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ASYMMETRIC NUCLEAR MATTER AND SKYRME FORCES*
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The properties of asymmetric nuclear matter dre studied using several existing para-
metrizations of the Skyrme interaction. The dependence of the Fermi liquid parameters
and of the compression modulus on the ncutron excess is investigated. Apart from the
standard case of nuclear matter at zero pressure, the case of highly asymmetric nuclear
matter under high pressure, relevant to astrophysical applications, is also studied.

PACS numbers: 21.65.+f, 2].30.+y

1. Introduction

The knowledge of the properties of asymmetric nuclear matter is important for many
reasons. Heavy nuclei have an appreciable neutron excess, characterized by the parameter
a = (N—Z)/A which reaches the value « = 0.23 for 238U. In the case of hypothetical
superheavy nuclei the neutron excess is expected to be even larger. Moreover, the knowl-
edge of the properties of a cold, highly asymmetric nuclear matter with a very large neutron
excess (0, > 0,) is relevant to physics of neutron stars. Also, the calculation of the equation
of state of hot, dense matter, relevant to physics of gravitational collapse, requires the
knowledge of the properties of asymmetric nuclear matter.

In the last decade many properties of nuclei have been reproduced in self-consistent
microscopic calculations using phenomenological effective nucleon-nucleon interaction
[1-3]. The effective nucleon-nucleon interaction, the pdrameters of which have been
determined by fitting a large number of properties of nuclei, can then be used to describe
the properties of infinite nuclear matter in the Hartree-Fock approximation.
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The Skyrme type forces (or the Skyrme type energy density functional) lead to partic-
ularly simple calculations for nuclear systems in the unusual conditions corresponding
to astrophysical applications. Skyrme forces have been used for example in the calculation
of the equation of state of neutron’star matter at the density below the standard nuclear
matter density gy = 0.17 fm~3. Ore is dealing there with unusual nuclei with a very large
neutron excess, immersed in a neutron-electron fluid [4]. Skyrme forces have also been
used to calculate the properties of hot, dense matter ericountered in the gravitational
collapse of massive stars. One considers there a high temperature system consisting of hot
nuclei, often with a large neutron excess {¢.8., « = 0.5), immersed in a hot fluid composed
of neutrons, protors, alpha particles and electrons [3, 6].

In the preseht paper we study the properties of asymmetric nuclear matter using
several available parametrizations of the Skyrme forces. In Section 2 we present the formulae
for the Fermi liquid parameters, describing the quasiparticle interaction in asymmetric
nuclear matter. The quantities related to compressibility of nuclear matter are studied
in Section 3. Numerical results obtained using various parametrizations of the Skyrme
forces are presented in Section 4. We study separately the standard case of asymmetric
nuclear matter at the equilibrium dersity an.d that of a strongly asymmetric nuclear matter
under a high external pressure, peculiar.to the astrophysical applications. We discuss the
effect of neutron excess on the compression modulus of nuclear matter. In Section 5 we
compare the Skyrme force results with estimates obtained using existing Fermi liquid
parameters for nuclear and neutron matter, calculated starting from the Reid soft-core.
nucleo::-nucleon interaction. Section 5 contains also the main corclusiors of the preseiit

paper.

2. Fermi liquid parameters

Let us consider nuclear matter of the density ¢ = g,+ g,, the neutron excess being
described by the neutron excess parameter « = (¢, @,)/¢. The average Fermi momentum,
kg, is related to g by ¢ = 2k2/3n2 The Fermi momenta for neutrons and protons may be
expressed in terms of the average Fermi momentum kg and the neutron excess param-
eter a as

k, = ke(14+a)'?,
ky = ke(1—a)'">. (1)

We consider spin-unpolarized asymmetric nuclear matter. Using standard representation
of the Skyrme force we obtain the following formulae for the direct and exchange matrix
elements in the plane wave basis (neglecting the spin-orbit term which does not play any
role in the present discussion):

(kotk'c't|Vikotk'c't') = to(1 +Xo8,q) +(1; +12)k% + 1 13091 4 X368,4),
(kotk'c' V|V IK'0'Vkot) = [to+(1 —12)K° +% 13"10,0: 00 +(foXo +5 13%30%)0,. 2

