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1. Introduction

In these talks I will describe a program for calculating the infra-red behaviour of the
axial gauge running coupling constant in Yang-Mills theory using a non-perturbative
procedure based on the Schwinger-Dyson equations and the Ward (Slavnov-Taylor)
identities. This work has been carried out in collaboration with [1-6] J. S. Ball, F. Zacharia-
sen, R. Anishetty, S. K. Kim and P. Lucht.

The axial gauge running coupling constant g2(g2) determines the one-gluon exchange
force between a pair of heavy quarks interacting with momentum transfer ¢2. For large g2
the dependence of g2(¢?) upon ¢2 in QCD can be calculated perturbatively because of
asymptotic freedom (i.e., the effective coupling decreases at short distances). As g2 — o0,
2%(g*) behaves as

2, 2
g(q) ~ blog(@®/ %)’
where b = (4 N,—% N;)/16n2. In this equation, N, is the number of colours, (i.e., N, = 3),
N; is the number of flavours (types of quarks), and the mass A? as determined from short-
-distance experiments like deep inelastic electron scattering is of the order (400 MeV)2.
Perturbation theory indicates that as g2 decreases, g?(¢?)/4n increases to a value of order
unity at which point perturbation theory estimates are no longer applicable.

* Presented at the XX Cracow School of Theoretical Physics, Zakopane, May 29 — June 11, 1980.
** John Simon Guggenheim Memorial Foundation Fellow (1979-80). Present address: Department
of Physics, University of Washington, Seattle, WA 98195, USA.
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The outline of our program to calculate g?(¢?) at small g2 is the following.

In the axial gauge the running coupling constant is determined by the gluon propagator
D:'j(q) = 5""Dﬂv(q). (The Greek letters p, v,... ailways refer to Lorentz indices, while a, b, ...
refer to colour indices.) We denote the “inverse” of Div(g) by IIi(q) = 6, (g), and
the vacuum polarization tensor by 15(g) = 6”i1,,(¢). Then

Huv(q) = i(nguv - quqv) - ﬁuv(q) (1)

~

The Schwinger-Dyson equation then expresses I1,,(g) in terms of the interacting triple-
-gluon vertex I'§, (p, g, r) = I'; and the interacting quadruple-gluon vertex I'§55,(p, ¢, 7, 5)
= I', as shown in Fig. 1. Analogous Dyson equations determine I'; in terms of I', and
I's, I'y in terms of I's and I, etc.

The Slavnov-Taylor identity for I',,, determines the longitudinal part of I',,, in
terms of I', (I', = I1,,). This identity along with the requirements of Bose symmetry and

the absence of kinematic singularities then determines I',, , in terms of I', when any one

% r
9 <
b
Y p p KO

Fig. 1. Graphical representation of the Schwinger-Dyson expression for the vacuum polarization tensor
11,9

of the momenta entering into I',, ; is small [7]. This low momentum expression for I',,
in terms of I', can then be used in the Schwinger-Dyson equation for I',. Furthermore
I, , can be eliminated from this equation. There then results a closed set cf equations for
D,, I'5, T, ... I', which should be appropriate for studying the low momentum infra-red
behaviour of the theory. The essential feature of this non-perturbative prccedure for
truncating the Schwinger-Dyson equations is that each stage yields vertices I, I'5, Iy ... I,
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which are exact solutions of the Slavnov-Taylor identities. This is necessary for preserving
the correct low momentum properties of the theory.

In the first stage of this procedure we use the Slavnov-Taylor identity to express I'y
in terms of IT,,. The first two terms in the expression for bij uv (Fig. 1) are then re-expressed
in terms of I1,, or equivalently D,, and, as we shall show, the last two terms do not contri-
bute to the quantity of interest. Equation (1) then becomes a closed equation for D,,.
We look for solutions D, (q), which for small g* have the same spin structure as the bare
propagator, i.e.,

_ lZ(qz) (nu‘?v'*.qpnv) nzquqv
D,(q) = — —:lz—‘ I:glw" n-gq (n- q)z:]
= Z(¢)40(9). 2)

