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A LOW-ENERGY DIRECT CHANNEL REGGE-POLE APPROACH
TO =-'?C ELASTIC SCATTERING PROCESS
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Differential scattering cross-sections for the elastic scattering of « particles by 3C
at low bombarding energies have been evaluated in the direct channel Regge-pole formalism,
taking into account the contributions from a few nearby dominant excited levels of the
compound nucleus "0 and incorporating the background effect. The relevant pole param-
eters for the scattering process are also evaluated from the “least-squares-fit” with the
experimental data. The overall agreement with the experiment is found to be satisfactory:

PACS numbers: 25.60.-t, 25.60.Cy

1. Introductien

The success of Regge-pole theory in high energy scattering processes has given rise
to considerable interest in studying its application to nuclear scattering and reaction
processes at low energies. It is to be noted here that of the methodologies advocated so
far for nuclear scattering processes the most important ones are the optical model {1],
the diffraction model or the sharp cut-off model which has been subsequently developed
by Ackhiezer, Pomeranchuk, Blair and MclIntyre and it is now known as the APBM
model :2], the compound nucleus analysis :3] and also the Regge-pole formalism [4],
However, the most remarkable triumph of the pole representation is that one does not
need refer to the potential at all.

Though the analytic S-matrix theory in the complex momentum plane (complex
K-plane) has achieved remarkable success in high-energy physics, it is yet to have such.
an appeal to nuclear scattering phenomena due to its certain limitations [5]. On the other
hand the represeritation in the complex angular momentum plane (i-plane) is more realistic,
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because it is free from most of these limitations. The complex angular momentum approach
to-particle scattering phenomena in terms of the poles in the A-plane was first introduced
by Regge et al. {6]. In this Regge prescription the Sommerfeld-Watson representation
of the scattering amplitude in the form of a contour integral in the A-plane enclosing the
real Z-axis in the right half plane is modified by distorting the contour in such a way as to
include the poles (known as Regge poles) of the partial-wave amplitude in the first
quardrant. In its simplest form the ”Background Integral” parallel to the imaginary axis
is neglected with respect to the pole terms. However, this Regge simple pole formula has
shortcomings too. As for example, the S-matrix satisfies neither the correct asymptotic
behaviour in the i-plane nor the proper threshold behaviour in K in addition to its incapa-
bility of satisfying the elastic unitarity condition. Again, the Regge simple pole formula
for low energy resonant scattering leads only to a power law decrease of the non-resonant
scattering phases with angular momentum instead of an exponential fall which is characte-
ristic for forces with a finite effective radius. This has been accounted for by an incorrect
analytic behaviour of the Regge amplitude relative to the crossed-channel variabie »1. So,
different modified Regge-pole models have been suggested by different authors [7]. As the
background integral represents the contributions from the singularities in the left-half
A-plane, so the main object of the different modified models was of taking some contribu-
tion from the background integral and lumping it into the pole terms, as was done in
Khuri’s representation [7]. Khuri’s model though fails to give the correct threshold behav-
iour for the imaginary part of the partial-wave amplitude in K, yet it gives correct asympto-
tic behaviour in A. However, one of the main drawbacks of this model and many other
modified models [7] is that they fail to satisfy the elastic unitarity condition -explicitly.
The pole model which overcomes all these shortcomings is an elegant and very simple
model, the “Modified Pole Model” (MPM) of Grushin and Nikitin {8} who have taken
into account the effect of the background integral by adding an integral to the simple
Regge-pole formula and have successfully analysed the low energy n-'2C elastic scattering
phenomena within the framework of this model.

The application of the Regge-pole phenomenology to nuclear scattering process
was first made by the group of Italian workers [9] who have made a parametrized fit to the
experimental scattering data using the simple Regge-pole formula and hence their results
may be treated as unrealistic due to a complete neglect of the background effect which do
not need to be very small for nuclear scattering processes.

