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Parametrization of the hexadecapole deformation is generalized to non-axial shapes.
It is given in a form directly applicable to a construction of the Woods-Saxon and the Nilsson
single-particle potentials corresponding to such shapes. The Nilsson potential is given expli-
citly.
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1. Introduction

Up to now, mainly axially symmetric shapes of nuclei have been considered. This
is because of the tact that well deformed nuclei are axially symmetric in their ground state
and a cosideration of such deformations is sufficient for description of most of the properties
of these nuclei.

However, a consideration of dynamic properties of any nucleus and of any property
of transitional nuclei which are soft to various kinds of deformation, in particular to non-
-axial deformations (cf. e.g. [1]), requires a consideration of non-axial shapes. Such shapes
are also significant in a study of fission (cf. {2]).

Up to now, the non-axial shapes have only been investigated for the quadrupole
component of the deformation [3] and only this component has been taken into account
in the study of collective states [4, 5].

* Supported in part by the Polish-US Maria Skltodowska-Curie Fund, Grant No. P-F7F037P.
** Address: Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, Hoza 69, 00-681 Warszawa,
Poland.

**% Address: Instytut Badan Jadrowych, Hoza 69, 00-681 Warszawa, Poland.
{1001)



1002

The aim of the present paper is to generalize the hexadecapole deformation (which
is, in importance, the next after the quadrupole deformation) to non-axial shapes. There
was an earlier attempt of such generalization [6]. However, only very particular case
was considered and, besides, the description of the shapes did not satisfy the proper in-
variance conditions, as discussed below. Particular case of the hexadecapole tensor, con-
structed as a product of two quadrupole tensors, was studied in [7]. The non-axial hexa-
decapole shapes described by the tensor were then applied [8] to an explanation of enor-
mously large Q, values in the region of heavy Hf, W and Os isotopes.

2. Description of the non-axial quadrupole and hexadecapole deformations

In description of a surface (of constant density of a nucleus or equipotential surface),
it is important and convenient to find such parametrization for which there is one-to-one
correspondence between the surface and the values of the parameters. In particular, such
parametrization implies independence of the description of the choice of the coordinate
system. In a general non-axial case, a parametrization of this kind was given up to now
only for the quadrupole deformation [3].

As the hexadecapole deformation is always added to the quadrupole deformation
and as we parametrize it in a similar way as the quadrupole deformation, we consider
here both deformations together.

Usual, explicitly invariant description of a surface is an expansion of the radius
R(6, ¢), in the laboratory coordinate system, in spherical harmonics

R(0, ¢) = Ro[ L+ ;%qu(ﬂ, )], )

where «;, are components of the spherical tensor of rank A. In the intrinsic system, the expan-
sion becomes
R(S’ (P) = RO[1+ AZ aluYAu(s’ (P)] (2)
n
We define the intrinsic system as that of the quadrupole part (1 = 2) of the surface (1)
and restrict ourselves to the surfaces which are symmetric with respect to the reflections

in all the planes of this system.
The requirement of the reflection symmetry with respect to the (p, z)-plane leads to

a;'“ = al-u. (3)

The demand of the symmetry with respect to the (x, z)-plane, combined with the result
(3), implies

a;, =0 for odd p, 4
and the symmetry with respect to the (x, y)-plane, combined with Eq. (4), gives

a,, =0 for odd A (5)
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Restricting to the quadrupole (4 = 2) and hexadecapole (A = 4) shapes only, the surface is
R(3, 9) = Ro{l+{az0Y20+a25(Y22+Y;-5)]
+[as0Yao+as2(Yaz+ Ya_2)+a4a(Yas+ Ya_ )]} ©

Thus, the quadrupole part has two free parameters and the hexadecapole part three. The
form (6) is completely general for the quadrupole part as it fulfils the symmetry conditions
imposed by us in a general case and it should just have 5—3 = 2 free intrinsic parameters;
the hexadecapole part is, however, restricted by these conditions, as in a general case
it should have 9—3 = 6 parameters.

