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REGGE BEHAVIOUR OF SYMMETRIC OCTET EXCHANGE
AMPLITUDE FOR GLUON-GLUON SCATTERING
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The Regge behaviour of the symmetric octet amplitude for gluon-gluon scattering
in the massive SU(3). theory is studied. It is shown that the asymptotic behaviour of this
amplitude is controlled by a moving Regge pole similarly to the antisymmetric octet ampli-
tude which is asymptotically described by the reggeised gluon. The corresponding Regge
trajectories are, however, different and physical origin of this difference is discussed.

PACS numbers: 12.40.—y, 12.40.Mm

1. Introduction

Much progress has recently been achieved in understanding asymptotic behaviour
of scattering amplitudes in nonabelian gauge theories [1-7]. One of the basic results obtained
in this field is reggeisation of gauge vector mesons. This means that the vector meson—
—vector meson scattering amplitude characterised by gauge vector meson quantum num-
bers in the t-channel has a moving Regge pole in a j-plane and the point (r = m?, j = 1)
lies on its trajectory (m stands for vector meson. mass).

Strong interactions are believed to be based on the SU(3), group. The two body
scattering amplitudes of gauge vector mesons (gluons) can be decomposed into eigenampli-
tudes corresponding to irreducible SU(3), representations appearing in the product of
two adjoint representations:

88 = 138, D8, ® ... . 1.1
The adjoint octet representation appears twice in this product..
Gluons are characterised by generalized C-parity C = —1 [8]. Two octets in (1.1)

differ by their generalized C-parities; 8, has negative whereas 8; has positive C, since they
are obtained by F and D coupling of two gluon octets respectively [9].
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It was shown that the 8, amplitude for gluon-gluon scattering with gluon quantum
numbers in the #-channel, reggeises [1-7]. In this paper we study the 8, amplitude and its
J-plane singularities.

The main motivation for the detailed study of gluon-gluon amplitude just in this
channel is its importance for understanding the origin of the Regge singularities in colour
singlet and negative charge conjugation (C = —1) channel.

The singularities in the colour singlet channel are the most interesting ones as they
can couple to hadrons. Two (octet) gluons can couple to the colour singlet and the C = +1
state. The corresponding multiperipheral-like equation generating bare Pomeron singularity
in Quantum Chromodynamics was studied in Ref. [10]. In order to form the colour singlet
and C = —1 state in the t-channel at least three gluons are needed with one pair coupled
to the symmetric 8, octet state. In this way the symmetric octet amplitude appears as a quasi
two-body subamplitude in a three gluon channel with negative C and singlet SU(3), quantum
numbers. It is mainly for this reason that detailed understanding of gluon-gluon amplitude
is important and the corresponding three-gluon equation has recently been formulated
by us in Ref. [11].

In this paper we follow closely the method proposed by Lipatov, Kuraev and Fadin
[4] considering the massive SU(3), theory where gluon mass m is generated via the Higgs
mechanism [12]. We study asymptotic behaviour of the scattering amplitudes in a leading
logarithm approximation using perturbation theory. In Section 2 we construct explicitly
an imaginary part of the elastic gluon—gluon amplitude, which we use in Section 3 to built
up, via unitarity, the integral equation for full elastic amplitude. We find that its solution
for the symmetric octet amplitude has a moving Regge pole, like the amplitude correspon-
ding to antisymmetric octet. These two trajectories are, however, different. In Section 4 we
discuss the role of Higs particles in the whole scheme and comment on the m - O limit.

2. Imaginary part of the elastic amplitude for gluon-gluon scattering

We consider spontaneously broken SU(3), gauge theory [4, 12] with 8 massive vector
gluons; V°, and with Higgs sector consisting of 8 scalar “colour” particles, $% and 2 “white”
scalars; F and Z. For a V-V inelastic process a+b - a'+b'+d; + ... +d, (for nota-
tion see Fig. 1) the reggeised amplitude [4] is:

2 2 2
(s1 >¢(qn ) (52 )a(qz ) <5n+1)a(qn+x )
2 2 2
m 4, \In 2 m Int 1

Arozin = Srlea' qf—mz itiz Z—m? Vigiz +++ q,?“-mz Iy, (2.1)
where the vertex functions [4] are given by (Fig. 2):
rfm’ = —ig \/ifiaa’éﬁ.ala'a}.,’
ris =g \/2 diasbi,s
: 3’: Siabis (2.2)

af=g\/3
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Fig. 1. Inelastic gluon—gluon amplitude — definition of kinematic variables
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Fig. 2. Vertex functions for high energy amplitudes. The sings in circles indicate the group-theoretical
factors appearing in vertex functions: fiae', diga’, and Ogi

and f5, d;; are SU(3), structure constants, indices i, a, &’ stand for vector gluons, indices
sand fdenote the S and Ftype Higgs scalars. By 4, we denote the polarization of the particle
a, polarization four-vectors will be denoted by e , the constants a; and b,, are defined as:

a;“x = "‘1+b;m,

b;.., = % 51‘,3: (2.3)

so that g, equals —1 for transverse, or —% for longitudinal polarizations.
The corresponding vertex functions [4] are (Fig. 2):

