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Modification of the low momentum behaviour of the perturbative SU(2) gauge theory
is proposed. The modification is closely related (although not equivalent) to a nonstandard
choice of boundary condition for the Euclidean 2-point gluonic Green function. In the result-
ing theory already single graphs lead to the confining potential between heavy, static quarks,
V{r)y=ar? for r —» 0,

PACS numbers: 12.40.—y

1. Introduction

The aim of this paper is to present a modification of the low momentum QCD which
might lead to the explicit confinement of quarks already in finite order perturbation theory.
We present this modification for SU(2) gauge theory — the generalization to SU(3) is
trivially performed by an embedding SU(2) into SU(3). The most interesting feature of the
modified QCD is that already single graph contributions lead to the confining potential
between heavy, static quarks. Precisely this result encourages us to present the modification
of QCD in more detail.

The modified QCD (in short QCD’) differs from the standard one only in the infrared
region. Therefore, it is reasonable to expect that it would lead to the small distance behav-
iour of the same type as it has been calculated within the standard QCD. In particular,
we expect that QCD’ is asymptotically free and that QCD’ is compatible with high energy
phenomenology to the same extent as QCD.

Unfortunately, the obtained potential is of ar? type, and therefore it is not in agreement
with phenomenological fits to the spectra of charmonium and bottomium. However, this'
potential was obtained in a rather naive way, as a contribution of a single graph in weak
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coupling limit of ordinary perturbation theory, and without any deeper analysis of infrared
problems which are present in QCD’. More complete study of QCD’ can lead to a better
potential. Anyway, the very fact that one obtains the confining potential in four-dimen-
sional field theory seems to be interesting by itself.

In this general presentation we would like also to remark that QCD’, formulated in
this paper on the level of formal perturbation theory, described in a compact way by
generating functionals for the Euclidean Green functions, is not equivalent to a standard,
local field theory. There are two reasons for this. Firstly, finite order QCD’ can be described
by a lagrangian which is nonlocal. This nonlocality is generated much in the same manner
as the well-known nonlocality of the standard QCD, [1] is generated by the elimination
of Faddeev-Popov ghots in, e.g., Lorentz gauge. The nonlocality of QCD’ is an attractive
feature because it is consistent with the common expectation that the long distance struc-
ture of color interactions should effectively be described by a theory of interacting strings
or bags, nonlocal from the outset.

Secondly, we do not expect that the Hilbert space of states in QCD’ is spanned by
states obtained by acting on vacuum with fundamental (quark and gluon) field operators.
We base this expectation on the fact that QCD’ seems to confine quarks even in finite
order perturbation theory. Thus, the notion of the single quark is empty even in per-
turbation theory. The complicated problem of clarifying the precise field-theoretical
structure of QCD’ we postpone to another investigation.

We construct the modified QCD in Euclidean space-time. What QCD’ after the
analytic continuation to Minkowski space-time, x, —» —ix,, looks like, remains to be
investigated: However, the Euclidean formulation is sufficient in order to calculate the
potential energy of heavy, static quark-antiquark pair from the well-known Wilson loop
formula, [2].

Finally, we would like to present the origin of the idea of modifying QCD. While
solving the classical Yang-Mills equations with a point-like external source one arrives
at Poisson equation

AAYR) = gl*d(x), H

where (I%) is a constant color spin vector of the external source, [3]. This equation has
solutions. of the form
a
AYX) = — L -gi« + F4(%), )
4n |xj
where 4F® = 0. In order to eliminate F%(x) one has to assume the boundary condition
that 4%(%) tends to zero when |x| increases to infinity. However, such a choice of the bound-
ary condition is a physical assumption. This assumption is certainly correct for a point-
-like electric charge in vacuum. On the other hand, it is by no means obvious that the same
boundary condition should be adopted for the color charge, because physical properties
of chromodynamical systems are expected to be different from those of electrodynamical
systems. On the simple level of the classical equation (1) and the solution (2) we find it
difficult to construct a satisfactory theory in which F*(x) # 0. However, the same problem
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appears when one considers the equation for free Green functions present in perturbation.
theory. And there it is possible to construct the corresponding nonstandard theory, namely
QCD’. This construction is presented below in Scctions 2 and 3. In Section 4 we calculate
the single graph contribution to the static quark-antiquark potential within the scheme
of QCD'.

It is interesting that this construction cannot be carried out for gauge theories which
do not contain SU(2) group as a subgroup of the gauge group. In particular, the construc-
tion does not work for the abelian U(1) gauge group.

