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Third order phase transitions are studied in a mode! derived from quantum mechanics,
but closely related to lattice gauge theories. The transitions are found to result frem changes
in the evolution of the range available to the eigenvalues of the matrix built from “gluon™
fields. Without changing the continuum limit of the model it is possible to introduce an arbi-
trary number of such phase transitions, or to eliminate all of them. One can also introduce
phase transitions in such a way that an analytic continuation past them is impossible.

PACS numbers: 05.70.Jk, 11.10.Np

1. Introduction

Among indirect approaches to the confinement problem in QCD, studies of SU(N)
gauge theories in the limit N —» oo, g = 0, 4 = g?N fixed have been recently popular.
The reason is that it is widely believed that this theory confines, with the confinement
mechanism essentially similar to that in QCD (cf. e.g. [1]); on the other hand it seems to be
much easier than QCD, for instance in the perturbative expansion it has only planar
diagrams and no baryons [2]. In order to simplify further the large N theory, it has been
reformulated on a lattice following the now standard approach developed for QCD by
Wilson [3]. On a lattice the strong coupling limit 4 —» oo is easy and gives confinement.
The problem is to continue it to the weak coupling limit 2 —» 0, which is the interesting
one, because it corresponds to the continuum limit for the lattice. Of course the continuum
coupling constant can have non-zero values, when the lattice coupling constant g tends
to zero. All this is well known for finite N [3]. We assume that these features persist in the
large N limit. The large N theory on an infinite, four-dimensional lattice has not been
solved. In the two-dimensional theory, however, a third order phase transition for some
, == A, has been found [4]. A similar transition has been reported [5] in a one-plaquette
system in 241 dimensions with the Kogut-Susskind [6] contnuous time Hamil-
tonian, and in some more complicated systems [7, 8]. This phase transition is an
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obstacle to the continuation of the theory from the easy strong coupling to the
interesting weak coupling region. Therefore, it is of great interest that using instead of
Wilson’s action another formula proposed by Manton and corresponding to the same
continuum limit [9], one finds no phase transition on the two-dimensional lattice [10].
Also convergence to the large N limit in two dimensions is faster and more smooth, when
Manton’s action is used instead of Wilson’s [11]. In four dimensions a phase transition
seems to persist, even when Manton’s action is used. This, however, is a Monte Carlo
calculation [12] and the conclusions are of a more qualitative character than in two dimen-
sions.

In this paper we show that a simple extension of the model of Brézin, Itzykson, Parisi
and Zuber (BIPZ) [13] exhibits the third order phase transition similar to those found in
lattice gauge theories. Actually, the lattice gauge model considered by Wadia [5] is equiva-
lent to a special case of the model considered here. Since the present model is both rather
simple and rather general, it easily explains some features observed in more complicated
calculations. In particular, one sees why the transition occurs, why it can be neither
first nor second order, and why Manton’s action gives more regular resuits than Wilson’s.

2. The model

The model proposed here, which is a simple extension of BIPZ, is a quantum mechan-
ical model. The wave function v depends on a hermitian N X N matrix M. Interpreting
the two indices of M as colours, we can consider the elements of M as gluon fields in some
U(N) theory. Since we intend to do the N — oo transition, the distinction between U(N)
and SU(N) is irrelevant. The Hamiltonian is

1
H=— —V*+WM), 2.1
2m
where
5 2.2
ZaMﬁ+22_,(aReM,, 9 Im M? ) 2.2)
i<j
and
W = Tr f(M). 2.3
Function f is an N x N matrix-function of M, g and N — satisfying the relation
Tr f(M) = (), (2.4)

where 1; are the eigenvalues of matrix M. Relation (2.4) holds whenever function f(M)
can be expanded in powers of M, for instance BIPZ have

My =M+ 5 om
N
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1t is true more generally however: in particular f can have different power series expansions
in different ranges of A. In the following we put for simplicity 2m = 1.
We assume that the ground state wave function depends on M only through the eigen-

values 4, ..., 4y and is totally symmetric in these variables. Then in the standard variational
formula
[ dVM((VY)’ + W)
E = min 5 S—W . 2.5)

The integration over the ‘‘angular’ variable may be performed [13] and one finds

v , oy \*
Jou ] Lo Z I azk) |

E = min ! deA 1_[ Gy . (2.6)
Substituting i
PAgs s dn) = [T =29y, s An), (2.7
one finds further =
ENEIR
EYN
E = min = [ dig? _ (2.8)

This corresponds to the ground state energy of a system of N non-interacting particles,
with the single particle energy levels defined by the single particle Schrodinger equation

62
[ EYe) +f(i)] A = eipi(A). (2.9)

According to (2.7), and keeping in mind that function v is totally symmetric in the eigen-
values A,, ..., Ax: @(44, ..., Ay) is totally antisymmetric in these arguments. Thus the N
particles are fermions and the ground state energy according to the Pauli principle is

E = i e, (2.10)

where the summation extends over the N lowest eigenvalues of (2.9). These results are
valid for any N, but the problem of finding E further simplifies in the large N limit.