—igfurel, P41 qr) ford=1V,
v = Vi(dn ¢i) = mgdyy for d = S, 249
mg \JZ 8, for d = F,
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where

’ ’ Sa qz—mz Sy 2 2
Pv(q’ q) = _(q_L+q.L)v— : +2 Dant ? + Doy (2'5)

Sy

and the trajectory a(g?) has a form:

gZ 2_ ) de
@ )f &= (k=2 =)

(2.6)

«(q*) = %
The imaginary part of the elastic ¥~V amplitude can be calculated via unitarity condition

ImA,,, =3 Zo j(Zn)45(pa+pb—-p;-—pf,- izl p)

&Pp.  d&p I I &*p;
x u — A Y S 2.7
2E/(2n)* 2E,(2n)° 2E(2m)? oot 2.7)

i=1

where 4, _, 5+, amplitude is given by (2.1). Since all incoming and outgoing particles belong
to the u = 8 representation of the SU(3), group, the elastic amplitude can be decomposed
into the amplitudes with the r-channel exchange of singlet (¢ = 1), symmetric and anti-

a a  a" a o  a" a o a"
iy i i
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i ! it j! 7 Vi
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=3¢ K”}g‘ ’K(a"")aii KOs L
I-l jl ,-I /»I il j,

Fig. 3. t-channel vertices projection
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symmetric octets (¢ = 8, u = 8,,), and also higher representations quantum numbers
exchanged in the r~channel. In order to perform this decomposition we have to calculate
two vertex functions product (Fig. 3) appearing in the unitarity condition (2.7):

i j jkl
z Faa’rifa’ = ‘g \/ { aa” \/8 aa’”’ \/i +F:a \/“ dku+ ? (28)

a

with the singlet and symmetric octet vertex functions defined as:

For = (—igy268,4.) (az,+2 bi.) NER I

I =(—ig \/§ 030127 (\/3 aaa \/~ bz,,) \/ dowi> (2.9)

and

; vild, a0 (a—0. 4 = Q)

. ooy 0y aa fiphew .
=3¢’ {I\‘”(q, 7,0~ +Kq, 4, Q) i‘i TyKE, 3 du,(d,“,} (2.10)

The kernels K*) (g, ¢/, Q) are given by

K*(q, q', Q) = K*(Q)~K"Yq, 4", Q). (2.11)

where K (Q?) does not depend upon the integration variables in (2.7) and K® (g, ¢’, Q)
is singular for 'm — 0 when integrated over d2gq or d?¢q’

K(Baa)(Q2) — Q2_m2, K(Sss)(QZ) — Qz"—'lb}— mZ’
K(4,49,0) = K®q,q,0) = K®*4q, 4, Q)

_ _ _ 12 2 2__
_@=m) (@' -0 =m)+(g" —mH) ((g-0) —m?) 2.12)

(a-q)—m’

As we shall see ((3.5)—(3.7)) the singular part K of the kernels (2.12), which is the same
for 8,, and 8, amplitudes but different for singlet [10], is responsible for the reggeisation
of these amplitudes. The nonsingular parts, however, differ in mass terms, this indicates
that 8,, and 8, trajectories will not be degenerate.

3. Integral equation for the t-channel amplitudes

The sum in (2.7) can be rewritten [4] in terms of the f-channel amplitudes:

Z AZ—*2 +nA;‘~92+n = Faa'A(l)(Sa t)rllgb'+F,;a’A(saa)(sa t)FZb'
n

Ao A s, Dy + ., (3.1)
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where

( s )a(qa’-)ﬂ((qa-'Q)z)
] n+1l o
AW(s, 1) = — E I I m
’ - (aF—m) ((qi= Q)7 —m?)

n= i=1

X 3g2K(”)(q1’ UEY Q)3g2K(“)(QZ’ UED Q) e 382K(#)(4m In+1> Q) . (3'2)

Since we want to investigate the j-plane singularities of A (s, t) amplitudes, we shall
make use of the following equation:

RO = - = f d (;j—) <£—)m A%, 1),
w=j—1, (3.3)

where F® (Q?) is the j-representation for A%, (s, 1) amplitude.
In order to find F¥)(Q?) we define the function f% (k, k— Q):

weon - s g’ d’k )
Fm (Q ) = :; -2'(2703 (kz_mz) ((k—Q)2—1112)K (Q )fw (k’ k—Q) (34)

Taking into account relation (3.2) we obtain for f¥Nk, k— Q):
[o—a(k?)—a((k—0)")]f&(k, k—Q)
= o + [% e ] f ik K®(k, g, 0)f3(q, 9—Q)- (3.5)
K®(Q% @ny* 1) (@*~m*) ((g—-Q)*—m?)