2. The modified free gluon propagator

We consider Euclidcan SU(2) gauge theofy in the functional formulation. This for-
malism is here regarded only as a convenient tool for generating a perturbative expansion.
We choose the Feynman gauge, « = 1.

By the well-known manipulations, described, for example, in [i], we identify the
free Euclidean gluon propagator Gav, a,b = 1,2,3, p,v = 1,2,3,4, as the solution of
the equation

4G:t(xo) = 6ab6uv6(4)(x)’ (3)

where 44 = 0,0, is the four-dimensional laplacian. The propagator G;'L should be SO(4)
invariant in order to ensure the Lorentz invariance of the theory after the inverse Wick
rotation, x, — —ix,, to the Minkowski space-time.

The standard solution to (3) is

1 1
Om(l) = - a‘;’ 5ab‘),uv xz N x2 = x‘,xg, (4)
which leads in momentum space to
, 4. 1
Ouv(k) cXp (- lk 'xg)GOuv(x)d X = -‘5ab5‘w P . (5)

Eq. (3) has also infinitely many other solutions, obtained by adding to (4) any solution
of the four-dimensional Laplace equation,

4,F(x) =0,
regular at the origin. Any solution of (6) can be written in the form of the series, [4],

F(x,) = Z Z agxX'Ex(81, 02, 83), M

I1=0 K,K
where x = \/ XXy dyx are arbitrary constants, K, K’ are multindices, K = (k, +k,)
1>k, >k, >0, k,, k, integers, and E} are 4-dimensional spherical harmonics, related

to the Gegenbauer polynomials. 6,, ,, 8, are the spherical angles in 4-dimensional space-
-time. x'E% is a harmonic polynomial of order / in variables x,, [4].
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The essence of QCD’ consists of keeping F(x,) # 0. However, this can not be achieved
by the simple change of the free gluon propagator, G, — G, + F. This would lead to a vio-
lation of SO(4) symmetry, as it will be explained below, and to a violation of the positivity
requirement, [5]. The requirement of SO(4) symmetry forces us to introduce the term F(x)
in a very particular manner. Then, SO(4) symmetry can be realised in the generalized sense,
[6], that the effect of SO(4) rotation can be compensated by a sort of gauge transforma-
tion. We do not know whether QCD’ obeys an appropriate version of the positivity postu-
late.

We will consider the particular solution of (3),

Gi(x) = G&h(x)+1Ga(x), (®
where

GIN(X) = x*Dgp(%o/X)- ®

. . . . X, .
Here 1 is a constant with dimension [A] = cm~*, and D}, (—9> are the matrix elements
X

of spin 1 representation of SU(2) group. Such a choice for F(x) is motivated by the simple
transformation law for G25(x) under SO(4) rotation. As it was said earlier, G5, cannot be
straightforwardly adopted as the free gluon propagator. The problem of how to incorpo-
rate G;’i(x) in a more satisfactory manner we consider in the next Section. In this Section
we will discuss transformation law for G under SO(4) rotations.

The explicit formula for D,f,,(xe/x) is the following: We introduce matrix

SU@)3u = (_“5 Z) jai?+161* = 1. (10)
where
a=)i4_+ix3’ b=x2+ix1. an
X x
Then,
Dyy(%,/x) = Dgy(w), (12)

where the form of DX(u) is given, e.g., in [4]. Substituting there (11) we obtain

x24x2—x3—x?  2Xyxa—x3X))  2(xgX, +X5X3)
x2DY(x,/x) = | —2(x3%4+X,%,) x24x2—x2-x 20x4%,-x,%3) |. (13)
2XoX3—X4X,)  —2(XaXp+X3x,)  Ni+xi—xi—x3

In fact, D'(») is an orthogonal matrix. From (13) it is easy to see that G;‘,’i(x) obeys
equation (6). Observe also that G;‘,bv(x) vanishes for small x. The Fourier transform of this
function consists of second derivatives of §‘®(k). Therefore G%(k) differs from G&,,(k)
only at zero momentum, i.e., in the extreme infrared region.
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Now, let us investigate the effect of an SO(4) rotation. It is a linear transformation,
(x,) — (x,) which does not change x:x" = x. On the other hand. consider matrices
w = xu = x,0°+ixoe, where u is given by (10), (11), and the transformation

w' o= u,wu; ", (14)

where u,, u, € SU(2). Because det w = x,x,, and because the correspondence between w
and (x,) is linear, we concludc that any SO(4) rotation of (x,) is equivalent to the transfor-
mation

u = uuuz’ (15)

of the unitary matrix ». The condition u,, u, € SU(2) is necessary in order to obtain uni-
tary #'. From (12) we sce that

Dalb(x;/ xX) = ac(u 1)D (xgl X)Dbd(“z) (16)

If u, = u,, which corresponds to “spatial” rotations (x = x4), then from (16) it follows
that the SO(4) rotation is equivalent to a constant gauge transformation of the color
indices a, b in G(x). However, the general transformation (16) does not have the form
of a gauge transformation.