In Eq. (2) the vector n* is a fixed vector which defines the gauge via the condition n*4;(x)
= 0, or equivalently,

n"D,.(q) = 0. 3

There is a second possible spinor structure which satisfies Eq. (3). The basic reason for
selecting the structure (2) is that the angular average of Affﬁ)(q) =0, ie.,

§d@,4%(p) = 0. )

Because of Eq. (4), Z(p?) could behave like 1/p? as p? — 0 without introducing any infra-
-red singularities in the integrals determining IT (@) in Fig. 1. The second spinor structure
satisfying Eq. (3) does not have a vanishing angular average. It can thus not have a coeffi-
cient which is as singular as 1/¢?, because it would introduce an infra-red divergence of
the type d*p/p* into the integrals for II »(¢)- Since we will find that the solution for Z(p?)
does behave like 1/p? as p? — 0, we conclude that D,,(¢g) must have the structure of Eq. (2)
in the infra-red region.
The propagator D, (p) and its “inverse” II,.(p) are related by the equation [8],

nlqu
n'q'

The additional term on the right-hand side of Eq. (5) makes it consistent with Eq. (3) and
with the “Ward identity” for IT,(q):

H).v(q)Dvp(q) = g}.ﬁ -

o)

q"I,(q) = 0, (6)
which states that the longitudinal part of I1,(g) vanishes. Equations (2) and (5) then yield
(@) = iZ7(4*) (48— 049,)- @)

The integral equation for Z is then obtained by contracting Eq. (1) with n*n’/n?, which
gives

L2 uﬁ v
7@ H@H-D (1~ o ) = -2t ®
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The third and fourth terms in Fig. 1 are orthogonal to #, and thus do not contribute
to Eq. (8). This is important because the Slavnov-Taylor identity determines the low mo-
mentum behaviour of I'y in terms of I'; and the equation for Z—1(g2) would not be closed
if it depended upon the I'y contribution to I D)

Equation (8) then becomes an integral equation for Z(p?) which we will study in detail.
The solution of this equation yields a running coupling constant which, for small ¢2,
behaves like

30, ., M?
7g(4)~;“—0>0.215 ? , 9)

where M? is the subtraction point of the ultra-violet renormalization procedure and is
defined by the normalization condition
3g* (M%)

A |

4r

Thus the first stage of our program leads to a confining heavy quark potential. Furthermore,
the strength given in Eq. (9) turns out to be of the expected order of magnitude. We argue
that it is plausible that the 1/¢* small g2 form for g%(¢?) is maintained beyond the first
stage of our scheme, but that higher orders may influence its strength.

The content of these lectures is the following. In Section 2 we write the explicit form
of the Schwinger-Dyson equations and the Slavnov-Taylor identities and indicate the rela-
tion between them. In Section 3 we write the low momentum form of I'y in terms of Z
and obtain the explicit form of the integral equation for Z(p?). In Section 4 and in the
Appendix we show that gauge invariance requires subtraction terms in the equation for
Z{p*) to remove ambiguitics which are present if a gauge invariant regularization procedure
is not used. In Section 5 we study the low momentum structure of the integral equation
and indicate the reasons why Z(g?) has a 1/¢2 low momentum behaviour. In Section 6 we
renormalize the integral equation and determine the ultra-violet behaviour of the solution.
In Section 7 we discuss briefly a numerical solution giving Z(g?) for all g2. In Section 8 we
consider the possible comparison of our solution with experiment.

2. The Schwinger-Dyson equations and the Slavnov—Taylor identities

We first write the explicit form of the first two graphs of Fig. 1 for H“"(q)

ab d4l (0)bcca
H (q) = gO/ (2 ) F4vlau D).o'(p)
d4
+g3/2j EIsE T (=a, —ps =D (DIDoo (NI 5504, Py 1. (10)

The bare triple gluon vertex I'Y? and the bare quadrupole gluon vertex ' are
given by

rOe(p, g, r) = fUp— )81, +(d—1) 18+ (r— P)u&ivl>
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Fflg.):vbacd = - i[fabc:f‘:de(guagvl_— glcrgnv)
+fbcefdae(gvlgau - gu).gva)
+facefbde(gulgav - g).a'guv)]‘ (11)

The £ are the structure constants of the SU; colour group. The vertex I'") appears on
the left-hand side of the third and fourth graphs of Fig. 1. Since n,[' {2’ is a linear combi-
nation of n,, n, and n, and since n,D,;, = 0, these terms do not contribute to n, 1 (@)
as stated in the Introduction.