We have, therefore, taken recourse to the Modified Pole Model (MPM) of Grushin
and Nikitin [8] for the analysis of low energy resonant scattering of a spinless projectile
(a-particle) by a spinless target (12C).

It is worth mentioning here that as the information about the crossed channel processes
for these types of nuclear reactions is not available, we Reggeize in the direct channel.
The energy of the incoming «-particles considered varied from 11.00, MeV (Lab.) to
16.00 MeV (Lab.) at 4 different randomly chosen energy values.

In the next section we discuss our method of calculation in the framework of MPM
starting from the simple Regge formulation for the sake of completeness and in the last
section we present the results of our calculations and discussion.
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2. Method of calculations

The elastic scattering amplitude for a spinless target and a spinless projectile is given by

o0

f) = %CZ(ZFH)(S,—I)P,(COS a),- N
=0

where S,(F) is the scattering matrix.
Applying the Sommerfeld-Watson transform to (i) we have

1 [Q24DAEP,(-2)
2ik sin A
[of

f(0) = dz, (2

where z = cos 6 and the contour C encloses the real 1-axis in the right-half'plane.
Now, Reggeizing (2), we get

~1+iw

N
f(6) = ’E%s (244 DAAE) Py(—z)dA+ g Z (22, + DRAE)P;(~2) . (3)
j=1

sin A sin 74,
—4—iow

In the simple Regge-pole formulation the background integra1 is neglected with respect
to the “pole term” and hence the scattering amplitude reduces to the following form:

N
=N @LHDRAEP;(—2)
k sin A )

Jj=1

Here 1; is the j-th Regge-pole given by A(E) = ay(E)+ip,(E); fi(E) is the analytic
continuation of the partial wave amplitude with the integral value / to complex 4 and R(E)
is the residue of the partial wave amplitude at 1; and is complex in general, and N repre-
sents the number of poles considered at a given energy, and P,(z) is a Legendre polynomial
of complex order 4. The equation can also be written down as

f0) = G

] N
10 = z (24, + DRAE)P(;, 2), (5)
J=1
where
P(h, 2) = —— Py(—2). 6)
SIN A

The scattering amplitude given by Egs. (5) and (6) has the shortcomings referred to above.
In the Modified Pole Model (MPM) a different structure is taken for the function
P(4, 2). In this Model [8] it has been assumed that in the complex z-plane, the function
P(2, z) has a square-root branch-point at z = z, = cosh &, where z, = 1+ 1,/2k?, t, being
2

the “branch-point” in the crossed #-plane. £ may also be defined as & = cosh“(l + —5(%)
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where p, is the mass of the lowest-mass exchanged system. This assumption leads to
accounting for the potential scattering with the amplitude depending on &, the pheno-
menological choice of which denotes the introduction of an effective short-range potential
which has an effective radius defined as R ~ [2k2(cosh £ —1)]'/2, The modified form of the
function P(4, z) is chosen as

exp ($)

Piy(-2)+ J‘

h*dh
- for ReZ > —1. @)

P2 = [ (W= 2hz+1)*

sin 74

The scattering amplitude given by (5) with P(4, z) as shown in (7) is the required amplitude
free from all the shortcomings referred to above.

Now, if the leading poles in the complex A-plane for the process considered are situated
near some integral values (/) of the angular momentum close to the real A-axis (as in the
case of resonant scattering), then the imaginary part of the pole is very small and in that
case the modified amplitude is reduced to the form:

f0) = 2(2/ -+ DR,(E) (—-”/%) +T,,(4)) ®)

where

Ty(z) = In (ci-e—’%@:—z); Ty(z) = c+2(1+ Ty),

1
IT(z) = QI-1)zT,-,2) (- DT (D) + —— Q-1 {P2)— P (2)}+cexp (4(I-1)),  (9)
where ¢ = [exp (28)—2z exp (¢)+1]*. Then the differential scattering cross-section is
given by

a(0) = |f(6)°. (10)

The centre of mass differential scattering cross-sections at incident laboratory energies
of 11.00, 13.00, 14.00 and 16.00 MeV of a-particles have been computed using equation
(10) along with the equations (8) and (9) over the whole of the angular region by,,vmean_s
of a least-squares fit to the experimental data [10]. At each energy value, the contributions
from 2 or 3 dominant resonances corresponding to the excited states [11] of O have
been considered.

