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CLUSTER PROPERTIES OF THE GIANT MONOPOLE
RESONANCES EO IN THE LIGHT AND MEDIUM MASS NUCLEI
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The connection between the cluster spectroscopic factors of the giant monopole isoscalar
resonances, EO, and the ground states of nuclei has been established by means of the for-
malism of the Sp (2, R) group. These relations allow one to analyze the dependence of the
cluster properties of the isoscalar EO giant resonances on the mass number A.

PACS numbers: 21.60.-n, 21.60.Fw

In the last vears, much attention was paid to the experimental study of the hadron-
-nucleus inelastic scattering at the energy ~ 1 GeV. It was found that the atomic nuclei
giant resonances of the different multipolarity EO, El, E2 and E3 of both types (isoscalar
and isovector in dependence on the bombarding particle type p, o, d, ® etc.) are excited
intensively in such processes. The important result of thdse experiments is that the inelastic
scattering is accompanied by inténsive emission of a-particles with moderate energies [17.
It has been demonstrated experimentally [2], that the emission of these wa-particles is
caused by decay of the multipole giant resonances and partly by decay of the excited
daughter nuclei after output of the first a-particle. The intensive formation of the a-particles
in the processes of the inelastic scattering was observed in many laboratories and for large
number of nuclei. Therefore, this property may be considered today as a general nuclear
property. This fact stimulated interest for the theoretical investigation of the cluster
properties of the giant resonances.
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Such an investigation was begun by Hecht [3] where the a-particle spectroscopic
factors, S,, for the giant isoscalar resonances, E0 and E2, had been calculated for a number
of the light nuclei. The overlap integrals between the cluster states (CS) and the states
of these giant resonances (GR) also had been calculated. Values of the overlap integrals,
{CS|GR), and values, S,, were found to be rather high. This explains qualitatively the
considerable contribution of the a-particle channel into the decay of the giant resonances.

Examples of specific nuclei with 4 <C 28, which were considered in paper [3] showed
that the values of S, and (CS|GR) decrease on the whole with an increase in the nuclear
mass number A. The cluster spectroscopic factors of the giant resonances EO and E2
also have been obtained in [4, 5] for the 4°Ca nucleus.

However, it is interesting to estimate theoretically the cluster properties of the medium
mass nuclei with 4 ~ 50-80, because for these nuclei sufficiently strong cluster effects
were observed in the last few years. It is impossible to determine these properties using
papers [3-5], in which calculations have been made only up to 4 = 40, because these
results are exclusively of a numerical nature and do not contain analytical expressions.

S (A*
o ), for the
A)

(-4

ratios of the a-particle spectroscopic factors for the gaint isoscalar resonances EO and for
the states of the lowest shell model configuration of nuclei as the function of the mass
number, A. These expressions will allow us to estimate the order of the values S(4%)
for the medium mass nuclei and also to trace the evolution of the cluster properties of
the gaint resonances EQ with increasing A.

It is convenient to use the Sp(2, R) group [6-9] in the consideration of the cluster
properties of the giant resonances E0.

Let us introduce dimensionless Jacobi coordinates xj, (j = 1,2, ..., 4—~1;¢ = 1, 2, 3)
for the nucleus 4. In these coordinates hyperradius, g, is written as follows:

Therefore, in this paper we shall obtain the analytical expressions,

A-1 3 h
0> =Y Y x%ri, rs = ——, where m is the nucleon mass. ¢* is the operator of the
j=1¢=1 maow

isoscalar monopole excitation of nucleus.

Let us introduce the creation and the annihilation operators of an oscillator quanta
- 1 - ~ - 1 - - -
a}f = -;E(xj—ip i), a; = —\—/-i- (x;+ip;) for all degrees of freedom x;. For these operators

the usual boson commutation relations are valid.
Operators

J+=%§(ar'a;): J—=’;—Z(a;a;)s
Jo =53 [@} a)+@;-ah] = FE, (1)
J
which satisfy the relations:

o, J:]l = tJ4s s, J-] = =2Jos
U =Jg Jo=1Jo @
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are the generators of the canonical transformation group, Sp(2, R), which is the dynamics
group of a (34 —3) -dimensional harmonic oscillator with the frequency w.