Of course, Ga,,(x) is SO(4) invariant.

3. The modified QCD

The use of G"v(x), given by (8), as the free, Euclidean propagator for gluons leads
to a theory which is not SO(4) invariant because G2%(x) has different transformation prop-
erties than Gj,,(x). This difficulty can be C)rcumvented at the price of introducing Gav(x)
in more refined manner than just a part of the gluon propagator.

Let us recall that the standard perturbative expansion in powers of coupling constant g
in the pure Yang-Mills theory can be gencrated from the following expression for the
generating functional for Green functions, [1],

o (5 5 .
20 =7 (5 5 )Eu S (7
where
V(é o d f v &> e (54 ol 6 & é (18)
—, o, e =@ P Y
57" on" oqr) T TPYENG) TE N5k ) TR 6T on” o
and

E(J, %) = exp § d*xd*y[Jox)GE(x = »)IA») + 1 ()Gor_pe(x = m(M]. (19

In these formulae J2, n,. 4 are external sources coupled to the gluon field 4}(x) and Fad-
deev-Popov ghosts, correspondingly. V', denotes the three-gluon vertex, ¥, —the four-gluon
vertex. ¥pp — vertex in which 45 couples to the F-P ghosts.
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The proposed modification of QCD consists of replacing Z(J) by Z'(J) defined as

follows:
6 O é 5 O é
Z’. = T s o s o a V‘ -;—*,—,—:—-—-EJ,,*
) V(éJ o1 6n*) (oK oy ax*) )

xexp [4 § d*xd*yJa(x)Ga(x — VIKUWIEK, 1, 7*)k == w=0. (20)
==

The idea underlying this modification is the following. Consider the term JGJ = JGoJ
+AJGJ which would be present in (19) if G, was replaced by G,+AG. The term JG,J
is the standard one, so we would like to keep it unchanged. The term JGJ is not SO(4)
invariant because under SO(4) rotation the indices &, b of G transform in different manner,
as it follows from (16). Now we shall consider Feynman graphs. If we replace G by G, + G
on lines of a graph, we would obtain 2! contributions, where I is the number of lines in the
graph. In each such contribution a line corresponds to either G, or AG. The (single) contri-
bution such that all its lines correspond to G, is just the graph calculated within the standard
QCD. It is SO(4) invariant, of course. The other contributions contain at least one G.
In general they are not SO(4) invariant. However, some of them are SO(4) invariant—namely
those in which all G%(x—y) lines, which we regard as directed from (x, a) to (y, b), end
only in vertices which are common end points for G-lines (that is: no Go-line is attached
to such a vertex and no G-line starts at it). These SO(4) invariant contributions can be
singled out formally by introducing an auxiliary current K? coupled to the end point
of the G-line, i.c., by replacing

A § d*xd*ydUx)Ganlx—y)IUy)
by
2§ d*xd*yJa(x)Ga(x— KUy,

and by introducing the second vertex part

(9 . & 210s ot
L05~K=exp gVs —6—1-(—5 +glx4gF .

o > .
It is easy to sce that all vertices generated by V, (512> from exp (% | JGK) are SO(4) in-

variant. Namely, the transformation of the « index of G is compensated by the constant
gauge transformation of J;, corresponding to v, in (15), and the transformation of the b
index, corresponding to u, in (15), is compensated by an independent constant gauge
transformation of the current K?.

