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ON CALCULATION OF HADRON-NEUTRON TOTAL CROSS
SECTIONS FROM THE DEUTERON DATA

By M. JEZABEK AND K. ZALEWSKI
Institute of Nuclear Physics, Cracow*
( Received April 16, 1981)

We develop a simple method for calculation of the total cross sections on neutron
from the data taken on deuteron targets. The systematic error due to this procedure is smaller
than 0.3 mb for beam momenta above 50 GeV/e. Using Glauber’s formula without inelastic
screening, as often done in experimental papers, may introduce a much bigger error.

PACS numbers; 13.85.-t

1. Introduction

The measurement of the hadron-deuteron total cross section o, is the most efficient
practical way to obtain oy, the corresponding cross section for the neutron target. Direct
measurements, though possible, are difficult, because neutron beams are not monochro-
matic [1]. Moreover, the direct method can be used only for neutron-proton collisions.
Consequently, the question how to extract gy, from the data on hadron-deuteron and had-
ron-proton interactions is of great practical importance.

In principle the answer is well-known:

Ohy = Opa—Onp+00,+60,, (L.

where do, and do, are the corrections due to ejastic [2,3) (Fig. 1a) and inelastic [4, 5, 6]
(Fig. 1b) screening, respectively. Compact formulae exist for both é¢, {2, 6] and dc, [5, 6]:

0

do, =2Re [ dt[S()+S(OIF(OFE(), (1.2)
50, =2Re ¥ '"] dI[S(1) 4+ S,()JF"P (1) F*=ba(p), (1.3)
x#Fh thax
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In (1.3) the summation extends over all x = h as seen in Fig. 1b. The form-factors S and
S, are given by [6]:

S(Q) = § PFly()1%e@ 7, (1.4)
h X h
d d
(a) b))

Fig. 1. Contributions to the defect of the total cross section on deuteron: a) elastic, b) inelastic screening

and

SAQ) = f«i“?i .;,(,’.)‘leié-?i , (1.5)

|z

where y(r) denotes the wave function of the deuteron, and the z-axis is parallel to the mo-
mentum of the incident hadron.

Though simple in principle, the formulae (1.2) and (1.3) are not easy to use in practical
calculations. The standard practical approach [7, 8] is to use Glauber’s method without
corrections for inelastic screening. The authors of the experimental papers warn the readers
that this approach is controversial [7], but use it, because it is simple. Our main goal is
to find a reliable approximation to the formulae (1.2)-(1.3) which is sufficiently simple
to be used by experimentalists analysing data. We limit our discussion to process at incident
momenta p 2 50 GeV/c and do not expect a precision better than about 0.3 mb for the
On, CTOss section. For lower energics and/or better precision a much more difficult analysis
would be required.

The paper is organized as follows. In Section 2 we derive the simplified formula for
Thas and in Section 3 we calculate the neutron total cross sections from the available data.
Our results are summarized in Section 4.

2. Derivation of the formula for oy,

A careful analysis of the different contributions to oy, leads to the following results [6]:

— the contribution of S, to dg, is negative and small (~ 0.2 mb); its reliable calcula-
tion would require an additional highly nontrivial theoretical analysis of the form-factor S,.
The contribution of S, to do, is negligible.

— Jo, can be expressed as a sum over Regge terms:

1 Inyin f—
8o, = =2 Y jdé [ ditS(V —tn; cos [ray(t)]
i,j.k &o fmax

x Gijk(’& 1, O)éak(o)_11'(‘)"1,)'(‘)511((0)" 1, (21)
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where latin indices stand for reggeons, a(t) is the trajectory of the reggeon j, n; is its signa-

ture, and G, ;, denotes the three-reggeon vertex function. The summation over intermediate
2
inelastic states x (cf. Eq. (1.3)and Fig. 1b) is replaced by integration over ¢ = - —, where

s
N
2

M,
M is the mass of x and &, = - °a cut off parameter. At energies above 50 GeV the dom-
A

inant contribution to o, comes from the triple Pomeron (PPP) term, and it grows
logarithmically with energy. The contributions from PPR terms stay constant above
50 GeV and are of order 0.2 mb!. The other contributions decrease with increasing energy,
and at high energies are negligible.

