy quark systems, such as that described by 1719,
it is not necessary to introduce this elaboration, since s = 0 is already far removed from
the threshold, s = 4m?2; one can also generalize (2.10) to refer to an arbitrary negative

(space-like) squared energy Q% = —4mZ¢ [82]. SVZ just use (2.10) unmodified and their
sum-rules take the simple form

MY — pfEXP (2.12)

It is straightforward to compute the right hand side of (2.12) from (2.10) using an REX®

comprising a sum of resonance terms like (2.6) and a contribution which models the conti-
nuum. The distinctive feature of SVZ’s analysis is their treatment of RIHY,

Their starting point is an operator product expansion (OPE) [26] for the quantity

Q,, = T{J(x),J(0)} 2.13)

appearing in (2.4). The outcome, which immediately extends to the analogous operators
appearing in other 11, is exemplified by the Feynman graphs shown in Fig. 2.4. Up to
this point, it is natural that two classes of operator should appear: those like (a) and (b)

:m 5
O \/

(d)
Fig. 2.4. Feynman graphs contributing to £, (2.13)

which communicate with the perturbative vacuum of QCD; and those like (¢) and (d)
containing extra external lines which do not. (It is assumed [83] that the coefficient functions
of either class may be computed perturbatively.) The effects of spontaneous symmetry
breaking [84] manifest themselves in the following step in which the vacuum expectation
value of Q,, is formed to yield I7¢)

g =<2, (2.14)
and consequently R™Y (using (2.4), 2.5)).



61

For heavy quark systems, only (a), (b) and (c) of Fig. 2.4 contribute to leading order
in o, [85], and SVZ thus derive the estimate [86]

m O <asG2>0
R — e {1+ % K} - 222 v 0 @.15)
where
o(3—v*

RP™ = g_[ ( 5 )0(5—4m3)}, (2.16)

r{ n w+3) /= 3)

Ke | —— 02— — — .
: [23 : (2 =) 2.17)
n 242 2

L = 67(1—1) ) (1+2), (2.18)

and the charmed quark mass, m,, enters the formulae via the quantity
v = [1—4m?/s]'% (2.19)

Given (2.15), it is simple to derive the moments M"Y and thence to compute the
ratios, r,, of successive moments [87]

MMy n?—1 1
THY = = ——— ] - 1+K,0,—L,}. 2.
T MMy (nz+% n) 4m? { o~ Lu} (2.20)
Here, ¢ is a dimensionless measure of the gluon condensate
4n* /o, -
e (.21)
9 T o

and K, and L, are known cocfficients. The corresponding experimental ratios are easily
calculated from data on the y’s (for large n, r£** is dominated by the Jjy: rEXF - M, )2
~ 0.1 GeV~2) with allowance for an extra contribution to R, from the continuum [87].
Allis now set for a comparison of theory and experiment, hopefully vindicating the approxi-
mation (2.20) and determining its parameters. The result [87] which is shown in Fig. 2.5
from reference {24] constitutes the primary evidence for and calibration of ¢. 1f ¢ were
zero, ritY would follow the open circles on the figure (SVZ compute for o, = 0.2 as given
by (1.27) but this is unimportant since the perturbative corrections to r, are small e.g. 7%,
for rs). Inclusion of a suitable non-zero ¢ contribution yields the inverted solid triangles
in good agreement with “experiment” for » <C 8. The lowest moments are used to fix m,,
the effective “duality” charmed quark mass, which should probably be viewed as the
current mass of the ¢ quark (cf. discussion in §1.2 vi(c)). The values which SVZ determine
for these parameters are

m, = 1.26 GeV, (2.22)
¢ =135x1077, (2.23)
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Fig. 2.5. Theory and experiment compared for ratios of power moments of R (Egs. (2.10), (2.20),
Fn = Mp/My—~: — experiment, O theory omitting power corrections; W theory including power
corrections — parameters as in Egs. (2.22)-(2.24)) (based on Ref. [81])

whence
as 2 4
<—— G > ~ 0.012 GeV™. (2.24)
T 0
The latter corresponds [25] to a negative vacuum energy density g, = —0.0035 GeV*

akin to the MIT bag pressure [88].