We have set ¥ = 1 (k—k’). All momenta are measured in units of #i. Using Eq. (2) we
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derive, in the Hartree-Fock approximation, the energy density E of the system as a functional
of the distribution functions m,,, £ = Elng,,] (here, T = n,p and ¢ = 1, |). This enables
us to write down the formulae for the quasiparticle energies

OE

6t — T 3
€k P (3)

and for the quasiparticle interaction of the Landau theory of normal Fermi liquids {9-12]
/ _ OE s
Jkotk'a't T 6"&0,5","6'1’ . ( )

The functional derivatives in Eqs. (3-4) are evaluated. for the distribution function cor-
responding to the ground state, ng,, = 0(k,— |k{). The quasiparticle momenta in Eq. (4)
should be taken on the corresponding Fermi surfaces, so that the quantity f depends only
on the cosine of the angle between the quasiparticle momenta, cos § = k - k’. Using
Eq. (3) we calculate the quasiparticle effective mass on the Fermi surface.

0eor\ !
— h I( Ul’)
( ak (5)
The explicit formula reads:
[, m
mimy =1+ 55 [At + 1)+t~ 1)e.} (6)

Note that since we are considering spin saturated nuclear matter, the quasiparticte energy
and consequently the effective mass do not depend upon the spin variable ¢. The spin
averaged quasiparticle interaction may be described by a set of dimensionless Fermi liquid
parameters F° (we follow closely the notation of Ref. [13])

¥ =4 Y faorwar = No' 3, FI'Py(cos 0), Q)
oo’ 1 M

where N, is the density of quasiparticle states calculated in symmetric (o = 0) nuclear
matter of the same density ¢, N, = 2kpm*/(n?h?). For the Skyrme type effective forces
all #* with [ > 1 vanish. The nonzero Fermi liquid parameters describing the spin
independent part of the quasi-particle interaction are given by the formulae:

N 'F5 = (1 —x)to+5 Bty +t k2 4+ 1% t30°[ L — x5+ 4 d(7+5x3)+1L d¥(1—x3)]
+15 13de” (1 +2x3) (d— 3o, —§ t:d(d— )" ? 0l (G +x3), (8a)
No'FY = —§ Btp+1)kl, (8b)
NG'FP = L 2+x)to+5 (k2 +K2) (8, +1,)
17 102+ x5+ 5 d(5+x3)+ 3 (1~ x3)] +1'5 tad(d— 1)a* " 20,0,(1+2x3), (8¢c)
NG'FW® = —Lkk(t,+1,). (8d)
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The Fermi liquid parameters satisfy the relations
g'?p(g’ a) = 37?“(9. "“),
‘g:;lp(g’ a) = f?p(ga “a)' (8')

These symmetry properties stem from the charge ibndependenoe of the nuclear hamiltonian.
In the limiting case of symmetric nuclear matter we obtain, using standard notation [12],

F1%(e,0) = Fi7(e,0) = F\+F,, (92)
Fi%(e,0) = F,—F|. (9b)

3. Compressibilities
The compression modulus of nuclear matter is defined as
9 op (10
= 20’ )

where P is the pressure in the system. At T = 0 K the pressure P is related to energy pex
particle £,(¢) = E/e by

, 08,
P =g (11)
de
and hence in general
o P a’«s’
K=18" +992° 5 (12)
0 o’

K is a function of ¢ and « which we denote hereafter by K, (¢). At the value of ¢ which
corresponds to the minimum of &,(g) (at fixed «, this value of ¢ will be hereafter referred
to as g, With g0 = 0,) One obtains a standard formula

K = K (00)) = 9 (92 62‘”2“) (kF az‘g) , (13)
5@ 0= 00x akF kp=kpa

where go, = 2k3,/(3n2). The compression modulus K,(¢) may be shown to be related to
the Fermi liquid parameters &, by the general formula [14]

K. (o) = —[(1+1)5/3/m +(1—a)*Bm¥+ 1 [+ F e

3h 2kZ (m*
m*

+(1—a)*F P +2(1 42)973*’]} . (14)

Charge symmetry of nuclear hamiltonian implies K,(¢) = K_,(¢) and in particular
K% = K%9,. In the case of a small neutron excess, peculiar to standard nuclear physics,
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one may expand both K* and K,(p) in a, keeping only terms quadratic in «. In this approxi-
mation

K3 = K+ K02, (153)
K,(Q) = KO(Q)+Ksym(Q)“2° (15b)

We shall see in Section 4 that, surprisingly, the quadratic approximation (15a) works
extremely well even at a = 0.3.