The other contributions are not SO(4) .invariant. They are the contributions which
contain at least one G-line ending at a vertex to which some G,-lines are also attached
or/and at which a G-line starts, or/and there are attached F-P ghosts lines. Some of these
contributions can be made SO(4) invariant by reinterpreting some of Gy-lines and some
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of F-P ghost lines as being of the K-type, i.c., as transforming accordingly to u, under
SO(4) rotations. This step can be formally described by introducing another set of F-P

8
ghosts, described by the sources ¥, y* and coupled to 5K and by introducing the standard
n

G, propagator of the K-type. The resulting theory is described by Z'(J) given by (20).
The modified QCD, defined by (20), is much richer than the standard one. The stan-
dard QCD is obtained as the zeroth order in A, because then the factor

MRV,
(SK, 51’ 5x* s Ko X NK=y=g*=0

drops out as a constant normalisation. However, QCD’ contains less graphs than the stand-
ard QCD with the straightforward replacement G, — Go+4G. For example, graphs
containing closed loops formed by the G-lines are excluded from QCD'.

The current K¢ plays the auxiliary role, much like the external sources #, n* introduced
for F-P ghosts in standard QCD. There is no physical field coupled to K. In principle,
this current can be eliminated from the formula (20) for Z'(J). This would lead to a non-
local effective lagrangian, similarly as elimination of F-P ghosts leads to a nonlocal lagran-
gian containing the well-known Trlog, [1].

4. An example — the perturbative confining potential

In order to calculate the potential E(r) between static quark and antiquark we use
the well-known formula, [2, 7}, relating E(r) to the vacuum expectation value of the Wilson
loop operator,

E(r) = — lim i In {W(C))o, n
T2 o T
where
W(C) = Tr [P exp (ig § 4,dx")], (22)
C

and A4 = A,T®, T® = ¢°/2 are generators of the fundamental representation of SU(2).
The contour C is taken to be a rectangle laying in a plane parallel to the x, axis, e.g., in
(x3, Xx4) plane, with corners at points (xa, x,) = (0, ~7/2), (r, —T/2), (0, T}2), (r, T/2).
The orientation of C is chosen to be from (0, —T7/2) to (0, 7/2). P denotes the path ordering
along C.

The usual formal manipulations on the Euclidean path integral formula in the standard
Yang-Mills theory yield

o 6 6 é
w(C = Tr| P ] T dx* ey, —— VE(J, 1, 1) ep=mr=0-
W(C)o 1[ exp<1g§ 5 x)]V(M : (W) TR o T
C
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d & &
In order to pass to QCD’, according to Section 3 we add V(&K 57’5 *> EK, 7, 2%
and exp (4 | JGK). Thus, in QCD’

- é 6 O é
{W(C))o = Tr [P exp (ig § T° 5T dx“)] Vv (33 s (% R %)
[

v (2,2 2By, B, 7 1)
3K’ 5y oy P o

x exp [4 | d*xd*yJ4 (x)G P(x — MK =x K=p=p=0- (23)

r=x*=0

This formula is the starting point for the perturbative calculation of {W(C)), in QCD’ —
from it one can write {(W(C)), as a double power series in g and A.
We shall systematize the terms in this expansion by writing it in the form

WO = F, Wiz 1)

where W(g, r) are given as a power series in g. The zeroth order term, Wy(g, r), give
the contribution to the potential E(r) coming from the standard QCD. The term

6 o6 o
V (SK 5 5 ( ,73X)II\—;¢ x*=0

c

Fig. 1. Example of the tadpole. Double slashed wavy line denotes G-line, wavy line denotes Go-line, dashed
line denotes F-P ghost line

enters here only as a constant normalisation factor independent of r. When expanded in
powers of g up to a finite order, Wo(g, r) leads to the Coulomb type potential corrected
by some logarithms of r. The renormalization group improvements also do not provide
any confining potential, [8].
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In the first order in 4 only tadpole graphs are possible, Fig 1. Such graphs are usually
set to be zero. Anyway, they are the selfenergy graphs for the quark and antiquark, and
therefore they do not give contribution depending on r.

In the second order in A there are contributions to E(r) coming from the graphs of the
type presented in Fig. 2. In this figure we do not display the quark and antiquatk selfenergy
graphs, nor the graphs which give contributions trivially vanishing in the limit 7 — oo.
In the momentum space the general structure of such graphs is

§ § dxudx? | d*pexp [i(x' = x*)plGia(p)Gey " (PIGE(P),

Cc C
where G'®(p) is the two-point Green function of the gluon field 4%. The propagator G is
given by the second derivatives of §(p). It is well-known, [1], that in the perturbation
theory G*(p) contains logarithms of p which diverge for p — 0. Thus, we see that in

775N
% .‘-'H’,e.g., W "‘{-Y\‘\\g)’\#v' ,etc.