SVZ have extended their analysis to various other systems; examples concerning
light quark compounds [89] are mentioned below. By the nature of things, applications
of duality to light quark systems tend to be more speculative. Great importance therefore
attaches to extending the scope of application within the heavy quark sector. Such has
been the work of Reinders, Rubinstein and Yazaki (RRY) [82, 90] who have extended
the above analysis to embrace all the currents coupling to S and P wave cc compounds.
Determining the theoretical formulae analogous to (2.20) entails laborious Feynman
graph evaluations [82]; once these are done, it is straightforward to confront the various
[+)T™Y with the corresponding experimental ratios [90]

[r=** = 5 (148)) = [1) Jeowest x(correction for higher states). (2.25)

(Ml{)2 + QO resonance



63

Here, My is the mass of the lowest resonance contributing (e.g. M, _for the 0~ current)
and Qf designates the space-like point at which the moments (2.10) are evaluated. The
factor (1+3;) which represents the effect of higher states is unconstrained by experiment
(except for the vector current), however its effects may be minimized either by avoiding
small values of # or by forming ratios r!/rJ . Arguing in this way, RRY determine preferred
values for the theoretical parameters m,, «, and ¢ (as dcfined in (2.21)) and predict masses
for the n. and intermediate 7y states [90]:

m(J/p)—m(n,) = 80+30 MeV [115],
m(*P,) = 3.54+.01 GeV [3.55].
m(*Py) = 3.50+.01 GeV [3.51].
m(*Py) = 3.40+.02 GeV [3.41], (2.26)

in good agreement with experiment [91]. They also predict a mass for the as yet unobserved
C = —1 axial; m(*P,) ~ 3.51 GeV. That m,_ = 3.0 GeV (not 2.85) was predicted in
several previous calculations [92] including SVZ’s. The most impressive success of the
new calculations is thus the emergence of the observed splittings of the P states [93].
Theoretical parameters for the S(P) wave calculations come out similar to SVZ’s:

me = 1.26(1.23) GeV; o, = 027(0.23); ¢ = 0.0012 [94] (2.27)

except that o, is larger. It will be extremely interesting to see how the scheme transfers
to other QQ, Qg ccmpounds.

A final example of the application of QCD sum rules is provided by SVZ’s discussion
[89] of the @ and n—A, dominated spectral functions. This entails using the machinery
of QCD duality for much lower Q2 and is consequently much more speculative. Nonethe-
less, the results are interesting; furthermore, adapting the methced to light quark systems
brings out some new points. Firstly, because of the proximity of s = 0 to threshold some
modification of the simple moment prccedure (2.10) is necessary. SVZ’s answer is to opt
for “Borel-ization” (Eq. (2.11)) which affords a more flexible sampling of low energy
contributions. As previously, the major task is to assemble the various theoretical contri-
butions to R analogous to (2.15). Because light quarks are involved contributions like
Fig. 2.4(d) now appear and there are more complicated four-quark operators which SVZ
estimate by saturating with the vacuum intermediate state. The upshot for the /=1
vector spectral function, R1=‘(s) is a sum rule

- . - a(M?  4n?
fdse SMIRI=1G) = 3 Mz{l+ (rr + 7154' {0|myiiu + mydd|0)

So

2 o, 4 quark terms
+ 2 {o| = Gglo) + T R L (2.28)
M n M
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Finally, inserting a conventional estimate for the light quark spontaneous symmetry break-
ing term

Ofmyiiu+medd|0y ~ —1 f2m?2 ~ —1.7x107* GeV* (2.29)

and their own estimate (2.24) for the gluon condensate, <_cxi Gz> , SVZ obtain the
n o
prediction

24\2 2\3
(M%) = Je”s/MzR’=1(s)ds ~ 3 M? [1+ (M) +0.1 (%—) —-0.14 (%-‘;-) ] (2.30)

7Z

(Note, the M—®° term which arises from the extra approximation of saturating the four
quark operator with the vacuum intermediate state comes out quite large). Saturating the
lefi-side of (2.30) with the ¢ and evaluating for M =m, gives 12n2e~'m’/g?
(e = 2.7183 ...), corresponding to the conventional definition of g, which entails

R - ‘12n2me

o(s— m) If all corrections to the right hand side of (2.30) are sup-
Q
pressed, there results the remarkable prediction [89]

2
2
% ~ ;”. ~23. (2.31)

d
SVZ go on to discuss predictions for m, using Ve (Eq. (2.30)) and claim that the power

correction terms stabilize the prediction as a function of the parameter M.