We assume now that clastic amplitudes at high energies are purely imaginary and can

be parametrized as:
hN

(t)—i Ttot_ gt/20t, (2.2)

4n

where N stands for the nucleon. Eq. (1.2) can.be rewritten in the form:

J(b)
06, ~ i — OO 2.3)
where
0 S
fb) =1 | diS(/ =p)e. (2.4)
tmp ')
0.028
0.026
| 1 1 1 | 1 1 1
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blGeV

Fig. 2. Effective inverse radius squared f(b) for deuteron (see Eq. (2.4)) as a function of the elastic slope b

The function f(b) depends little on b for realistic values of elastic slopes. In Fig. 2 we have
plotted this function for Mc Gee’s [9] parametrization fo the deuteron wave function.
When calculating ég,, we keep in Eq (2.1) only the triple pomeron term and get:

ngz o
602 = 2] “f AE= NS =), (2.5)
tmax

! These statements are not true at asymptotia. However, the approximation we use should be good
enough for the energies accessible in this decade.
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In (2.5) ap denotes the slope of the pomeron trajectory and Gppp(7) is the triple pomeron
coupling. If factorization holds

ﬂl’

G (1) = 5 Gere(1), (2.6)

B
where the function Gppp(r) can be obtained from inclusive single-particle spectra in the
reaction

P = p+X,

and f’s are the pomeron-hadron-hadron and pomeron-nucieon-nucleon vertex functions
evaluated at 1 = 0. Finally, assuming factorization for 2-body processes, one gets

00, = g($o) ST (2.7)
ONN
where
1 m2¢z
dc 2ap't /*
glo) =2 |- & A" Gepp(DS(V — 1) (2.8)
$o tmax

According to a recent analysis of Ganguli and Roy {10]:
Gppp(1) = 474487 12231 2.9)
for
ap = 0.25 GeV ™2 (2.10)
For this parametrization one obtains the following approximation of g:
g(&) = —0.78—0.35In &, .11

The accuracy of the last formula is better than 59 for 3. < &, < 12., and it will become
clear that for our purposes the approximation is good enough. Finally, we arrive at the
following expression for oy,:

b g
Opy = Ghd_ohp+j;‘(1;) ahpahn+(‘0'78_0‘35 In 50) o s

(2.12)

ONN
which is our main result.

d
The r.h.s. of Eq. (2.12) depends on: measurable cross sections, the slope of the —‘—1%

2
distribution for hadron-nucleon elastic scattering, and the cut-off &, = =2 , which is a free
K

parameter. However, it should be stressed that M, the mass at which the integration over
triple pomeron parametrization of inelastic diffraction is cut off, must be equal, within
afactor ~ 1.5, to the mass of the first diffractive excitation of hadron h. Thus the uncer-
tainty due to &, is of order of 0.2 mb.
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3. Analysis of the data

We use the results obtained by Carrol et al. [7] for ¥, K* and p* total cross sections
on protons and deuterons at Fermilab energies.
To test our parametrization, we start from the pion induced reactions. From isospin
invariance
Gp-p = Opey  and o,y = 0,

thus, all the cross sections in (2.12) are known. We have taken b = 8.5 GeV-2
and M, = 1.5 GeV, which is close to the position of A, resonance. Then, we have found
that the fit (2.7) and (2.11) to
(b
00, = a,,+,,+a,,_p—-a,,d—-)-(~( -~).o',,+pa,,-,, (2.13)
4n
is very good (y? = 6.8/11) for the energies in the range 50-340 GeV (cf. Fig. 3a). The
masses of A, and Q, resonances are not very different, so, we have used the same fit to
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Fig. 3. Comparison between the inclastic screening contributions to a) nd, b) pd total cross section defects
and the parametrization (2.12)