In what follows, we shall mainly study the a-dependence of compressibility and of
the Fermi liquid parameters at a given value of pressure P: #* (P, ) and K,(P). In partic-
ular, the saturation properties of asymmetric nuclear matter will correspond to P = 0
(e.g., K& = K,(P = 0)) while those relevant to astrophysical applications will be calculated
at the values of P > 0, encountered in the calculations of supernova matter.

4. Results

Our calculations have been performed for five different parametrizations of the Skyrme
force. The parameters of the Skyrme forces used in the present study are showa in Table 1.
The forces SIII, SIV [15] and Ska [16] were used in extensive self-consistent calculations

TABLE 1
Numerical values of the parameters of the -Skyrme type interactions used in the present work
- i
to t 2 I t3 d
(MeV - fm®) Xo (MeV - fm®) | (MeV - fm®) | (MeV - fm?*+3%) X3
SIII —1128.75 .45 395.0 —95.0 14000.0 1.0 1
SIv —1205.6 .05 765.0 35.0 5000.0 1.0 1
SKA —1602.78 —.02 570.88 —67.7 8000.0 —.286 1/3
SkM  -2645.0 .09 385.0 —120.0 15595.0 0.0 1/6
LR —1057.3 .288 235.9 —100.0 14463.5 226 |

of a large number of properties of atomic nuclei [3]. The Skyrme type force of Ref. [17]
(hereafter referred to as the SkM force) and that of Ref. [5] (hereafter referred to as the
LR ore) have been used in astrophysical applications, involving very often strongly asym-
metric nuclear matter with a very large neutron excess. However, these parametrizations.
are also consistent with the properties of symmetric nuclear matter at the equilibrium
density (see Table IV).

Let us consider first the standard case of asymmetric nuclear matter in equilibrium,
i.e. at the density g, corresponding to the minimum of &,(¢) (P = 0). We choose ¢ < 0.3
which is relevant to physics of heavy nuclei. In Table II we present the values of effective
masses and Fermi liquid parameters, calculated at P = 0 for several values of a. The
behaviour of m¥ is quite similar for all forces. At P = 0 and o < 0.1 m} increases and
m}; decreases with increasing «. This is connected with the sign of the quantity ¢, — ¢, which
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remains the same for all the forces considered (see formula (6) and Table I). Note that
for Skyrme forces the variation of 1/m} with « at fixed g is linear and that at « < 0.1 and
P = 0 the additional a-dependence of m} coming from the decrease of g,, with increasing
a is negligible (go — @gx ~ @?). For the SIII, SkM and LR forces this qualitative behaviour
of m} does not change when one passes to 0.1 << « < 0.3. In the case of the SIV and Ska
forces the effect of the decrease of go, makes mj practically constant for 0.1 < a < 0.3.

TABLE II
The Fermi liquid parameters calculated at equilibrium density of asymmetric nuclear matter (P = 0) for
0<a<0.3
a/force S SIV Ska SkM LR
i
0.0 0.763 0.471 0.608 0.789 0.911
£, 0.1 0.776 0.480 0.622 0.805 0.925
malm o o 0.789 0.492 0.640 0.824 0.939
0.3 0.804 0.508 0.662 0.846 ! 0.954
0.0 0.763 0.471 0.608 0.789 0.911
* 0.1 0.751 0.463 0.600 0.775 0.899
mplm o 5 0.739 0.463 0.59 0.764 0.887
0.3 0.729 0.464 0.597 0.758 0.877
0.0 1.17 —0.04 0.40 0.74 l 1.78
Fna 0.1 0.94 —0.03 0.41 0.66 1.59
o 0.2 0.705 —0.04 0.39 0.56 1.39
0.3 0.465 —0.07 0.35 0.44 1.16.
0.0 1.17 —0.04 0.40 0.74 1.78
Fop 0.1 1.40 —0.06 0.37 0.81 1.93
o 0.2 1.62 -0.11 0.3t 0.87 2.06
0.3 1.83 —0.18 0.22 0.90 2.15
00 —0.56 —0.53 —0.92 —-1.20 —0.66
Fop 0.1 ! —0.56 i —0.54 —0.95 ! —1.22 —0.68
o 0.2 —0.58 ! —0.60 : —1.01 —1.27 —0.74
0.3 —0.62 ;. —0.69 | —L.13 —1.37 —0.84