The Slavnov-Taylor identities for I'; and I', are the following:

iqurg‘;;.a'(qa p, r) = fbac[Hi.a(r)_H).a(p)]’ (12)
iqur‘iﬁra(‘], b, t 7‘) = _fbacrg‘;i'g(_(t'l'r)’ t 1’) _fbdcrgzag(_(p+r)’ p, r)
—fbecrgzlz.o‘(—(p-l't): D, t)' (13)

The relation between the Slavnov-Taylor identities and the Schwinger-Dyson equations
is the following:
A) any vertices I'; and I', satisfying Eqs. (12) and (13) yield a vacuum polarization tensor
i « via the graphs of Fig. 1 which is transverse, i.e.

q"il,, = 0, (14)

or, equivalently, from Eq. (1), I, satisfies its Ward identity, Eq. (6);

B) neglect the last two terms in Fig. 1 for IT w- Then i . Satisfies Eq. (14) provided I's
satisfies Eq. (12).

The above statements are special cases of the following:

A*) use in the Schwinger-Dyson equation for I', any vertices I',,; and I',4, which satisfy
their “Ward” identities; then this expression for I', automatically satisfies its Ward
identity;

B*) in the Dyson equation for I',, neglect I, , and use any I',,; which satisfies its Ward
identity; then this expression for I', satisfies the Ward identity for I',.

The above statements, which are straightforward to prove, tell us what approximations
are consistent with gauge invariance.

3. The integral equation for Z(p?)

As explained in the Introduction we expect the gluon propagator in the infra-red
region to be proportional to the bare propagator, and hence I1,,,(¢) has the form of Eq. (7).
We now use the Ward identity, Eq. (12), to determine the low momentum behaviour of
I'; in terms of Z~*. Inserting the expression for IT,(¢) given by Eq. (7) into the right-hand
side of Eq. (12), we can show that the most general solution of this equation for I'3 which
satisfies Bose symmetry and is free of kinematic singularities has the following form [7]:

Fg’;jw(pa q, r) = Fgl}.)ﬂ,c(p’ 9, r)+rgl;.)p:?c(p’ q, r)’
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where
rmip, g,r) = {gzu[Z"(p)pv—Z"(q")qv]
(27 -27")]
- P [p-agu—a:pd (P~ ),
+cyclic permutations of p,q and r, 15
and

r{®e(p, q,r) = f*{F* a*, r*) [p* 982,— p,a:] [Py - 4—a,r - p]

+G(p%, a% ) [g:u(Pvq " T~ a,p " 1)+ (rapa,— 4070 ]1/3}

+cyclic permutations of p, q and r, (16)

and where F(P23 qza rZ) = F(qzs Pza r2), G(st q2’ "2) = G(q23 P2> r2) = G(qzs rz’ pZ)
The transverse vertex I'§" expressed in terms of the undetermined functions F and G
satisfies

(T)abc

31uv (p: q, r) = 0

and vanishes linearly when any one of the three external momenta p, g, or r approaches
zero. This is because each term in Eq. (16) contains an explicit factor of p x g x r multiplying
functions F or G which have no kinematic singularities. The low momentum structure of
I'y is then determined explicitly in terms of Z—! according to Eq. (15).