TABLE I
Prab(GeV) K*p? Kt ® Kp? Kn® pp? pn®

50 18.06+.08 | 18.54+.15 | 20.30+.10 | 19.71+.17 | 43.93+.10 | 42.84+.22

70 18.52+.08 | 18.56+.15 | 20.38+.05 | 19.76+.10 | 43.05+.06 | 42.28+.17
100 18.88+.07 | 19.05+.13 | 2045+.06 | 19.95+.13 | 42.12+.08 | 41.54+.19
120 19.14+.07 | 19.30+.14 | 20.59+.06 | 20.21+.12 | 41.70+.15 | 41.85+.27
150 19.36+.07 | 19.69+.13 | 20.60+.07 | 20.18+.14 | 41.79+.17 | 40.94+.32
170 19.64+.06 | 19.82+.12 | 20.65+.06 | 20.33+.12 | 41.69+.15 | 41.21+.30
200 1991+.11 | 19.85+.15 | 20.79+.05 | 20.62+.11 | 41.51+.15 | 41.19+.32
240 20.22+.06 | 20.50+.12 | 21.30+.07 | 20.69+.12 | 41.90+.20 | 41.07+.35
280 20.45+.07 | 20.76+.12 | 21.32+.08 | 21.05+.13 | 41.91+.21 | 41.05+.37
310 20.67+.15 | 20.95+.26 | 21.45+.12 | 21.23+.19 — —_

a Carrol et al., Ref. [9]; P only statistical errors included
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Sa, for kaon induced reactions. The K *n total cross sections calculated in this way are
given in Table I.

It is noteworthy that within our accuracy 6., = 6., as duality suggests. We use
this observation to fix the parametrization of do, for baryons. The ¢elastic slopes for proton
above 50 GeV can be given in the form [11]:

b = 0.56 In p;,;,+8.43. (2.14)
Fixing o,, = 6, and comparing

o~ J(b) e
3G, = 20, Opa— 4} ol, (2.15)
with formula (2.11) one gets the best agreement for M, = 2 GeV a value close to the mass

of the first diffractive excitation of the nucleon. This fit is again very good (¥* = 4.8/12)

TABLE I
Pan(GeV) 1 Sp b I Ep® Enb

H i _

| H
74.5 33.08+.31 32.07 + .43 ‘ — —_
86.1 \ 33.21+.27 32.65+.40 — —
101.5 ‘ — — § 29.19+.29 28.39+ .42
119.8 33.29+.33 32.99+ .47 i - —
133.8 | —_— — 29.35+.31 29.21 + .46
136.9 1 34.14+.30 32.81+.42 — —

4 Biagi et al., Ref. [12]; ® only statistical crrors included.

above 50 GeV 2 (cf. Fig. 3b), and when applied to p total cross sections gives the results
collected in Table I. In Table II we present also the results for 2 n and E-n cross sections.
In the calculation we have used the cross sections obtained by Biagi et al. {8].

4. Summary

At presently accessible energies above about 50 GeV the inelastic screening correc-
tions to the scattering on deuterium are comparable with those from elastic screening.
Consequently, the Glauber theory must be extended to include this effect. Neglecting
it one gets nonsense results for the form factor of deuterium. For example the Glauber k
formula, when applied to hd, yields f= 0.039 mb~! (cf. (2.3)), and this value should be
compared with 0.027 mb~! which follows from the known deuteron wave function and,
consequently, from e.g. electron-deuteron scattering experiments. Moreover, the contri-
bution to the cross section defect from the inelastic screening grows faster with energy
than the contribution from the elastic scattering, thus, a naive application of the Glauber

2 We have included also ISR point [12].
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formalism gives /' which grows with energy — obviously an unphysical result. At high energies
the largest contribution to inelastic screening comes from inelastic diffraction. This contri-
bution grows whereas the others stay constant or decrease with increasing energy. Thus,
in this paper we have proposed the simple formula (2.12) which is a generalization of
Glauber’s formula and includes the term which describes inelastic diffraction screening
on deuterium. This formula, when applied to pion induced reactions, gives a very good
description of the data at Fermilab energies. The systematic error of our approximation
is about 0.2 mb, and we have argued that a better approximation requires an additional
theoretical analysis of the corrections from the ordering of nucleons in deuteron, i.c. of
the S, form-factor, not to mention the need for complete triple-Regge analysis. On the
other hand, the accuracy obtained is comparable with the statistical errors of the present
day experiments, so, we find the approximation (2.12) quite satisfactory. We have used
it in the calculation of K*n, pn, -n and E-n total cross sections from the existing data.

The results of this calculation are given in Table I and II.
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