In contrast to this regular behaviour of the effective masses, the character of the
a-dependence of #§ may change when one passes from one force to another. In par-
ticular, both the sign and size of

(Afo)eq = ggn(P = 0, a)_‘g,-gp(P = 0, a)

may depend on the force used. At « = 0.3 the quantity (4% g),q is 0.11 and 0.13 for the
SIV and Ska forces and s —1.36, —0.46 and —0.99 for the SIII, SkM and LR forces,
respectively.

The values of the quantities Kg* and K§,, calculated for all the Skyrme forces studied,
are shown in Table III. The quadratic approximation, Kg'+ K} «?, gives a very precise
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description of the dependence of K;* on a. This is illustrated in Table IV. The values of
Ko for all the Skyrme forces used are quite similar. Namely, —504 MeV < K3,
< —441 MeV for the SII, SIV, Ska and LR forces, and K}, = —357 MeV for the
SkM force.

The difference between the symmetry term in the compression modulus calculated
at the saturation density of symmetric nuclear matter, K,(0,) (Kym(@o) defined in Eq. (15b))

TABLE HI

The equilibrium compression modulus K§3 for the SIV force at
several values of «. The values in brackets have been calculated
using corresponding quadratic approximation, Eq. (15a)

o K&
(MeV)
0.0 324.5 (324.5)
0.2 304.5 (304.3)
0.3 279.7 (279.1)
0.4 | 245.7 (243.9)

TABLE 1V

Saturation properties of symmetric nuclear matter obtained using the Skyrme type interactions studied
in the present paper

Force SIn SIvV Ska SkM LR
kpo(fm™) 1.291 1.307 1.320 11.334 1.320
dsym (MeV) 28.2 31.2 32.9 30.75 29.3

- K83 (MeV) 355.4 324.5 263.15 ' 216.6 370.4
Ksym(00) (MeV) —334.3 244.3 369.3 147.25 —47.7
OKsym (MeV) —121.7 —748.5 —810.4 —504.2 —437.5
K (MeV) —456.0 —504.2 —441.1 —356.9 —483.2

and that calculated from the equilibrium (P = 0) compression modulus, K;* (K, defined
in Eq. (15a)) deserves an additional comment. The difference between K, and K, is due
to terms which arise from the equilibrium condition:

dé(e)

o 0. (16)

2=Q0a
For small values of « one can approximate &,(¢) by:
ga(g) = éao(g)'i_asym(g)azy (17)

where a,,,, is the usual symmetry energy. At equilibrium, we have:

g;(QOa) = éa(’)(QOa)+a;ym(QOa)a2 = 0, (18)
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where the primes denote derivatives with respect to density ¢. Expanding &(go,) up to
first order in 89, = go,— 0, ONE gets
eq

’ ’ K
&o(2os) = 86Y0)d0, = 9—2{ 00,
Qo )

Combining this with Eq. (18), one obtains
95 |,

59&1 = - 'E(Z;—{ asym(QO)az' (19)

Note that dg, is quadratic in « as it should be due to charge symmetry. One can expand
in a similar way the compression modulus