This equation can be easily solved for ¢ = 8,, and also for u = 8, because the singular
part of the kernel K ((g, ¢’, Q) reproduces the trajectories standing on the left-hand-side
of (3.5), so that

1
)k k- Q) = ch_omz T (3.6)
Bk, k= Q) = —— ! (3.7)

Q*—¢ m* w—a(Q®)’
where

s =[35 ] @- m i (3:38)
e’ ’ (¢*-m) ((g- Q) —m?)’
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For F¥ (03 Egs. (3.6)~(3.7) read

(8aad/ 2\ __ <Z(Qz)
Fer@) = () (-’ G2
-~ 2
FE(QY) = Q) (3.10)

(Q*-5 m*) (0-a(@)
As we see the symmetric octet amplitude does reggeise, i.e. it has a moving Regge pole

j = 14+g(0?%, however its trajectory differs from 8,, amplitude by a mass parameter.
The 8,, and 8, amplitudes differ by their generalized C-parity and hence also by signature.

n 7 ~ -
The corresponding signature factors are exp (—i—z—a)/sin ~2—oc and iexp (—~ i —;— oc> Jcos —nz—a

for 8,, and 8, octets respectively. Because of this fact in the leading logarithm 3, 5]
approximation even signature 8, amplitude is one power of In s down with respect to odd
signature 8,, amplitude.

4. Summary

The Higgs particles enter explicitly into our reggeisation scheme. At first they generate
mass of gluons, which regularises the integrals (2.6) and (3.8) defining trajectories «(Q?2).
Secondly they couple to gluons when the physical amplitudes are calculated. In order to
obtain the kernels K** (g, ¢’, Q) (2.12) we used the crossing relations [13] connecting dif-
ferent representations amplitudes in s and ¢ channels:

AP = % (pyplClatyrp) A0, 4.1)
uy'g
Because of the following equality between the crossing matrix elements
(842l C18.0) = (8ICl8,4), (4.2)

the singular parts of the kernels K‘®**) and K®* are identical and therefore both amplitudes
reggeise (see comment under (3.5)). The other elements of the crossing matrix projecting
exchange of the Higgs particles onto antisymmetric and symmetric octet states are not
equal ie.

(8alC1855) # (85l Ci8sy)- 4.3)

The nonsingular parts of the kernels K® are therefore different and, correspondingly,
the 8, (i.e. gluon) and 8, trajectories are also different. It is worthwile to notice that the
octet channels are the only ones which have the moving Regge singularities in the leading
logarithm approximation. Amplitudes corresponding to other representations have fixed
(branch point) singularities, since the singular parts of the kernels K® are different from
the singular part of K® for u # 8.
To summarize: we have shown that the amplitude corresponding to the symmetric
octet has a moving Regge pole although its trajectory differs from the gluon one.
We have also traced physical origin of this difference. The singular parts of the kernels
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K%, responsible for reggeisation ((2.12) and (3.5)), come from the gluon exchange in the
crossed (s) channel (Figs. 1 and 3) and corresponding elements of the crossing matrix
are the same for 8, and 8,, amplitudes. The nonsingular part of K® on the other hand
comes from gluon and Higgs scalar exchanges. The crossing matrix elements are different
for 8, and 8, amplitudes and, in consequence, the trajectories differ by a mass term. In other
words, possible exchange degeneracy of octet trajectories is broken by the Higgs sector.

Unfortunately, as it nevertheless should be expected, the m — 0O limit has no sense
at this stage since the effective kernel

Kk, 9, Q) = K“(k, g, Q)+ [—- (—g)—] (@*—m*) (q—Q)*~m?)

x [a(g®) +a((g—©)*)]0' (k- q), 4.4
which appears in (3.5) is infrared divergent. Corresponding Regge trajectories are also
divergent in this limit i.e. for genuine QCD with massles gluons.

Infrared singularities are not confined to octet channels only. They appear in all other
representations, except colour singlets [10, 11, 14]. In the case of singlet amplitudes the
effective kernel K'Y is infrared finite — this being achieved by exact cancellation of the
singularities of the kernel KV by the infrared singularities of gluon trajectories (see the
Refs. [10, 11, 14] for details). Thus, although the octet amplitudes are themselves infrared
singular in the limit m — O their reggeisation properties are essential for ensuring infrared
finitness of colour singlet amplitudes. The equality of kernels K> and K®*) which leads
to reggeisation in the symmetric octet channel is crucial for cancellation of infrared diver-
gences in the negative C and colour singlet amplitude [11].

One of us (J. K.) is grateful to Dr. J. Bartels for useful discussions.

Note added in proof

After this paper had been completed we noticed that the symmetric octet amplitude was also
discussed by J. B. Bronzan and R.L. Sugar, Phys. Rev. D17, 2813 (1978) in the framework of Reg-
geon field theory. Our result is in agreement with theirs.
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