The parameters a,, are not uniquely determined by the surface. They also depend
on the designation of the intrinsic axes: x, y, z and on the choice of positive direction for
them. There exist 24 different possibilities for designations and directions of the axes
(if we restrict ourselves to only e.g. right-hand systems). Each of them may be obtained
from another by a superposition of the three basic rotations R; (i = 1, 2, 3), well known
in the literature [3, 9] (R; = R(zm, 7,0), R, = R(0,0,xn/2), Ry = R(0, /2, n/2), where
the arguments are the Euler angles).

The rotations R; result in the following transformations of a,, and a,,:

R,: a;u = Ay, a"‘“ = By, O
Ryt aho = ay, a3 = —ay,, (82a)
Qo = G40, G4y = —dygy, Qg = Qa4 (8b)
Ry: a3 = “‘é‘ aso +\/‘% ayy a3 = —% \/'% azo—% az2, (%9a)
, J10 70
Ao = § Q4o e szt 5 44
J10 i
Ayy = ~—— Quo—% dap— ~— Qaas
42 g 4077 (e T das
BT
Qg = BT Q4o+ vy Agy+% Gase (9b)

It is convenient to express @,, and a,, in terms of parameters which have simpler
transformation rules than those of Egs. (7)-(9).

2.1. Quadrupole deformation
One introduces [3] the parameters §,y
dy0 = B cosy, \/i ay, = Bsiny, (10)

where f > 0 and —n < y < . The relation (10) may be interpreted as the transformation
from the rectangular a,4, @5, to the polar f,y coordinates.
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Due to the relation
ﬂz = ago +2a§2 = z 0[2"0@”, (11)
?
the parameter f is an invariant of all rotations of the coordinate system, in particular of

the rotations R;, and thus is uniquely determined by the surface.
The parameter y transforms in the following, rather simple, way under the rotations R,

R;: "=y, Ry;: 7 = —y, Rs: 9y =y-2n/3. (12)

Due to this, to get uniqueness in the determination of y by the surface, it is sufficient to
restrict the variation of y to the region 0 <<y < n/3.
One may also mention that y = 0 (a,, = 0) corresponds to the shapes which are

symmetric with respect to the z-axis and are prolate, while y = n/3 (¢, = \/ 3—/2a20)
corresponds to the shapes which are symmetric with respect to the y-axis and are oblate.

2.2. Hexadecapole deformation

Let us notice that the quantities

by = \/5—/15 a40~Jﬁé Qa4 €4 = “\/i (%) (13)

have the same transformation rules under R; as the coordinates a,4 and a,,. Due to this,
we can parametrize them in the same way, i.e.

by = 04€C08y,, €4 = Q45iN Yy, (14)

where g, (¢4 = 0) is invariant under R;and y, (—n < y4 << #) has the same transformation
rules as 7y, i.e.

Ryt yi =74 Ryt ya= —ys Ryt ya=7,-2r/3 (12a)
Let us further notice that the quantity
aa = NT7/12 a4q+V5/6 ass (15)
is invariant under R; and that we have

aj+bli+ci = ajo+2ai,+2a%, =Y oy05, = B3 (16)
”

Thus, the parameter fi; defined in Eq. (16) and being a measure of the total hexadecapole
deformation is invariant under all rotations. Eqs. (14) and (16) allow us to treat §,, J,
(04 = P, sin é,) and vy, as the spherical coordinates of a point specified by the rectangular
coordinates a,, by and c,, i.c.

ay = fi,c088,, b, = f,8ind,c08y4, €4 = P,sind,siny,, (17

where 0 < 6, < n. One can see from Eqs. (13), (15) and (17) that there exists one-to-one
correspondence between the coordinates

Qg0 = B4(\/:11’; cos 54+\/%2 sin 8, €os 7,),



1005

V2 a4y = — P4 sind, sin yy,
V2 a4y = Bu(V 55 c0s 6,— /1 sin 6, cos 3,) (18)

and the parameters (B4, 84, 74). According to the transformation rules (12a), to get one-
to-one correspondence between a surface and the describing it parameters (84, 84, 74),
it is sufficient to restrict the region of variation of 7, to 0 <y, < #/3. All this indicates
a significant similarity between the parametrization (f,, d,, y74) of the hexadecapole and
the parametrization (8, ) of the quadrupole shapes. The total deformation parameter
B+ is a close analogue of § and the non-axiality parameters d, and y, are rather natural
generalization of y. They commonly describe two kinds of non-axiality: of the “quadru-
pole” type (cos 2¢ or cos 29 terms appearing in the quadrupole or higher multipolarity
shapes) and of the “hexadecapole” type (cos 4¢ or cos 49 terms appearing in the hexadeca-
pole or higher multipolarity shapes).