Ko(0os) = K§'+Kodos = K& +0K,mt?, (20)
where we have defined
90,Ko
ORogm = = e 1)
0
TABLE V
Fermi liquid parameters calculated at P = 1 MeV fm~? for several values of a
afforce SII S1vV Ska SkM LR
0.0 0.739 0.438 0.571 0.758 0.902
., 0.2 0.767 0.457 0.600 0.795 0.932
Mo/ g 5 0.810 0.504 0.669 0.865 0.980
0.7 0.842 0.554 0.729 0.917 1.013
0.0 0.739 0.438 0.571 0.758. 0.902
. 0.2 0.713 0.428 0.555 0.729 0.874
mpit g5 0.675 0.430 0.557 0.706 0.841
0.7 0.650 0.449 0.579 0.710 0.827
0.0 1.538 0.143 0.619 0.973 2.339
gan 02 1.013 0.150 0.634 0.796 1.918
o 0.5 0.232 0.060 0.509 0.470 | 1.190
0.7 —0.290 —0.081 0.311 0.195 0.626
0.0 1.538 0.143 0.619 0.973 2.339
zop 02 2.073 0.083 0.536 1.121 2.700
“o 0.5 2.911 —0.131 0.282 1.265 3.058
0.7 3.525 —0.389 0.023 1.267 3.059
0.0 0.209 —0.170 —0.543 —0.711 0.104
ap 02 0.215 —0.222 —0.608 —0.757 0.058
o 0.5 0.254 —0.518 —0.960 -1.022 —90.220
0.7 0.323 —0.907 —1.371 —1.376 —0.633
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Hence K,y and KGJ, are related by
90:Ks |,

eq __ — TEO0™0
K-ym - Ksym Keq aeym’
0

(22)
where all the quantities are calculated at the saturation density of symmetric nuclear
matter, go. The crucial importance of the term 6K,,,, which results from the shift in the
equilibrium density when passing from ¢ = 0 to a small nonzero ¢ may be seen in Table IV.
The term K., compensates for the drastic differences between the values of X;,,(go)
calculated using different Skyrme forces, and leads to quite similar values of Kg},. Note
that K3}, is the quantity which appears in the phenomenological parametrization of the
compression modulus of finite nuclei used in Ref. [23].

Let us consider now the case of a highly asymmetric nuclear matter under a high
external pressure. Such a situation is encountered in the calculations of the properties
of hot dense matter in gravitational collapse of massive stars [6]. In Table V we give the
values of the Fermi liquid parameters m} and #§ calculated at P = 1 MeV fm~3, for
several values of the neutron excess parameter a. The chosen value of pressure is typical
to central part of collapsing stellar core at the final stage of gravitational collapse [6].
The behaviour of mj, is similar for all forces. As at P = 0, m increases with increasing a.
The value of m; decreases with increasing « for the SIII, SkM and LR forces or remains
practically constant for the SIV and Ska forces. On the contrary, the behaviour of Fg
as a function of « may qualitatively change when one passes from one force to another.

5. Discussion and conclusions

In this section we compare the results obtained with Skyrme forces with those obtained
using quasiparticle interactions based on more realistic nucleon-nucleon potentials. Then
we summarize the conclusions.

In order to make contact with existing results obtained using realistic nucleon-nucleon
potentials, let us consider asymmetric nuclear matter at fixed density o close to guy. The
calculation shows, that for all Skyrme forces used in the present paper the effective mass
of a neutron, m}, increases and that of a proton, my, décreases when neutron excess
increases, the density g being kept constant. This qualitative behaviour is in agreement
with that obtained by Sjoberg [18] who calculated the quasiparticle effective masses at
2~ 0.9, approximating the quasiparticle interaction by the Brueckner reaction matrix
derived from the Reid soft-core nucleon-nucleon interaction. Let us notice that a similar
behaviour is obtained in the self-consistent calculations of the effective masses of hole
states in asymmetric nuclear matter within the framework of the lowest order Brueckner
theory [19].