We now replace I'; by I'S”, Eq. (15), in Eq. (10) for IT,,(¢). According to statement B
in Section 2, this replacement preserves Eq. (14). Furthermore, it is exact when any one
of the momenta p, ¢, or r is much smaller than the other two. Our assumption is that the
remaining kinematic region does not dominate the infra-red behaviour of II,,(¢). The
vacuum polarization IT (@) is then a function of Z alone, i.e., i = bi »(Z). Equation (8)
then becomes the following non-linear integral equation for Z(g?):

f@»“an ()n=—%fwtﬂétﬂaw
n’q n

Zz)nﬁz() Z(p*)—Z(r?)
{ZE:Z)[ ’2 : ]( ~1)edo [—’I;—zﬁr’*](l"rgaa'—rap.,v)—z(pz)gw}, {17

rr—q? r
where r = —(p+g¢q) and

Zoar = A50(P)AN).
In Eq. (17) {dp is a shorthand notation for
d*p
@mn*’
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The right-hand side of Eq. (17) is in general a function of ¢? and

n2q2

TR

(18)

We have assumed that Z(g?), which in general could depend upon g2 and y, is a function
of g? alone. Any angular dependence in Z would produce infra-red divergences in Eq. (17),
if Z(p?) — 1/p> as p? — 0. Equation (4) would not be applicable because of the extra
angular dependence introduced by the y dependence of Z. The variable y thus appears
as a parameter in Eq. (17), and the same function Z(g?) must satisfy the equation for all
values of y.

In principle we can estimate the accuracy of Eq. (17) by proceeding to the second
stage of our approximation scheme, in which we retain the full I'; in Eq. (10) for ﬁm.
In this second stage we then approximate the Schwinger-Dyson equation for I'; by replacing
the quadrupole gluon vertex I'y appearing in this equation by its longitudinal part I'{".
The vertex I'{" is given in terms of I'; by an expression analogous to the right-hand side
of Eq. (15), with Z-* replaced by the invariant functions defining I';. This approximation
then yields coupled equations for I'; and D. Although it is very difficult to carry out
this next stage in practice, it may be possible to use it qualitatively to check the consistency
of the 1/¢g? infra-red behaviour of Z(g?).

4. Gauge invariant removal of ambiguities in the integral equation for Z(p?)

We have pointed out that IT,,(q) is infra-red finite even if Z(p?) behaves like 1/p for
small p2. However, the integral, Eq. (10), defining ﬁuv(q) is not absolutely convergent;
i.e., the region of integration in Eq. (10), where p approaches zero for fixed g, gives a contri-
bution proportional to

§ a*pD;x(p) = | p?dp” | dQ,Z(p*) A (p). (19)

This region gives a vanishing contribution if the angular integration df2, is carried out
first, because of Eq. (4). However, if the p? integration is carried out first we obtain infinity.
Thus, naively speaking, the value of the integral, Eq. (19), is zero times infinity which leads
to a finite but ambiguous result. This means that if Z(p?) — 1/p® as p? - o0, the value
of the vacuum polarization is sensitive to the procedure used to calculate the infra-red
contribution to the integral.

This ambiguity is present only in ﬁ,,v(Z) (the contribution to ﬁ”v from I'{).
e (p, g, r) behaves like p as P — 0 for fixed g and this gives an absolutely conver-
gent infra-red contribution to II,, even if Z(p?) behaves like 1/p? for small p%. To

understand this ambiguity, we can then consider fI,w(Z). We suppose that

M2
2 2
Z(P ) p2=0 7 +Zl(p )’
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where p2Z,(p?) -+ 0 as p? — 0. Write

2

~ . (M . . (M
H“V(Z)=H”v "p—2‘ +Huv(z)_Huv ?2‘)

The difference ﬁﬂv(Z)—fIm(MZ/pz) contains integrals which are absolutely convergent
in the infra-red region. The entire ambiguous contribution to ﬁm then comes from
11,,(M?[p?).