3. The large N limit

In the large N limit almost all the states contributing to the sum (2.10) are highly
excited and the typical wave length in the wave function is small. Under such conditions
it is legitimate to use the WKB or the Thomas-Fermi approximation. Then [13]

did
E-= f 2P [p® + f() 10— p* —f(D), (3.1)
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4. The phase transition

A discontinuity in the derivative of integral I(B) occurs, when at some S, the evolution
law for the classical turning points changes suddenly. We present two typical cases. In each
the transition occurs when BV(4,) = p and the character of the transition depends on the
behaviour of function V(1) for A close to A,. Let us choose 4, > O and assume

ViA) = Vot Vili—dol + Vi(A— o)+ O(1A—4ol®) (4.1)
and

() = { ~Va(h= i) +O(lA—2l*)  Tor A <o (4.2)

for 4 > A,

where V,, V,, V; and V, are constants. In both cases we assume that ¥(—4) = V(4) and
that for fV(A) different from p, but sufficiently close to it, the inverse of dV(4)/d1 is bounded.
Examples are shown in Figs 1 and 2. In either case, when the chemical potential changing
steadily crosses BV, the velocity of the classical turning points changes suddenly.

In order to study qualitatively the discontinuity of the derivative (3.9), it is enough
to replace the potential V(1) by its approximation (4.1} or (4.2) for positive A and use the
corresponding formula for A negative. For the two cases one obtains after elementary
integrations

8V,
L(B) = CiB)— —(V \/lﬂ BVol 8(BVo— 1) 4.3)
In ju—BV,|
I(B) = Co(B)+ - —\/_/S?P:z-— 4.4)

where C,(B) and C,(B) are regular in the vicinity of f = u/V,. In either case the inverse
of I(p) and consequently the second derivative (3.7) is continuous, but the third derivative
(3.9) has a discontinuity at § = u/V,. An exception is the trivial case ¥V'; = 0, when the
potential V,(1) has no kink at A = i, — then there is no third order transition there.

5. Discussion

The model presented here has been derived from quantum mechanical considerations.
It seems, however, to be more general than its derivation suggests. In particular, studying
the gauge theory of one plaquette in 2+ 1 dimensions in the framework of the Kogut-
-Susskind formalism, Wadia [5] reduced his problem to what differs only by irrelevant
rescaling and change of boundary conditions from the model shown in Fig. 2. In the case
shown in the figure all the integrations may be performed explicitly. In particular one finds

4
— K for g =
JB (ﬂ> orf=u

v (5.1)
é) for f <y,

18) =
b
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where
n/2

J‘ dx
J Vi—msin® x
is the standard elliptic functions of the first kind. The strong coupling expansion is [14]

2 - 2n—1!! "
o EETENE) e

n=

K(m) = (5.2)

and diverges for 8 > u. One could, however, try methods of Padé, or others, to improve
the convergence. In order to see better the analytic structure of the model, one may rewrite
relations (3.4) and (3.5) in the form

n/2
Py — 3
E = pN—4Re J 5—\/,1—/3 sin® (5.4)
4
0
/2
F A —
N=2Rej—\/ﬂ—/3sin2/1. (5.5)
Y

0

The integrals are analytic in the § plane cut from f = p to f = oo. This situation should
be contrasted with that for the potential shown in Fig. 1. Here the two branches of the
potential are a priori completely unrelated and there may be no analytic continuation from
the large f to the small B region.

The phase transition occurs, when the velocity of the classical turning points
corresponding to a steady rise of the chemical potential (or f), changes suddenly. This
generalizes the remark of Gross and Witten, [4], who noticed that in their model the transi-
tion occurs, when the eigenvalues 4; fill all the range [—n, 7], and the allowed range cannot
expand any more, i.e. the turning points stop.

Accepting that all the physics is in the continuum, i.e. in the weak coupling limit,
while the lattice is a purely mathematical device, one finds that only the behaviour of V(1)
near its minimum is important. This remark can be used to change the singularity structure
of the model. Adding kinks at finite distances from the minimum, one can introduce an
arbitrary number of phase transitions without affecting the continuum limit. On the other
hand, replacing in the potential shown in Fig. 2 sin* A by A%, one reduces the singularity
in the derivative of (4.4) to the milder singularity in the derivative of (4.3). In Wadia’s
model [5] this would correspond to a replacement of Wilson’s action by Manton’s action.
Thus in this model, Manton’s action is less effective in eliminating the phase transition than
in the two-dimensional lattice QCD, where the singularity has been reported to disappear
[10]. In the present model the phase transition may be completely eliminated by introducing
V(A) = A? in the whole range (— o0, c0). This again leaves the continuum limit unaffected
and from this point of view is acceptable. '
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V(A)

.. . ) l for |4l <1 X
Fig. L. Potential belonging toclass (4.1): V(4) = 112 for 4] > 1. Here 4o =1, Vo=1, W, = 5/4,

V1— ~34

4V A

. . . . sin® 4 for 4| < =/2
Fig. 2. Potential belonging to class (4.2:) V(A) = { 0 for |3 > /2. Here 2, = .2_ Vo=1, Vo=2



6. Conclusions

The model presented in this paper offers a simple interpretation of the third order
transitions observed in some lattice models of the SU(N — o) gauge theory. In these
models the eigenvalues of the matrix formed by the “gluon” fields cover a certain range.
This range changes with changing temperature (1/8). According to the present model,
when the rate of change of the size of this region as function of § suffers a discontinuity,
a third order transition occurs. It is easily seen that neither a first nor a second order
transition can be generated by this mechanism.

In gauge theories, a given continuum limit is consistent with an infinite variety of
possible lattice actions. In our model this goes over into the statement that given the behav-
iour of the potential V(1) in the vicinity of its minimum, one can choose arbitrarily V(1)
at finite distances from the minimum. Within this freedom it is possible to generate any
prescribed number of phase transitions, or to eliminate them altogether. From this point
of view, Manton’s action is an improvement over Wilson’s, but it is possible to do even
better by rejecting the limitation that the eigenvalues must be all contained in the range
[—=, n].

The author thanks dr. J. Wosiek for discussions.
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