3. Results and discussion

The angular distributions at laboratory energies of 1>1.00, 13.00, 14.00 and 16.00 MeV
calculated from the modified pole representation are shown together with the experimental
ones in Fig. 1 to Fig. 4. The theoretical angular distributions, like the experimental ones,
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Fig. 1. Angular distributions (c.m.) at a laboratory energy of 11.00 MeV. Points indicate experimental
values while the line represents the theoretical results
Fig. 2. Same as for figure 1 at 13.00 MeV (Lab.)

1000}
@ i
a
E 100l 1000 16,00 MeV
vlig —
vlo® =
0
oy
£
1.0 - L.
Bl 10.0
olo
0.1 . . 1.0 ] J 1
50° 100° 150° : 50° 100° 150°
e — 8oy
Fig. 3 Fig. 4

Fig. 3. Same as for figure 1 at 14.00 MeV (Lab.)
Fig. 4. Same as for figure 1 at 16.00 MeV (Lab.)
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exhibit a distinct diffraction pattern. At all energies the theoretical angular distributions
reproduce all the experimental maxima and minima except at 11.00 MeV. At this energy
though fewer maxima and minima are ohtained, nevertheless, overall agreement is quite
satisfactory. At 14.00 MeV the third theoretical minimum is too deep while, except first
minimum and maximum other theoret'cal maxima and minima are slightly displaced
towards lower angles.

However, over the entire energy region considered, it has been found that 2 or 3 nearby
leading poles are sufficient to account for the scattering phenomena at least qualitatively.
The imaginary parts () of the poles and the corresponding residues (both real and imaginary
parts) evaluated by a least-squares fit to differential cross-sections data are tabulated
together with their real parts and excitation energies (E,) in Table I

TABLE |
Pole parameters and the residues at different incident energies
_— e — — —
J= |
E (lab.) (J = real part g" (MeV) Re R X
(MeV) of the pole (Excitation) B e Im
T = parity) energy)
11.00 1- 15.42 0.0199 0.4777 0.5659
3= 15.42 0.2270 2.5654 0.7750
5- 16.9 0.0016 1.3875 - 2.8408
13.00 2+ 16.94 0.0049 ~1.7744 -3.1657
4+ 16.8 0.0395 —44.4480 ~—13.0420
0+ 17.7 0.0251 —1.4959 —0.0347
14.00 2+ 17.7 0.0018 0.0208 0.0059
4+ 17.81 0.1562 2.3132 0.2214
2+ ‘19.12 0.0037 0.4734 0.3099
16.00 4+ 19.12 0.0450 - 0.4124 7.6517
5= 19.25 0.0021 -—0.6075 0.0264

At 11.00 MeV the tentatively assigned levels (1-) and (3-) with an excitation energy
of 15.42 MeV have been confirmed by the present theoretical work. Again at 16.00 MeV
the existence of three resonance states 2+ (E, = 19.12 MeV), 4+ (E, = 19.12 MeV) and
5~ (E, = 19.25 MeV) of the compound nucleus 10O which were tentatively assigned by
experiment {I11] are supported by this work. We conclude that if the effect of the back-
ground is taken into account then two or three nearby dominant Regge-poles may hope-
fully reproduce the essential features of the low energy nuclear scattering of a spinless
projectile by a spinless target.

All the required computational work has been performed on a Burroughs-6700 com-
puter at the Regional Computer Centre, Calcutta.
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