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EINSTEIN-CARTAN-MAXWELL-BIANCHI COSMOLOGIES
By D. Lorenz
Fakultédt fir Physik, Universitdt Konstanz*
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The Einstein-Cartan-Maxwell equations are studied for Bianchi types I, VI, VIII
and IX cosmological models. A non-singular solution of Bianchi type 1 is given. It is shown
that electromagnetic solutions of Bianchi types V111 and IX exist.

PACS numbers: 04.20 Jb, 98.80.Dr

1. Introduction

The Einstein-Cartan theory (ECT) of gravitation provides a specific spin-spin interac-
tion of matter which opposes the usual gravitational attraction and thus may avert the
singularities that characterize the theory of general relativity (GRT). Cosmological models
constructed on the basis of ECT (Kopczynski 1972, 1973; Tafel 1973, 1975; Stewart,
Hijicek 1973; Kuchowicz 1975a-e, 1976a-d, 1978; Raychaudhuri 1975, 1979; Kerlick
1975, 1976; Tsoubelis 1979a, 1981; Lorenz 1981¢) have given theoretical support to this
so-called Trautman conjecture (Trautman 1973b-d). In most of these models, the spin
of the cosmic fluid is assumed to be aligned along a particular direction (see Kuchowicz
1976a).

It has been suggested that the alignment might be brought about by a high-enough
magnetic field in the early phase of the universe (Trautman 1973c, d). The idea of a universe
with a homogeneous primordial magnetic field was proved to be very successful in flat
GRT-Bianchi type I models (Zel’dovich and Novikov (1975)). However, since Bianchi
type I models are a very special subset of spatially homogeneous models, one should
consider more general situations, in order to check what implications large-scale primordial
magnetic fields would have on the dynamics of the Universe. The most general sets of homo-
geneous models are Bianchi types VI, VII, VIII and IX (Collins and Hawking (1973)).
However, the basic work of Hughston and Jacobs (1970) (see also Jacobs (1977) and
Tsoubelis (1979b)) has shown that the existence of a homogeneous primordial magnetic
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field in GRT-models is limited to Bianchi types I, I, III, VI (A = —1), or VII (4 = 0).
These results also hold for pure electric fields.

Since the Maxwell field does not couple to torsion (see, however, Novello (1976),
De Sabbata and Gasperini (1980)) the sourceless Maxwell equations are the same in ECT
and GRT (Hehl (1974), Prasanna (1975)). Thus one is forced to consider models with
both a magnetic and an electric field. In this paper we solve the Einstein-Cartan-Maxwell
equations for Bianchi type I, VII,, VIII and IX models. We investigate universes containing
electromagnetic fields obeying the sourceless Maxwell equations and matter, with a “stiff”
equation of state. We restrict ourselves to the “classical description of spin” based on the
special relativistic treatment of the intrinsic spin angular momentum.

For the most part we use Cartan’s calculus of differential forms. The notation and
conventions of Trautman (1972a-c, 1973a-d) are utilized.

2. Derivation of the curvature

In choosing a local orthonormal basis ¢, we can put the metric of space-time in the
form '

ds® = n,,0"", {nH
where n,, is the Minkowski metric tensor. For a spatially homogeneous model, we take
6° =0°=d1, o = R0 (no sum), 2

where 0¥ are the time-independent differential one-forms and where, due to homogeneity,
the R; are functions of ¢ only. (Here and henceforth Latin indices assume the values 1, 2, 3
whereas Greek indices will assume the values 0, 1, 2, 3.)

The one-forms ¢*, 8" obey the relations

do* = —y*,,6" A ¢*+1 Q450" A o*, (3a)
de® =0, do' = —~1C, 0" A 0 (3b)

where the y*;, arc the connections coefficients, 0*,; are the components of the torsion
tensor, Cy;’ are the structure constants, A denotes the exterior product and d is the exterior
derivative operator. The structure constants for the Bianchi types I, VII,;, VIII and IX
can be written as

Cik’ = — &l (4)
where g, is the totally antisymmetric Levi-Civita pseudotensor and
m=0 YV, type 1
n,=n,=1 n; =0, type VIl
n,=n, = —nz =1 type VI
nyo=n, =n3 =1, type IX &)
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The exterior derivatives of the orthonormal basis one-forms ¢* are readily found by use
of Eq. (2) and substitution of Eq. (3)

do® = 0, (6a)

dO’i = H,-Go Al O"+% Sik,n,(Rl/RkR,)O'k A G'I, (6‘3)

where H;: = R;/R; are the Hubble parameters. (A dot denotes differentiation with respect
to time.)