The totally antisymmetrical wave functions, |ANKLf), of the translationally invariant
shell- model (TISM) [10, 11] form the basis in the space of the infinite unitary irreducible
representation of the Sp(2, R) group. This representation belongs to the positive discrete

34-3\ '
series, D7, with J = %(K + ~—2—> —1 (for details see {7, 8, 12]). Here the wave functions
of the TISM were constructed according to the so-called orthogonal scheme as in our
previous paper [13]. N is the total number of the oscillator quanta, i.e., the total oscilla-

tor energy E = N+ in the A units. The global momentum, K, appearing in the

K-harmonics method [14], characterizes the irreducible representation, D¥, of the O(34 —3)
group, to which the wave function |ANKLp) belongs. L is the usual orbital angular mo-
mentum. Index B denotes all other quantum numbers, distinguishing the nuclear states
in the TISM. B includes Young’s scheme [f] for the spatial part of the wave function,
spin S, isospin 7, total angular momentum J and other needed quantum numbers.

The generators (2) fulfil the relation:

[V, J8] = kIS HE+K—1) 3)
from which it follows that the normalized function of the x-multipole monopole excitation

|ANKLp) (N = 2k + K) may be written as follows

_[ E-D!
|ANKLp> = [K!(EO+K-1)!

Here |[AKKLp) is the state with the minimal number of quanta N,;, = K, which are per-

1/2
] JSIAKKLP). 4)

. 34~
mitted for a fixed K, and E; = K+

is oscillator energy of this state. It should be

noted that the following relations are fulfilled
(K+VUEg+r+v—1)!
K{Eq+Kk—1)!

J_|AKKLB) = 0. 3

We are interested in the spectroscopic amplitude, S;’2, of the decay of the nucleus 4

into the fragments A, and A,. The wave functions of the TISM will be used with the same
oscillator parameters, hiw, for the parent nucleus and the final fragments. Then the spectro-
scopic amplitude, S;Z, may be expressed in terms of the fractional parentage coefficients
of the TISM as foliows

12
JLANKLB> = [ ] |AN +2vKLBD,

Al
SH2 = \/A T CANKLBIAN K\ Lyfss nl AN 2KaLaPo{ £, (6)
144322+

where n = N—N, — N, and / are the number of quanta and the orbital momentum of the
relative motion of the fragments 4, and A4,, respectively.
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In a general case (i.e., for different frequencies, fiw;) the wave function of the nucleus,
A;, will be the superposition of the states, [4,N,K,L;f;>, and the spectroscopic amplitude
to be found will be a linear combination of the simple amplitudes (6). Therefore, the present
analysis of the properties of the amplitude (6), will allow us to consider also more realistic
situations.

Suppose we know the fractional parentage decomposition for the lowest vector,
[AKKLPB>, which corresponds to the ground state shell model configuration of the nucleus 4:

|AKKLBY = ). {AKKLBIA;N,K L fy;nl, A,N,K,Lfo{ 2}
NikaLae
X |AyN K LyBy; nl, A;N, KoLy B2 { 3.

Let us apply to both sides of this expression the operator, J;, which is characterized

by property '
Jo(A) = J () +J (4)+T (0),

where J.(g) is the operator of the monopole excitation in relative motion of the fragments
Ay and A4,. By using relation (4) we obtain the following expression for the general fractional
parentage coefficient, which is included in the spectroscopic amplitude (6)

(ANKLPB|AN,K L By; nl, A;N,K,L,B,(Z))

K! K4 i3 (Eg—1)!
- Vil vy K W(Eg + K — 1) (g — i) (K, — v,)!

Vivav3y

X (Eqo0+5 =D Ez o +K— 1) eo+r3—1)! 1z
(Ka—-v3)!(E1,0‘+K1—v1 —1)!(E2'0+Kz“VZ—l)!(80+K3“V3“‘1)!

X (AKKLBIAN, —2v,K L f{; n—2v3l, A;N,—2v,K,L,,(Z£)). )
Here,
K =3 (N —Ky), K =3(N,—Kp), k3=30m—D, vi+v+v;=x,
34;,-3
Eo = K;+ s b= I+3.

If both fragments are formed in the lowest states allowed by the Pauli exclusion
principle, then N; = K, and N, = K,. For this important case from expression (7) we
find the connection between spectroscopic factors for the ground and monopole excited
states of the nucleus A4:

S, #(ANKLS - A, K K Lf, +A,K,K,L,B,)

_ (Eo—l)!(30+x3—1)!1€3!
T kNEo+K—1)!(c; —K) (ég+15— K —1)!

S S(AKKLB - A, K K LB+ A;,K,K,L,8,).