By dimensional arguments we can write

. [M? ) ,
an “p_z = CIM g,uv+C2M nz > (20)

where C, and C, are finite functions of y whose values are sensitive to the infra-red regular-
ization procedure. On the other hand, we know that ﬁF,(Z) satisfies Eq. (14), which is
usually sufficient to demonstrate that
lim 11,,(g) = 0. 1)
q-0
In the case where Z(p?) has a 1/p? singularity and the integrals are not uniquely
defined we must impose Eq. (21) to remove the ambiguity. We then regulate the integrals
for I1,, so that C; = C, = 0. However, instead of regulating the integrals we can equiv-
alently replace IT w(Z) by

. . (M?
n,(Zy—11,, (?) . (22)

The difference Eq. (22) is well behaved in the infra-red region and the usual argument
leading to Eq. (21) applies to this difference. This infra-red subtraction is somewhat analo-
gous to the ultra-violet subtraction which removes the quadratically divergent contribu-
tion to the gluon mass if dimensional regularization is not used. Since we will not use
dimensional regularization, we must first perform this ultra-violet subtraction.

We show in the Appendix, using Ward’s identity for I';, that the general expression
for the ultra-violet subtraction is

é
lgg Jdp {5 [Fg%))la(_pa —4q, -r)D).a(r)]
n

+[D1,(1) —D;o(p)] (5%“ - 5%) r{(—a. —p, -—r)} = I, (23)

Using dimensional regularization we could translate variables in Eq. (23) and obtain
gy =o.

We choose not to do this and instead replace ﬁm by

(29)
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Our final expression for the vacuum polarization which is equivalent to performing both
infra-red and ultra-violet regularization procedures is then obtained by replacing I1 uv DY
Y in Eq. (22), i.e.,

1,(2) > 0%(z2)- 13, (%) . (25)

This replacement generates additional subtraction terms in Eq. (17) which remove
from the equation potential quadratically divergent ultra-violet contributions as well as
finite infra-red contributions to the gluon mass. In the Appendix we use the Schwinger—
—Dyson equation for flm along with the Slavnev-Tayler identity for I'; to obtain Eq. (25).

5. The low momentum structure of the integral equation

Equation (17) can be written in the form

2

Z7YgY) = 1+g§fde(p, DZP*)+ 7 )j dpL(p, Z(p*Z(r*), (26)

where
n-rn- (7’ p) Zo’a’ D Tr8ss—¥aDo (q—'r)aqo":l
K{p,q) = s 5 + ,
e (1—1/}’)[ p*—r? r’—p?
n-rn:(r—p) G gn
L s = Zoa’
P in’q’p*ri(1-1/y) r*—q?

and

AQPA).

The subtractions in Eq. (25) generate additional terms in X and L which make ail integrals
in Eq. (26) infra-red unambiguous and guarantees the absence of a gluon mass.

We will now try to determine what low momentum behaviour of Z(p?) is compatible
with Eq. (26) [9, 10]. This discussion will make use of the fact that X and L both contain
a factor

1 1
p’r*  pp+9)’
and that the angular average of the bare propagator vanishes, Eq. (4). We will make
various ansitz about the low momentum behaviour of Z(p?) to insert in the right-hand
side of Eq. (26). For each input Z; (p?), we will estimate the low ¢2 behaviour of Z_,!(¢3),
the output obtained from the integration on the right-hand side, and will then compare
for consistency. In most cases the arguments will depend mostly on the dimensions and

convergence properties of the resulting integrals.
Assume

(@) Z..(p) ~7g” const.
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Then the logarithmic singularity at g2 = 0 generated by the factor 1/p%(p+¢)? in K and
L yields an output [11]

A -1 +(const) log 42,

where 1 is the Born term on the right-hand side of Eq. (26).

Similarly,
(b) Zi(p?) o~ log p’
gives
AR —i5o> 1 +(const) (log q>>.
2 1
(c) Zo(P") o> Tog p*
gives

Z.g» —=g” L +(const) log (log q%).

Perhaps these infra-red logarithms sum to a power. We try

M2 a
(d Z(p?) 7_;—()-*(—2> , O<uax<l.
p

The integrals in Eq. (26) are all infra-red finite and their low g> behaviour is determined
by their dimension, i.e.,

MZ o
Y ANCE) ~iog> 1+ (const) <?> .