They also extend the analysis to the corresponding axial current, J, [89]. Because J,
is not conserved there are now two spectral functions I1, , which may be chosen such that
the physical contributions to ImlI7, , take the form

Im 1, = ” nf 25(s)+““4,” + “continuum”,
ImIij =" “A,” 4+ “continuum’. (2.32)

Again saturating at M = m, for IT, and keeping only the r contribution, they obtain

. m,
fo= Sb=125MeV, (2.33)

the corresponding experimental value being 133 MeV (in their normalization). They go
on to argue that the full sum rules are again “stabilized” by the power corrections but do
not give full details.

SVZ have applied QCD sum rules to other aspects of the vector nonet [95] and to
estimating the gluonic content of the I = 0 scalar meson [96] and of the 1’ [97]. Mention
of this last topic serves to introduce the following section and to conclude this short de-
scription of QCD sum rules.



3. OCD and current algebra

Much progress has recently been made in understanding how QCD impinges on cur-
rent algebra. The key elements of the problem and of its resolution have been in place
for some time. On the one hand, the octet of ground state pseudo-scalars {n, K, ng} are
supposed to be the Goldstone bosons corresponding to spontaneously broken chiral
symmetry [23]. This model requires that m, and myg should vanish as the corresponding

g

g

Fig. 3.1. Feynman graph yielding the axial anomaly in QCD

quark masses tend to zero and justifies the use of PCAC for the = and K fields [23]. This
leaves a problem (the U(1) problem(s) [98]) with the n and # masses, with the mixing
structure of the scalar nonet and with understanding how 1 — 3x. On the other hand,
in QCD the divergence of the SU(3) flavour singlet axial vector current has an anomaly {99]
(see Fig. 3.1 and Eq. (3.4) below) akin to the originally discovered effect in spinor electro-
-dynamics {100} which successfully explains the decays =1}, n') — vy (provided N, = 3).
It was therefore immediately proposed [99] that this anomaly should dispose of the U(1)
problem. Many subtleties arise in implementing this {101]. Fresh insight has come recently
from looking at the problem within the large N, approximation [102] to QCD which has
generated confidence to re-examine the Ward identities of current algebra with anomaly
effects included [103]. This yields phenomenological estimates of the gluon content of
the 1 and 1’ (in a sense to be made precise below). Combined with extra assumptions and
using the observed rates for n°% n, ’ — 2y, this leads to new predictions for decay processes
involving n’s and m"”’s: Jp — n(n')y [104], and a relation between 11’ - nntn~ and
1 — ntnn® [105]. Besides being interesting in their own right, these discussions generate
a whole new approach to gluon couplings and may even have bearing on the elusive

bound configurations of gluons (gluonia or glueballs [106]) which theorists hypo-
thesise [107].
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Ward Identities

The key parameters in the following discussion are the matrix elements of the two
gluon operator [103] (cf. (1.12))

GG = /3 -2 GG, (3.1)

between vacuum and n, (n or ')
A, = (my)” *0IGGn,). (3.2)

(The symbol Gf,v in (3.1) denotes the “dual” (gluon) field [108] § ¢,,,,G** and the factor
(m,)"* in (3.2) is inserted for dimensional convenience (cf. Eqs. (3.5), (3.6) below).) The
coefficients A, thus introduced can be thought of as measuring the coupling of the gluon
field to the 7 = 0O pseudo-scalars. They are important parameters because of the existence
of the axial anomaly in QCD, whereby the divergence of the flavour singlet axial vector
current possesses an extra component. Besides the standard contribution arising from
non-vanishing quark masses

D' = —[Q%. Lgs] = [Q%, (m,iiu+mydd +mg3s)] (3.3)

there is a term (whose source in perturbation theory is indicated in Fig. 3.1) proportional
to GG

&AL = D'+0,,GG. (3.4)

(Here, as usual, AL = gy,ys(4/2)g with 4; the Gell-Mann matrices.) The pseudo-scalar
decay constants, F,, defined conventionally as matrix elements of (3.4) by

COI*ALIP,> = miF,, i=0,1,..,8,

(P} ={mnK,m,17, (3.5)

furnish a measure of the explicit symmetry breaking effects (3.3), provided the anomaly
contribution (3.2) is subtracted off [109]

Fra=0i04y, = (m,) *<0ID'|P,>. (3.6)

Eq. (3.6) asserts that the anomaly should control the departure of the pseudo-scalar nonet
from the “ideal” [110]. To see if this works and to draw consequences one needs to know
how big the 4,’s are.

