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ASYMPTOTICAL INTEGRATION OF CURRIE-HILL EQUATIONS
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The Currie-Hill conditions for the relativistic world-line invariance of a Newtonian-
-like dynamical system of interacting particles are asympteotically integrated for x — o0,

PACS numbers: 03.30.+p

1. Introduction

In 1960 Havas and Plebanski [1] showed that, for a system of interacting particles,
Newtonian causality, also called predictivity [2, 3], is not incompatible with special relativ-
ity, as had been generally thought before. Subsequently, there has been a gradual revival
of interest in the study of Newtonian-like dynamical systems. As a result, Currie [4] and
Hill [5] found the necessary conditions that the accelerations of the particles must satisfy.
Bel [6] proved that such conditions are also sufficient. These conditions, that constitute
a first order system of nonlinear partial differential equations must be satisfied by the accel-
erations in order to have relativistic world-line invariance. More precisely, the Currie-Hill
equations guarantee the relativistic form invariance of Newtonian equations of motions i.e.
in each inertial frame the accelerations expressed as functions of positions and velocities
have the same functional form.

Currie-Hill equations constitute a system of partial quasilinear equations, which are
very difficult to handle. In the present note we study the behaviour of the solutions of
Currie-Hill equations for large interparticle separations x = x,—x, in the case of the
straight line motions of two particles. We require that the forces have the Coulomb-like
behaviour for x — o0 and express the solutions as power series in 1/x. The coefficients
of such a series satisfy the linear partial differential equations, which one is able to inte-
grate one after another. We find the first two coefficients of this series.
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2. Integration

One-dimensional Currie-Hill equations take the following form?!:

5, OF, oF, oF ,
(1~z,)—7~ +(l-v2+sz) — XUy . +30,F, =0, (1a)
r, X
, 5 OFy ) oF, oF, i
(t—r3) e +(1—vi—xFy) P — XUy — P +30,F, =0, (1b)
I A,

where x = x, —x, is the relative position, r, and r, are the particle velocities, F, = dp,/dt,
F, = dr,/dt are the particle accelerations.

In our system of units the accelerations F,(x, vy, r;) (“forces’’) have the same dimension
as 1/x so if we want to obtain the “forces’” which asymptotically behave as 1/x% « > 1
we must suppose that the solutions contain some constant /, of length dimension, so it
will be convenient to write the forces F, in the following form:

E, = f(y, vy, v))/x where n = 1,2, y = x/l,

and f, is a dimensionless function to be determined. Since we are trying to find the solutions
in the limit x — o0, it is convenient to introduce the variable z = 1/y. After these changes
the equations take the form:

(1-v? )i +(1—034f,) —{— +0,z é +(vy+30,)fy =0, (2a)
(1-1v2) —fi +(1=v—f)) —fi +0,z —{i +(v, +30,)f> = 0. (2b)

One can easily see that if one wants to obtain the forces having Coulomb-like
asymptotic behaviour and which are analytic functions at infinity (for z = 0) one is
obliged to write the functions £, in the following form:

fi=z Y az, fo=zY bz, ag#0, by # 0. 3
=0 i=0

We insert the expressions (3) into equations (2) and thus receive an infinite system
of linear partial differential equations, which has the form:

(1- vl) ao+(1 vz)—— ag+Q2v,+3v)a, = 0, (4a)
Uy

0
(l-v,) ,—~— a, +(1-172) P a1+(31’2+301)01+boa ag =0, ..., (4b)
U,

! We use the system of units in which ¢ = 1.
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\ ry
¢ I3 ¢
+Gi o bn-—2+ +a,,_2 o ’b1+ﬂn_l : b0)=0,. (4d)
ov, ovy - cr,

Each of the above equations can be integrated [7] if we know the solutions of all the
previous oncs. Integrating the first two equations from (4), we obtain

ag = (1=}’ (1=v3)¢(u), &)
o 1\ do(w) 1
ay = (1=e)* (1=} {—¢ (~) ST t2d (—) $(w)
\u /) du u
(1-v9) (1—-03) 1-v] ) vi(l—v,03)
x| — In + S+ , 6
[ (v, —1,)° I=vp, U1—0y v ©
. . l4+ev, 1—0, .
where ¢, ¢ are arbitrary functions, v = th’ T In these equations dfv;,v;)
-0 2

= (=1""'br,, ¢y) for i = 0,1, ... as a result of the requirement that equations (1)
should be invariant with respect to the transposition of particles.

3. Remarks

Analysing the system of equations (4), it is easily seen that the power series expansion
(3) must be infinite. Terminating the expansion at ay or by leads to situation in which
all a;, b; must be equal to zero.

It is difficult to discuss the convergence of the series in the whole range of the variable z.
From the solutions obtained, coefficients devoid of singularities can be selected, so that
a finite radius of series convergence can be cxpected to exist; the results of the papers
[8, 9] confirm this.

It is interesting to compare the expressions (5), (6) with those obtained by Hill in his
paper [5] where he expands the forces of particles interacting with the Lienard-Wiechert
potentials into a power series of x. Taking the functions ¢, y in the form; ¢ = |,

y = cth (l)—sh (hyIn [1-th ()],

1—01 l—vz
h=4%In :
1—v, 147w,

where
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in our expressions, we find that the coefficients at the proper powers of I/x will be the
same as those of the paper cited above, if one puts I, = e?/m.

If we perform the Taylor expansion of the expression (5) around the points ¢, = 0,
vz = 0 (valid for small velocities) and keep the lincar and quadratic terms only we get
the expression

ao = (1-3v]) (1-03).

Thus the force F, takes the form
l
Fi= 7 (=30 (-t}
x

which coincides with the force obtained from the Lagrangian of Darwin [10] if one puts
(’2

IU =
m

The authors are greatly obliged to Dr Z. Chylinski and Professor A. Staruszkiewicz
for many helpful remarks and J. Nietendel for discussions.
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