Suppose
2
(&) Zin(P") o o

Then because of Eq. (4), the integrals in Eq. (26) are still infra-red finite and hence
M2
Z;:(qz) W 1+C (7) s

where the constant C is a linear combination of the constants C; and C, appearing in Eq.
(20). We have seen that gauge invariance implies C; = C, = 0. Hence C = 0 and consistent
infra-red behaviour between Z;, and Z,,! is possible.

The two ingredients making possible a 1/g? infra-red behaviour are Eq. (4), which
makes C finite, and the gauge invariance of our approximation procedure which makes
C = 0. If the axial gauge propagator did not satisfy Eq. (4), an arbitrary introduction of
an infra-red cut-off would have generated an inconsistent Z,,! containing a factor log g>.
Note that in example (d) a non-vanishing coefficient of the (M ?/¢*)* output is to be expected
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since it does not violate gauge invariance. This output then dominates the Born term and
is inconsistent with the input, just as in the first three examples.

We have seen that an M?/p? input generates an output which is simply the Born term 1.
To obtain consistency the output Z-! must behave like ¢2 for small ¢2, i.e., the Born term 1
must be cancelled by small p? corrections to the leading M?/p? behaviour of Z;,(p?). We
now consider various possibilities for these corrections.

Suppose

2

M
(®) Z(p") Fme 7 teonst

Then
Z5(q") —=5> 1 +(const) log ¢,

The log ¢ output is generated by the constant part of the input just as in Case (a). Thus
there can be no constant term in Z;,(p?) which means there is no 1/p? pole in D, (p).
Suppose

2 Z;o(p") : T

i —_ | —- _—
g n 4 p2—0 p2 log pZ
Then

Zou(q") 5> 1 +1og (log ¢°),

which is also inconsistent.

We now try an input of the form
2 2

M p
2
(h) Zin(p ) p2—->03 A P2 +BM2 .
Then

2
- q
Zou:(qz) W1+D0+D1 W + ...

Consistency requires that 4 and B be chosen so that D, cancels the Born term, i.e.,
14Dy = 0, and so that D; = 1/A4, for all values of y. The numerical study [6] of Eq. (26)
discussed in Section 7 provides support for the idea that this can be done for the values of
y between 2 and 10 for which calculations were carried out.

The above discussion is, of course, very crude. We have presented it here to indicate
how the direct coupling of Z to Z-! in a gauge invariant manner which is characteristic
of the Schwinger-Dyson equations of a non-Abelian gauge theory leads naturally to a gluon
propagator behaving like 1/¢2 for small ¢2. This coupling distinguishes non-Abelian gauge
theory from other self-coupled field theories like ¢ or ¢*.

Finally, we ask how the above arguments change when we use the full vertex I'y in the
Schwinger-Dyson equation? To answer this question definitively we would have to carry
out the next stage of our approximation scheme. However, qualitatively we note that the
difference between the full vertex I'; and our approximation I'{” is a transverse vertex,
ISP which contains an explicit factor px g x r [see Eq. (16)]. Thus the integrals generated
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by the contribution of I'’ to 17 w Will be (because of p <> —p symmetry) more convergent
in the infra-red by a factor of p2. They should therefore not give the dominant contributions
to the infra-red singularity structure of IT - Consequently the contribution of I'{® to IT uv
should not change essentially the previous arguments suggesting a (1/g%)? behaviour of
the gluon propagator. However, we expect that I'{"” will influence the value of the coeffi-
cient of the 1/g2 singularity in Z since it is determined by a cancellation between the Born
term and the infra-red constant part of IT,,. This constant part of [T . should receive contri-
butions from I'{". It is then plausible that the 1/g? infra-red behaviour of Z may also be
a feature of the full theory but that the coefficient of 1/g? should differ from the value
obtained from Eq. (26).

6. Renormalization of the integral equation for Z(q?) and the ultra-violet behaviour of the
solution

Iteration of Eq. (27) generates the perturbation theory solution, possessing logarithmic
ultra-violet divergences. We now renormalize these equations and show that the solutions,
when expressed in terms of a suitably defined renormalized coupling constant, are ultra-
-violet finite. We will then use renormalization group to determine the large g% behav-
iour of the running coupling constant and the renormalized propagator Z(g?).