Several estimates have been given [111]. In all but one case {104], they stem from
saturating the Ward identities of current algebra with the ground state pseudo-scalar
nonet [112]. This approximation scheme [113] (which is sketched in Appendix I) yields
four equations {114] for the six coupling parameters (Fg,, Fo,, Fgpys Fons Ay Ay) relating
to n and 7. These comprise the three relations [115]

Lgg = mZFg, +m2F3, = + (dmiFE—m?2F?), (3.7a)
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Los = m2Fg,Fon+m2FgnFoy = 13«\/:-2 (M2FZ—m?F?), (3.7b)
Loo = m2F o (Foq—A)+miF oy (Fon:—Aoy) = + QmgFg+miF}), (3.7¢)

together with the constraint [116}
mﬁFann+m,2fF8n,An, =0. (3.8)

Variants of (3.7a, b, ¢) have a long history in discussions of the pseudo-scalars {117]; for
example, in the absence of the anomaly contributions, the combination (2Lgq+2 \/i Log
+ Lgs) yields Weinberg’s famous inequality (m, < \/3 m,) for the n and " masses [118].
The derivation requires ones making symmetry assumptions [119] on the F’s, as doces
Veneziano’s discussion of the 1 and n’ mass-matrix in the presence of the anomaly [120].
His formula

2
2 4 2 1.2 2 2 2
Mgg = 3mg—3my, Moz = — 3 (mg—my),

Mo =2 mg+1 mZ 432N, (3.9

gives a good account of the pseudo-scalar masses with a mixing angle of +14°, similar
to other estimates. The occurrence of the factor N, ' in the anomaly contribution to (3.9)
witnesses to Veneziano’s analysis being from the standpoint of the large N, expansion [102]
whose application in this context was pioneered by Witten [121]. An important achieve-
ment of this picture is to unify the status of the pseudo-scalars as Goldstone particles:
whereas the octet pseudo-scalar masses vanish as m, — 0 that of the iso-singlet vanishes
as N, — oo (again cf. (3.9)). This has led to the suggestion [122] of extending PCAC to
the n’ using GG as the interpolating field

by = ¢ = (m) " (4,)7'GG; (3.10)
this idea has been used to relate the decays n' - nrtn and n — nin-n® with striking
numerical success [124] (see (3.18) below).

Goldberg [123] and subsequent authors [103] have adopted a somewhat different

interpolation procedure when deriving two further constraints on the F;,’s from the electro-
-magnetic decays n°% 1, — yy:

o Flm? 0 0 “t et
"] .. <2 2 2 2 " 48 -
n | =10 Fgamy Fgomy "4, |- (3.11)
(r) 2 2 2 2 a 0

\o 0 Foamy Fgomk o*A,)

This assures [123] that the extrapolation to zero pseudo-scalar 4-momentum yields the
simple Adler formula [100] for ratios of the decay amplitudes

R = M(n—)YY) N J(F(_Jq'-z\/iFSn’)Fn
" M(ﬂo - yy) 70 \/‘3 (FSnFOn’—FOnFSn’) '

R = M(n, - ’Y’Y) _ (FOn_z \/2 an)F"
n M(n® - yy) PO V3 (FeqFoy —FonFsy)

(3.122)

(3.12b)
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Equating the experimentally observed ratios to the theoretical formulae for p, - 0 on
the right of (3.12) (a very considerable extrapolation especially for 1’) supplies two final
equations which can be used along with (3.7) and (3.8) to fix the decay constants.

A completely independent constraint on A4, and 4,, has been derived by Novikov
et al. (NSVZ) [104] from consideration of Jp — n(n’)y decays. In their model, the anomaly
couplings control these decays yielding the relation

F(W - n,Y) - (kn'1)3 (ﬂ)z
ry ->ny)  (ky)? '

A’l

This supplied the sixth condition for the analysis of Milton et al. [124] in which the con-
straint (3.8) was omitted; Goldberg [123] using an approximate version of (3.7¢) [115] did
not need a sixth condition and was thus able to use (3.13) for prediction — with numeri-
cally satisfactory results.