Assuming a classical description ot spin (see below) and that the spins of the individual
particles composing the fluid are all aligned along the ¢ direction, one finds from the
spin-torsion equation (17) that the only nonvanishing components of the torsion tensor
are

0%, = —Q%, =:2s = 25(1). )

Comparison of Eq. (6) with the relationships (3) provides immediately the connection
coefficients

Yo12 = Y201 = Y210 = S:
Vioi = Hi

n;R; m Ry mR,
i = 1 &; + - . 8
Vit = 2 tkl(Rle R.R, R.R, ®

These quantities enter into the formula
v
a#v = yuvla (9)
to provide six connection two-forms g, (to lower or raise an index use 7). The results are
k i
Ooi = 350 — Ho',

n;R; nR mR

0,1 i kT Nk (R 1

G'-k = "87‘330 45 81.,( -+ aad )G.
‘ : 2M\RR,  RR, RR,

(10)
Equation (10) implies now

dﬂ'ot' = Eik3(§+SHk)O’0 A O'k"‘(Hi'*’Hiz)aO A O'i

F gy 5 6" A om—slmi_R—._ A

R, nR mR
dow = Le (*_'_LM PV (H— )+ ——~ (H+H,—2H)) ) 6® A &'
ik 2 Cikl (Rle RiRl ( i k) RiRk( i k l)

n; n R, \\ .
Pl | — + —y — (wl))a‘/\a“. 11
T '(Rf RZ TM\RR, (1D




942

The torsion and curvature two-forms are respectively given by

Q" = do"+6", A o', (12a)
Q' = do*,+0"; A o, (12b)

and can be readily computed by use of Egs (6), (11) and the compatibility equation
o,+0o, =0. (13)

Out of this calculation, one reads the individual components of the torsion and the curvature
tensors by using the Cartan equations

Q" =300 A0, (13a)
QF, = L R* 6" A 0" (13b)
as identification schemes. The results are
Qoxz = 25,
R%; = H;+H}—5%5;,
ROk = —&us(s+25Hy),

R, mR,  n,R,
RcRm RiRm RiRl

o _ 1
Riym = —7 8i1m£i:35(

0 1 l 1 anl nmRm
R im = T7 &ium R R (HI+}Inr 2H)+ 5 (Hl"Hm) s
R . 3

Ri. =1 W By
kik = 3 € +— =
R: R} R}

R \? nR\? mR; \?
+remil —— ] + i QY P )
RR, RR, “\ RiR;
Rikfk = —sey3H,;. (14)

Thus we can easily calculate the Ricci tensor R*, = R*;,. The nonvanishing components are

Roo = —~(3H+HI+H2+H3—-25%),

) +H; Hk—i-s €k

Rii = H +3HH + (nkR,‘) (an{) +2“knl(RkR1) )

2(R,R,R )"-«"R)

Ry, = —(s+s(2H,+ H,)),
R21 = .§+S(2H1+H3),

R R ,
Ros = -—-%s nyRy _ n,R, _ a3l , (15)

3
where H = 1 ) H, is the average Hubble parameter.
i=1
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3. Field equations

The Einstein-Cartan equations considered here are

Gy =ty +E,, (16)
04, —0",0%:—0%0". = 5", (17)

where
Ly = (64 p)utty + pry, + V, (u5S, Du'u, (18)

is the canonical energy-momentum tensor of matter,
E,, = F F —5n,F F* (19)

is the electromagnetic stress-energy tensor, s*,; is the canonical spin angular momentum
tensor,

e = t,u'u, (20)

is the energy density and p is the pressure of the so-called Weyssenhoff fluid (a perfect
fluid with spin). The fluid is characterized by the equation of state

p=@-Ds 1<y<2 @

u* denotes the velocity four-vector and V, the covariant derivation operator.