We define the renormalized propagator Z(q?) by the equation

Z(q®) = Z(M)Z(g%), @7
so that it is normalized at an arbitrary mass scale M2, i.e.,
Z@)por = 1. (28)

Substituting Eq. (27) into Eq. (26) yields
Z7Yq) = Z(M*)+ g3Z*(M?) | dpK(p, 9)Z(p?)

w200 fdpL(p, DZZ0?). (29
Z(q")
The normalization condition Eq. (28) then becomes
1 = Z(M*)+g32*(M?) | dpK(p, )Z(P")lg=u
+852*(M?) | dpL(p, DZ(p))Z(r™)\g=pr- (30)
Subtracting Eq. (30) from Eq. (29) yields

Z7Y(g*—-1 = g3Z*(M?) | dpK(p, 9)Z(p*)k
Z3(M? o
+ g3 —-qu-—z)—) f dpL(p, DZ(p*)Z(r")Ix

1 . ~
_ (1-— %) G2 (M) f L, DZPV L e (3D
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In Eq. (31) we have used the notation | to indicate the difference between the integral
evaluated at ¢ and the integral evaluated at M, e.g.,

§ dpK(p, DZ(P*)Ir = | dpK(p, Z(P*)— [ dpK(p, DZ(p*)|g=11- (32)

We now define a renormalized coupling constant g2(M?) as

272 2

gz Mz — gOZ (M )~ _ )

() 1—g3Z*(M?) [ dpL(p, )Z(p)Z(r*)|y—u 3)
Then Eq. (31) can be written as
Z7Yg*)—1 = g(M?) | dpK(p, DZ(p")Ix
g(M> [ S am, 2

——— | dpL(p, R

+ J PL(p, DZ(PHZ)] (34)

Perturbation theory evaluation of Eq. (33) for g2(M?) yields logarithmically divergent
integrals, which arise both from the expansion of Eq. (30) for Z(M?) and from the explicit
integral in the denominator of Eq. (33). We choose g to depend upon the cut-off so that
g*(M?) is finite. Then Eq. (34), determining the renormalized propagator Z(g?) in terms
of the renormalized coupling constant g2(M?), has a solution which is finite to every order
in perturbation thecory because only subtracted integrals appear in the equation. We then
write

2

2 =2 (’1\% , gz(M2)) ,
with |
21, gA(M?) = 1. 28)

We want to solve Eq. (34) without recourse to perturbation theory. We have given
arguments in the previous section that Z(g?) and hence Z(g?) should behave like 1/g2
as g2 - 0. We will now use the renormalization group to determine Z(g?) as g2 — co.
These two limits will then provide a guide for seeking an approximate numerical solution
for all ¢2.

We first use Eq. (30) to rewrite Eq. (33) for g2(M?) in the following way:

2 2
P Y L RR— (35)
1+ g3Z(M?) [ dpK(p, 9)Z(p*)In
Writing Eq. (35) for a different value, M’'2, and the eliminating g gives g>(M'?) in terms
of g2(M?) as

2 M’Z Z(MIZ)

T 1+ 82 MY [ dpK Dy DZ(0D)]g= a0 — ] dPK(Ps DZP)gmra]”

gi(M'?) (36)
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From Egs. (27) and (28") we have
2

59 2,02
e )>

2y ) ’
Z(M?) 7 (L gZ(M'Z))

M/Z k4
since Z(g2) does not depend upon M. Setting g2 = M’? then yields

2 ’2
20 220 ).

= ok
Using this result in Eq. (36) and calling M'? = g2 gives us

Z(M?)

2 z~q2 2,242
g (M)Z ﬁ,g(M)

1+g*(M?) [ dpK(p, PZ(pP)lx
Equation (37) yields a finite expression for g2(¢2) in terms of g2(M?3), because Z is finite

and the denominator in the equation is also finite.