A \ A 4 N %
c C o

Fig. 2. The second order (in %) contributions

such simple graphs there are divergences due to the singular infrared behaviour of per-
turbative logarithms in addition to the expected small p divergences induced by squaring
of the derivatives of  distribution. We cannot find out how to regularize and renormal-
ize such graphs without a deeper analysis of physical features of QCD’ — therefore we
postpone calculation of these graphs to another investigation.

A /
c

Fig. 3. The calculated 23 contribution

For this reason, we prefer to present as the example the contribution of a graph
which does not involve any logarithms. There are no such graphs in the second order in
J apart from graphs containing tadpoles. We find such a graph in the order /3, Fig. 3.
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Calculation of the contribution to E(r) coming from this graph is somewhat tedious. For
example, it involves contraction of three D' matrices with two &, 's. Below we describe
only the most important steps of the calculation.

- We use the standard diagrammatic rules in the Euclidean momentum space. Expres-
sions for vertices are of the same form as in the standard QCD. The slashed lires correspond
to the Fourier transforms of G%(x), and therefore they are given by the second derivatives
of é(p). In order to avoid singularities due to multiplication of §’s we regularize the slashed
lines by the replacement

0™ p) - 2reu®)”? exp (— p’fen’). (24)

We introduce here the dimensional constant x in order to keep ¢ dimensionless. Then,
we obtain the contribution to {W(C)}, of the form

ASW(C)yo = Tg*Acolen®) ™" | d®p exp (iFp—2e~ "1~ 2pY), (25)

where ¢, is a positive constant, x!, X? are spatial locations of the static quark and anti-
quark, r = x'—Xx2. The integral over p, was performed due to 6(ps) coming from

T T
| dxy | dxiexp [ip(xk—x2)] (26)
-T =T
in the limit 7 — oo. From (26) comes also the factor T present in (25). From (25) we obtain
11 ‘

ACW(C)Do = coTRg*u™ e 2 exp [—ep?(x' —%3)2]. 7

This expression becomes singular when we try to remove the cutoff, ¢ — 0.
As usual in such circumstances, one can try to introduce a renormalization procedure.
From (21) it follows that

EG'-xY) = — um—‘;— AW(CO)D, (28)

T-x

if we neglect all other contributions to E(r). Therefore, the term in 4{W(C)>,, which is
independent of 7, will lead to an unessential constant in the energy E. Subtracting from
A{W(F)Do the term ACW(F = 0)>, we obtain

E(r,e) = —cog*Apu e 2 (exp [ —ep®(x' —X*)*] - 1). (29)
Next, we introduce the renormalized i:
A= 30)

Observe that if 4,., is kept finite, then the bare 1 vanishes in the limit ¢ » 0. Now, the
limit ¢ — 0 in (29) can be taken, yielding

- Aren )’ =
E(r) = cog‘(‘:;") 2. (31)
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The above renormalization procedure should be regarded merely as a proposal of
how to extract finite £(r) from divergent graphs. The reader should be aware of the fact
that we have renormal:zed infrared divergencies. The usual approach is to leave them
unrenormalized but, instead, to calculate only the quantities which are infrared finite
due to car.cellations of these infinities. It would be interesting to find out what are infrared
finite quantities in QCD’. The proposed renormalization approach is to some extent
justified, because the renormalized infinities appear in the perturbative expansion in powers
of / much like the well-known ultraviolet infinities appear in the perturbative expansion
in powers of g.

5. Ending remarks

We have proposed the modification of perturbative QCD which essentially consists
of introducing a new type of internal line in Feynman graphs. The corresponding prop-
agator is proportional to the second derivatives of 5(p). In comparison to other modifica-
tions of QCD, e.g. [9, 10], our modification is very straightforward — it merely takes the
advantage of the mathematical freedom of choosing boundary conditions for the free
gluon propagator. However, it is just this choice which largely determines the long-distance
physics.

We have left a number of unsolved problems, like the status of QCD’ from the point
of view of general axiomatics, or problem of the infrared divergences. Nevertheless, it is
interesting that starting from SO(4)-noninvariant propagator we can obtain SO(4) invariant
theory which likely confines quarks. This is possible only due to the color degrees of
freedom, described by the indices a, b in Gf,’i(x). In particular, there is no analogously
modified and SO(4) symmetric QED. This we regard as one of the most attractive features
of QCD'.

Finally, let us remark that our construction can be easily generalized to SU(n), n > 2,
groups merely by embedding SU(2) in SU(n).
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