In general, it is possible to study space-times with 24 independent components of the
torsion tensor Q%,;. In this case, however, a physical interpretation of the 24 components
of the spin angular momentum tensor s*,, is rendered very difficult. 1t appears therefore
to be sufficient if one uses the “classical description of spin’’, based on the special relativistic
treatment of the intrinsic angular momentum (see e.g. Kuchowicz 1976a). In this description,
the spin angular momentum tensor s*,, is decomposed as

s, = u'S,; (22)

where S,; is the antisymmetric tensor of the density of spin, which obeys the orthogonality
condition

u"S,, = 0. (23)

In the local inertial frame determined by (1), an observer comoving with the fluid is assumed
to have four-velocity «* = 6*,. Such models are called orthogonal universes (see e.g. Collins
and Ellis (1979)), in which the matter moves orthogonally to the hypersurfaces of homo-
geneity. However, it must be noted that in general the fluid flow vector u is not normal
to the hypersurfaces of homogeneity. These are the so-called tilted models (King and Ellis
1973). Exact solutions for tilted electromagnetic GRT-Bianchi type I, II, III and VI have
been found by Dunn and Tupper (1978, 1980) and for type I and 1I by Lorenz (1981a).
The incorporation of an electromagnetic field into a locally rotationally tilted GRT-Bianchi
type V model has been given by us in a previously published paper (Lorenz 1981b). The
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corresponding non-tilted ECT-Bianchi type V model has been found recently (Lorenz
1981c). So far, no tilted ECT-Bianchi model has been constructed.

Assuming that the spins of the individual particles composing the fluid are all aligned
along the o direction, one finds from the spin-torsion equation (17) that

0%, = —Q°%, = 125 = 2s(¢). (24)

The canonical energy-momentum tensor takes thus the simple form

1, = dlag (35 P, D, P) (25)
The field equations (16, 17) combined with the Bianchi identities
DQF = Q' Ad', DQ* =0 (26)

where D denotes the exterior covariant derivation, give rise to the conservation laws for
the spin and the energy density:

V. (2su") = 0, (27a)
u"V, e+(e+p)V,u" = 0. (27b)

From the covariant derivative formula
Ve, = 7 e (28)

where e, is an arbitrary basis vector field, we obtain with the aid of Eq. (8) the following
conservation equations

e+3(e+p)H = 0, (29a)
$+3sH = 0. (29b)
From (29a) and (29b) it follows that

2

& = EE“I:—'OR*SE B 83 = const. (303.)
14288,
and
So
5 = RRE. $g = const. (30b)
12K

We now turn to the Maxwell equations. The source-free Maxwell equations are
dF = d*F = 0, 3D

where the two-form F represents the electromagnetic field and *F is its dual. In the basics
" A ¢' we have

F = Eioj A 0’0'{"%‘ Biaijkdj A Gk, (323)

*F = —Bio' A 6°+% Egp0’ A o (32b)
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Owing to homogeneity, the electric ficld £; and the magnetic field B, depend only on r. By
using Egs (2), (3a) and (4) the sourceless Maxwell equations (31) become

E:Rn;—0,(BR;R,) = 0, (33a)

BiR,-n,--%—a,(E‘-Rij) = O, (33b)

]

¢

where d:: = Fre It is convenient to introduce the variables dt;: = n,(R;/R;R,)dt for Bianchi
3

types Vg, VIII and IX. The general solutions of Eqs (33a, b) are

€; b,'
— R B'. e :
R,R, R;R,

e;, b; = const., (34a)

where i = 1, 2, 3 for type I and / = 3 for type VII, and

a; a;
E, = ——cos(t;+1). B; = —— sin(f;+71,), a; 1, = const. 34b
RRe (ti+1) RR ( ) (34b)

where i = 1, 2, 3 for types VIII and IX and i = 1, 2 for type VIl,.

The reason why we have restricted ourselves to the simple Bianchi type VII, model
instead of the more general type VII, model is because in this case the Maxwell equations
are difficult to solve (see Jacobs 1977). Solutions of a GRT-Bianchi type VII, model with
dust (y = 1) and an electromagnetic field have been considered by Melvin (1975)! using
the dyadic formalism of Estabrook and Wahlquist (1964, 1968).