®
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Particularly for the a-particle spectroscopic factor of the isoscalar giant resonance EO
of the nucleus A(x = 1, 4, = 4) we have:

Sa,z(AK+2KLﬁ - A1K1K1L151)
(K=K =1+ (K—K ++3)
N 2QK+34-3)

S,,,(AKKL[? — A K K Lp,). 9

If A changes in the limit of one shell, then the number of quanta » = K—K,, corre-
sponding to the motion of the a-cluster, remains constant, but the denominator increases
Sy(4™)
. Syi(A4)
monopole isoscalar giant resonances EQ and the ground states of nuclei decreases on the

monotonically in the right side of expression (9). Therefore the ratio of the

TABLE'1
Ratio of the a-particle spectroscopic factors for the giant resonance EO and for the ground states of the
Se,i(AK+2KL = 0f - A, K, K, L, = If))

nuclei for I=02,4
Su,l(AKKL = Oﬂ - A KK L = lﬁl)

l BBe lzC 160 ZONC 241\/[g ZSSi 325 36Al‘ 4°Ca

0 0,724 | 0,429 0,304 0,567 0,440 0,359 0,304 0,263 0,232
2 0,621 | 0,367 0,261 0,536 0,416 0,340 0,287 0,249 0,219
4 0,379 | 0,224 0,159 0,464 0,360 0,294 0,249 0,215 0,190

whole with increasing 4. As can be seen from Table I some irregularities are observed
in the transition region between neighbouring shells. Specific examples, which have been
considered in paper [3], also lead to this conclusion.

S (AK+2KL = 0f - A, K,K\L, = If,
S (AKKL = 0f — A,K,K,L, = If,
decreases with an increase in the orbital momentum / of the relative motion of the a-particle

and the daughter nucleus 4,.

These results allow us to estimate the values of the spectroscopic factors S, ;(4%)
for the giant resonances EO because the spectroscopic factors for the ground states S, (4)
may be calculated by using the usual shell model methods [10, 11].

Let consider now the a-particle spectroscopic factors for the transition from the state
of the giant resonance EQ of the nucleus 4 to the monopole excited state of the daughter
nucleus A4-4. From expression (7) it follows that

CAK+2KLBIA; K +2K,L1B1; nl, A, KK, Lo (L))

It is also seen from Table I that the ratio

2K, +34,-3 <
= \/ SR 3d—3 CAKKLBIAK K LiBys nl, 4,K,KoLoBy(£))
(n—=Dm+i+1)

22K +34=3) (AKKLBIA K, +2K,L B ; n—21, A,K,K,L,B(£)>.  (10)



1072

As can be seen from this equation, the a-particle spectroscopic factors of the lowest
state of the nucleus A4 for the transition to the monopole excited state of the nucleus,
A-4, would be known in order to obtain the value S, (AK+2KLB — A, K, +2K,L,B)).
The technique of the calculation of these complicated spectroscopic factors is described
in {11, 15}

But for the particular case / = n, only one component remains on the right side of
formula (10) and we obtain the relation between S, ;. ,(4AK+2KLfS - A K, +2K,L\B)
and Sa,l:n(AKKLﬁ - A, K K, LB,)

Sa‘lzn(AK'*'zKLﬂ d AIKI +2K1Llﬂl) _ 2K1 +3A] _3 1
S,1-(AKKLS — A, K K,L,$,)  2K+34-3 ° (1)

In particular for the !*O nucleus we calculate:

Su’[=4(160*0+ > ]2C*4+) o
_Ed.l:4(1600+ R {‘5‘C4+) = %9

and

11

Su,l=4(160*0+ — 12c4+)
Su,1=4(1600+ N 12c4+) -6

Here symbols 4, J* and A*J" denote the lowest state of the nucleus 4 with the spin J
and the monopole excited state, respectively.
In the general case for / = n we have:

Su,lzn(AK'{"ZKLﬁ - AlKl +2K1L1ﬂ1) _ 2K1 +3A1_‘3
S,1-(AK+2KLf - A, K,K,L,f;) =~ 2K-2K,+3"’

(12)

i.e. the spectroscopic factors for the transition from the giant resonance EO for nucleus
A (A4 > 8) to the monopole excited state of the nucleus A4 are bigger than for the transition
to the state of the lowest configuration for this nucleus.

Especially tor the 160 nucleus we obtain the result that

Sa,l=4(160*0+ - 12c*4+)
Su,l=4(160*0+ - 12c4+)

49

=11

The expiessions obtained above also allow us to estimate the values of the overlap
integrals between the wave functions of the giant resonances EO and the cluster states [5].

The authors are grateful to Yu. 1. Kharitonov, B. Kamys and L. A. Sliv for helpful
discussions.
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