The axial symmetry of the hexadecapole shape with respect to the z-axis
(a,, = a4, = 0) is obtained for

74 =0, 0d,= 51 (19)

where cos 8 = v 7/12, and with respect to the y-axis (dq, = (J10/3) g, dss = (\/70/6)ts0)
for
ya = 13, 04 = 1—03. (20)

In Ref. [6], the components d,q, dsz, d4, Were assumed to be simple functions of
cos 3y. Thus, instead of being components of a tensor, they were scalars with respect
to the rotations R;. Consequently, the surface described by them rotated rigidly together
with the intrinsic coordinate system, under the rotations R;.

3. Construction of the single-particle potential
3.1. Woods-Saxon potential

Inserting Eq. (18) to Eq. (6), we express the radius R(3, ¢) of Eq. (6) in terms of the
parameters f3,, 35, v.. The application of this expression to the generalization of the
Woods-Saxon potential to the shapes described by it is presently a rather standard pro-
cedure (e.g. [10-12]). Some care should be taken here for the desired behaviour of the
surface thickness (to have it e.g. constant) over the surface.

Tt is easy to see that our expression for R(3, ¢) has the proper, standard form

R(9. ‘P) = Ro(1 +BY;0+ BaYs0) (21)

in the limit of axial symmetry around the z-axis.

3.2. Nilsson potential

For the Nilsson potential, a generalization to the shapes parametrized according
to Egs. (10) and (18) is direct. The potential (more exactly, its central part, as the spin-orbit
and correction parts are usually assumed to be independent of deformation and thus
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are not interesting for the present considerations) is

V(89 Ys €4s 54, 74) = —21,‘ h(l)ogz

N 4 sin y
X 1—"’3‘8 "5- COs 'yY20+ '\72—“(Y22+Y2_2)

4n = 5 . , | .
+2¢,4 5 (\/-1-5 cos 54—}-\/37 8in &, €08 y4)Y,0— —=s8in 9, sin y(Y4, + Y, _5)

NG
+(V 55 €08 8, —v/55 sin 8, cos y5) (Yae+ Y4_4)]} , (22)

where the radius ¢ and the angles in the arguments of Y, are in the stretched coordinate
system [13], characteristic for the Nilsson potential.

To get the potential (22), we have normalized both quadrupole and hexadecapole
parts of it in such a way as to obtain the correspondence with the limit case y, = 0,5, = 89,
used up to now [13, 14].

The quadrupole part of the potential (22) coincides with the potential used by Larsson
{14] with the only difference in sign of the (¥,;+ Y, _,)-term. The difference comes from
the fact that we follow the original definition of y, Eq. (10), given by Bohr [3], while y
of Larsson has the opposite sign.

4. Reduction of the number of parameters

We are always interested in a reduction of the number of parameters. Usually, some
of the free parameters are eliminated by minimization of the potential energy with respect
to them. Without that, we may also obtain the reduction, in a preliminary way, relating
the hexadecapole shapes with the quadrupole ones. For example, a simple choice

Y4 =17, COS0, = \/7/.13. cos 3y (23)

ensures a simultaneous axial symmetry of both shapes with respect to the z-axis (y = 0)
as well as to the y-axis (y = =/3). With this choice, we definitely get more realistic shapes
than those obtained with the axially symmetric hexadecapole shapes, discussed up to now,
while having the same number of parameters (three parameters: ¢, y, g,). This partly
illustrates the profit of the described generalization.

More details on the presented parametrization, discussion of its particular cases,
illustrations of the involved shapes as well as the results of the study of the energy surface
corresponding to these shapes will be given elsewhere [15].
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