From Eq. (34) we can immediately calculate the corresponding components of the
electromagnetic stress energy tensor E,,. Using the expressions for the Ricci tensor compo-
nents the field equations take the final form

3H+HI+H3+ Hi=25" = — = (39—2) Ega, (a)

H+HI+ - - L (mRE? = (mRY? = (mRE* +2n,0(RR)?) = Q- +E (b)
i ¢ 2(R1R2R3)2 [l K4k 1M [AATACAY ThY 2 ifs

—(s+SQH,+ H;)) = Ej, (©)

s+5QH+ Hy) = E,, CY)

s { iR n,R, n3R3
L e~ =) = Eor (€39
R,Ry, RR; RyR,

2

' Dr. M. A. H. MacCallum kindly points out to me that Melvin’s solution, although he has found
it as a type-Vil; solution, is better referred to as a type-V solution because the solution is rotationally
symmetric (see also MacCallum 1979).
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4. Bianchi type I and type VII, models

We consider first the Bianchi type I (n; = 0) and type VI, (n; = 0) models. From

Eq. (35¢) it tollows that Ey; = O for type 1. However, for the Bianchi type VII, model
we have

5

" R,R,R,

(R%"‘Ri) = Ey;. (36)

(This relation has been overlooked by Tsoubelis (1979a, 1981), who considered the Bianchi
types 1, I1, 111, VI, and VII,, setting E;s = 0.) Assuming R, = R, we find from the field
equations (35d, e) and the conservation equation (30b) that E,, = E,; = 0. The Ricci
tensor turns out to be diagonal (R,, = 0 for u # v) and the electromagnetic stress tensor
must be diagonal too. The off-diagonal components are

Fo,F y +Fo3F 5 =0, FoFys—Fy3F53 =0,
FoiFi13+Fog2Fs3 =0, Fo1Fgs—Fy3F,;5 = 0, 37
FoFos+F,F33 =0, FoyFos—F,F15 = 0,

which leads to three possible cases:

(i) Foy=Fos=F,=F3=0, For,F;3#0,

(i) Foy =Fo3 =F, =F3=0, Fo,,F3#0, 38

(i) Foy =Fyg = Fi3=F,3=0, Fy,, Fi; # 0.

Without loss of generality, we may consider only case (iii). We note that the electric and

the magnetic fields must be parallel and point in the direction of the o3-axis. The nonvanish-
ing components of the electromagnetic stress-energy tensor are

2
a
Ego = E;| = E;, = —E33 = 3 (E;+B}) = R (39

where a®:= L (e}+b3) and R:= R, = R,.
From Eq. (35b) it can be scen that in the case R; = R, we have

Rii = H‘+3HH, (40)

so that the field equations of type VIl, are the same as for type 1. We take the stiff (y = 2)
equation of matter. The possible relevance of the equation of state p = ¢ as regards the
matter content of the universe in its early stages has been discussed by a number of authors,
since is was first proposed by Zel’dovich (1961, 1970). We refer to the recent paper of Barrow
(1978).

It is convenient to solve the equation R,, + R,, = 0. This can be expressed in the
following form

{
R? E(R(RS)‘)' =0, S:=R, (41)
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Introducing a new time variable t by dr = R2Sdtr we obtain

(In(RS))"'=0, ():= a—a% 42)
with the general solution
RS = exp (kn), N = 1+14, k1o = const. 43)
Substitution of (43) into the linear combination of (35a, b) gives
(In $%)'? = 4(k*~a®S?), Kk*:= k*—gl+st (44)
with the general solution
2 _ 2k? 20 = In a2
a*(1+cosh 2(k+4q))’ 1:="na (45)

We note that the solutions (43), (45) are the same as in the corresponding locally rotationally
symmetric GRT-Bianchi type I model (see Lorenz 1980a). Eq. (45) can be put into the
equivalent form
g = ke 46
- e~ 2kn + a?’ ( )
We now examine the behaviour of this model in some more detail. With V: = R2S
we have

1 ~ ~
V — 5}} (e(2k~k)n+a2e(2k+k)u). (47)

The necessary condition for a minimum value of ¥V is

2k — k+a*Qk+k)e*™ = 0. (48)
The case 25—k = 0 can be excluded (a,k # 0). For 2k—k # 0 we obtain
- - e )
which implies
() 2%k-k>0, 2k+k<0,
(i) 2k—k <0, 2k+k>0. (50)
The sufficient condition gives
Viia = — €202k~ k) > 0, (51)

which shows that the case (i) has to be excluded, if &5 is assumed positive definite. The
second case gives

Vmin =

a> k—2k \(2k+k)y2k
(52)

k—2k \ a*(k+2k)
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With the aid of inequalities (if) we obtain &5 < sg, which is impossible in the case of
vanishing spin. We would like to point out that a similar analysis of the case y = 2 has been
given by Raychaudhuri (1975, 1979).