The quasiparticle interaction in asymmetric nuclear matter has been calculated up
to now only in the extreme case of pure neutron matter (« = 1) {20]. The spin averaged
quasiparticle interaction in pure neutron matter, hereafter denoted as f, reads

Ff=1 ) froswe = No' Y FP(cos 0). (23)
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Here, N, is the density of quasiparticle states and F, are the Fermi liquid- parameters,
calculated in pure neutron matter. We have f™(g, & = 1) = f(g). Let us approximate
the x-dependence of F5 (0, «) at fixed ¢ by a simplified linear form,

f3n=F0+F6+B1a, o-PP F0+Fo Bla,

implied by Eq. (8) [13]. At fixed ¢ = gyy this formula gives a qualitative agreement with
numerical values of #§ for the SkM and LR forces even at o 2 0.9. We may then expect
that the following approximate relation will hold, at least qualitatively:

. N
ygngFo'}‘Fé'*‘a(Fo‘NTo"—I’o_F(')). (24)
0o

Note that Ny/N, = 2**m*/m*, where m* and m* are the neutron effective masses, when
a =0 and « = 1, respectively. Hence, in such an approximation B, = 2¥’m*/m*F,
— Fy—Fy. Using the values of m* and F, obtained in Ref. [20] and the values of m*, F,
and F, obtained in Ref. [21] (both calculated using the Reid soft-core nucleon-nucleon
interaction) we obtain at kx = 1.35 fm?, corresponding to the saturation density (P = 0)
for the model of nuclear matter used in Refs. [20, 21], a rough estimate By g.iq) = 0.44.
Finally, let us consider the case of nuclear matter compressibilities, and in particular
the quantities displayed in the four bottom rows in Table IV. Drastic differences between
Kym(00) are essentially balanced by those in 6K, leading to quite similar values of Ky,
The relative differences in the values of K¢y, for the SIII, SIV, Ska and LR forces are smaller
than 207;. The quantities K,,,(0o) and 6Ky, can be also estimated by using the Fermi
liquid parameters calculated from the Reid soft-core nucleon-nucleon potential. Neglecting
the a-dependence of 7' and #¢°, and making the linear approximation for F§ we
obtain, using the methods. described in Ref. [14], the following expression:

3h%k; -
Kom = = [§ 77 @QFi—F)+F+B,]. (25)

The quantity 6K,,,, is given by the Eq. (20b). The derivatives of K, and 4,,,, which enter
the expression for K, can be expressed in terms of the derivatives of F,, Fo and m*
using the standard formulae

3R

Ko = r3(1+F0) (26a)
hz 2

Goym = S F (14Fp). (26b)

With the help of these formulae we calculated K, and 6K, at kz = 1.35fm™! (the
saturation (P = 0) Fermi momentum for the mddel of nuclear matter assumed in Ref. [21}),
using the values of F,, F, m* obtained in Ref. [21] and taking that of F} from a calcula-
tion of Sjoberg [22]. The derivatives of m*, F, and F, have been calculated numerically
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from the plots presenited in Ref. [21]. Such an approximate procedure yields the following-
estimates:

Ksym(Reid) =~ 230 MeV,
6Ksym(Reid) =~ —120 MeV. (27)

This gives an estimate Ki} reigy = 110 MeV, in a drastic disagreement with the values of
this quantity obtained using the Skyrme forces. This value is also in conflict with the one
which seems to be required to explain the variations of the compression modulus K, with
neutron and proton numbers (Refs. [7, 8, 23]).

We summarize now the main conclusions of the present paper. The various existing
parametrizations of the Skyrme forces lead to similar values of parameters describing the
bulk properties of nuclei connected with rneutron excess (symmetry energy, symmetry
term in the compression modulus of asymmetric nuclear matter, K7 ). However, they do
not predict a unique variation of the Fermi liquid parameters with neutron excess. It appears
therefore that such a dependerce will be hard to extract from a mere analysis of bulk
properties. A more refined analysis or a more fundamental approach is clearly needed to
do so. As we mentioned, the values of K}, obtained for the Skyrme forces are in agreement
with our present knowledge of the empirical value of this quantity, obtained in the analysis
of the breathing modes frequencies. However, as discussed in Refs. [8, 23] such an analysis
is not free of ambiguities and the agreement just mentioned should not be taken
too seriously. It is r.evertheless interesting to notice that the simple estimate of K¢, based
on the existing models of the Fermi liquid parameters derived from the Reid soft-core
potertial, is in conflict with the empirical value and with the estimate based on the Skyrme
forces.

We are grateful to M. Haensel for her help in the preparation of the manuscript.
We are also grateful to J. Treiner for his helpful comments concerning the SkM force.
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