Van Herwijnen and Williams [114] used (3.7), (3.8) and (3.12) in the form given above
with the following results (in each case followed in brackets successively by those of Gold-
berg [123] and of Milton et al. [124]):

(3.13)

Fg, ~ 1.2F, (1.1, 1.02) Fgy & —0.25F,(—0.17, —0.15)
Foy ® —0.17F,(0.17,0.07)  Fop & 1.2F,(1.1, 1.12)
A, ~ 0.65F,(0.82, 0.53) A, ~ 1OF,(0.81, 0.47) (3.14)

It is interesting to subjoin to the above catalogue the outcome of Veneziano’s analysis [120]
(cf. Eq. (3.9) above) in which a lot more flavour symmetry is pre-supposed:

Fgo/Fo = Fyp[F,, = cos ¢ = .97,
FiJF,y, = —Fgy|F,, =sin¢ = .24,
AyF,, = 18, A [F, = .70,
F,, = F, = Fg(expt = 1.2F)), (3.15)

and, also, to cite the results of Novikov et al. [104] for 4, and 4,, the former from a ver-
sion of current algebra argumentation (with strong flavour symmetry assumptions) and
with the estimate for 4,, emanating from a species of QCD sum rule (cf. §2). NSVZ’s
result is

A, ~ F Ay = 07F, (3.16)

All the above estimates concur in finding the anomaly contributions quite large; there is
also reasonable agreement on the form of the F’s. In view of the drastic approximations
made in the various calculations, that is probably all that should be demanded at this
point.

Goldberg [106] has recently extended the above techniques to embrace a genuine 0~
glueball such as might account for the observed y spectrum in Jiy — yX at large x [52]
(cf. the discussion adjoining Eq. (1.34)). The predominance of gluons in the conjectured
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resonance (to which a mass mg ~ 2 GeV is tentatively assigned to reproduce the observed
spectrum shape [52]) results in F;g being essentially saturated by the anomaly contribu-
tion Ag. Various phenomenological consequences are drawn.

One other application of the anomaly couplings which deserves mention [105] is to
the hadronic decays of i and n'. From its first discovery [99] it was hoped that the strong
anomaly would bring a resolution [125] of the long standing puzzle [126] within current
algebra as to the mechanism for 1 — a*n~n° Milton et al. have recently translated this
hope into a concrete calculation [105] in which they relate M, = M(n — ntn =% to
M, = M(n' - nrtn) assuming the standard form (Hg = H' (Eq. (1.1)) = —Lg (Eq.
(3.3)) of the symmetry breaking Hamiltonian. Their evaluation proceeds via a series of
standard current algebra manoeuvres whereby M, is translated into a multiple of
(mg—m,) {n*m~|GGIn) (zero in the absence of the anomaly [126]) which is then trans-
formed into a matrix element of ¢,, using hypothesis (3.10), this in turn being manipulated
into a multiple of M,.. The final result is

z Ma— My Ay

M, =% gy 7 M, 3.17)

which Milton et al. have evaluated by taking 4, from (3.16), 4,/ 4, from(3.13) and adopting
the estimate (my —m,)/(m,+m,) = .29 for the ratio of quark masses [127]. The result

M, /M, = 0.11 (3.18)

appears to be in good agreement with experiment.
That concludes this short survey of topics in QCD and spectroscopy.

My thanks to the organisers of the XX Cracow School, to all the participants and to
numerous colleagues and friends who have given helpful advice, especially to Colin Frog-
gatt, Tim Jones, Hans Reinders, Gordon Ringland, Dick Roberts, Graham Ross, Hector
Rubinstein, David Sutherland and Shigeo Yazaki.

APPENDIX 1

Saturation of anomalous Ward identities with scalar nonet

The derivation [114] of Eqgs. (3.7), (3.8) start with the Ward identities of current algebra
which take the form [101]

= [ d*xT<0]0"A}(x) {8 4}(0)~ 5JOGG(O)} 10>
= —<01 [Q5(0), D(0)] 0> = R;;, (i,j =0,1,..8). (A1)
Using Eq. (3.3), an equivalent from for R;; is

= €0/ [0}, [03, Ls]] I0). (A2)



70

The left side of (Al) is estimated by saturating with the ground state pseudo-scalars (assumed
dominant) to yield

Lij = Z 'n:Fiu(Fja—(jjOAa)‘ (A3)

The right hand side follows frem the assumed structure of Lgy (second part of Eq. (3.3)
with m, = my) and the U(3) x U(3) algebra of charges. This yields formulae for the five
relevant R;;’s in terms of two parameters. Eliminating these, yields the three equations (3.7).
The additional condition (3.8) comes frcm requiring that (A3) be symmetrical in 7 and j,
although it is in fact a more general property of (Al) [116].
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