It has been stated by Kuchowicz (1976a, 1976d) that in the case y = 2 the spin-spin
interaction is unable to prevent a singularity in them. Our solution is thus a counterexample.

5. Bianchi type VIII and type IX models

From Eq. (35¢) we have the constraint equation

5o 2 .2 2 . -1, type VIII
— - —R5—06R3) = E,s, = .
2R,R,R,) (RY—=R3—0R3) = Eo3, & { 1 type IX (53)

For the case of vanishing spin (s, = 0) we have Ey; = 0 and no restriction upon the cosmic
scale factors R; is given. In the Jocally rotationally symmetric case R; = R, withy = 2 we
can easily obtain exact soluticns of the GRT-Bianchi type VIII and type IX models (see
Lorenz 1980b). However, in the case considered here (s, # 0) and assuming R, = R,,
Ey3 = 0 we have R; = 0. This result is in accordance with the result obtained by Tafel
(1975), that ECT-Bianchi type VIII (with n, = n, = : n # n;) and type IX (with n; = n,
= n3;) models cannot be reconciled with the presence of spin (Tafel considers only the
case E,, = 0).

It can easily be seen that Egs. (35b) do not turn into each other under any permutation
of the indices /, j, k for type VIII, whereas for type IX the intrinsic geometry of three-space
does not privilege any direction of space. For type VIII we can equate only R, with R,
obtain'ng a symmetry about the third axis.

The main difference between type VIII and type IX is the sign of curvature. For type
VIII this is always negative, whereas for type IX it can be positive as well as negative
depending on the relations between the cosmic scale factors R;. In cosmology “‘closed”
meaning “having compact spatial three-surfaces of homogeneity”” has been taken as
synonymous with *“having spatial three-surfaces of homogeneity of positive curvature™.
The latter two phrases are inequivalent. The Bianchi type IX model with compact three-
-surfaces of homogeneity will not in general have positive spatial curvature at all time.

This clarification is of some importance since it has becn stated that a homogeneous
distribution of polarized sp'n is incompatible with spatial closure in the case of Bianchi
type IX models (Kerlick 1975, 1976; Kuchowicz 1975d, 1976d). (The exceptional case S
considered by Kuchowicz (1976¢) with a positive scalar curvature belongs to the Kantowski-
-Sachs models (see e.g. Coll ns 1977), for which the formal:sm used here cannot be applied.)
Tafel (1975) bas shown that the only type VIII and type IX solutions with non-vanishing
spin are those described by n; = n;+n,+2¢inn,|M'2, ¢ = const.

The nonvanishing components of the electromagnetic stress-energy tensor are

Eqo = 1 ([~ 2+ % 2*‘(03 2 (a)
207 2\\R,R, RyR, RR,) )’
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a 2 a 2 a 2
En=4-{—) + (2 ), b
i ’( (R2R3> (RIRS "\R&, (&)

~

2 2 2
az a, a3
E = - + + ’
e <R1R3> (Rst) (RIR) ) ©
s a 2 a 2 a 2
En =3~ |zn )+ )+( =) @
R(R, R,R; RyR;
a,a
E, = E, = — R Il{ ;{2 (cos (t,+1,) cos (t,+1,)—sin (¢, +7,) sin (1, +713)), (e)
1RoR5
a,a
Ey; = — —1—2—2 (cos (ty +1) sin (1, +1,)—cos (2, +1,) sin (¢, +1,)). ) (59
RyR3R3

Thus in general we can deduce only the relation

2 52 2 _ 2414, . , . -
Ri—R;—6R5 = — R,R,(cos (t; +1,) sin (f,+15)—cos (t, + 1) sin (1, +1,)).  (55)
0

We have therefore shown that in the electromagnetic case considered here there exist
ECT-solutions of the Bianchi types VIII and IX. We finally would like to point out that
in addition ECT-solution of Bianchi type Il exist (Lorenz 1981d, 1981e), contrary to the
claims in the literature on the subject (see e.g. Tafel 1975, Tsoubelis 1981).
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