The relation, Eq. (37), between g2(g?) and Z(g?) for our approximate equation differs
from the relation

g% (q*) = (37)

2

gi(g>) = (M2 (% : gZ(Mz)) (38)
valid in exact axial gauge Yang-Mills theory. However, they are compatible in the infra-red
region for which our approximation procedure is appropriate for the following reason.
We have argued that the 1/¢? infra-red behaviour of Z may be independent of our approxi-
mation. If this is true, then Eq. (38) yields a g*(g2) with this same infra-red behaviour. On
the other hand, Eq. (37), valid in our approximation, also yields a g2(g?) which behaves
like 1/g* for small g2 if our solution for Z(g?) has this behaviour. In this case the effect of
the denominator in Eq. (37) will be to modify the coefficient of 1/g2. This is compatible
with the fact that we expect the coefficient of 1/¢2 in Z to differ from its value in the full
theory.

In the intermediate and high g2 region, Eq. (37) can give a significant difference between
£%(g?) and Z(g?). In such cases we must identify gZ(g2) rather than Z(g?) as the quantity
of physical interest. This is because our approximate non-perturbative wave function
renormalization constant correctly renormalizes the two point function but not the higher
point functions since they have not been included in the first stage of our approximation.
(In the next stage when we include I'; it will also renormalize the three-point function, etc.)

When comparing to experiment we must first carry out the exact renormalization of
all multiparticle amplitudes, re-expressing them in terms of the exact physical coupling
constant. We then can use our approximate g3(g2) in these formulae to estimate the infra-red
behaviour of the process. For example, the general renormalization argument relates the
one-gluon exchange potential between a pair of heavy quarks to the axial gauge running
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coupling constant. We can then use our approximation to g2(¢?) to calculate the long-range
part of the potential.

We now calculate g2(¢2) and Z(g2) for large g2. We first note that by the usual argument
g%(q?) satisfies the renormalization group equation:

dg _
q i B(g). 39)

Expanding Eqs. (37) and (34) in a power series in g?(M?) we obtain

g3(q%) = £M?) {1—g*(M?) | dp(K(p, 9)+L(p, 9))lx—*(M*) [ dpK(p, @I} + ... . (40)

The —(K+L) term in Eq. (40) arises from the Z(¢g?) term in the numerator of Eq. (37) and
gives the usual perturbation theory result for g%(¢?). The —K term comes from the de-
nominator of Eq. (37) and reflects the particular form of the renormalization dictated by
our integral equation. Equations (39) and (40) then give the following g3 contribution

to B(g)

3 3
[l_sl_Nc+% Nc:] = - _;_ %_G'Nc]

g
—1e) & Luin | 41
11 |: 167‘62 3 c] ( )
The usual L2 N, contribution comes from the K+L term in Eq. (40), while the additional

£ N, arises from the K term. Because of the negative sign of f we can insert Eq. (41) into
the right-hand side of Eq. (39) to obtain the large g2 behaviour of g%(¢?). The result is clearly

_ &
1672

B(g) =

1
g2(q2) S o e

T \’
11 bym log (W)

(42)

where
1 Ne
* 16n?

bym
Thus our approximation, appropriate to the small ¢ region, yields a result for large
g? which differs from the exact asymptotic formula by a factor 4%. It is then not un-

reasonable qualitatively even in the large g2 domain.
Finally, from Egs. (34) and (42) the standard renormalization group argument yields

const.

Z(q”) > ) : (43)

2w 16/11
(e 37))
M

In this case the factor - appears in the power of the logarithm. This vividly reflects the fact
that our approximate Z(g?) cannot be identified with the renormalized coupling constant.
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7. Approximate numerical solution [6]

We have seen that Z(g?) has the large ¢2 behaviour of Eq. (43) and for small q* we

expect that it behaves like
M2 q2
=4 () 2 () o

Guided by these limits, Ball and Zachariasen [6] used the following three-parameter trial
function to seek a numerical solution of Eq. (34):
=, AM? (=AM +1d) 1 11/16
2q)=—3 2,5, 2 )
q M*(q"+u3) q°+u3
M+ 43

Z(q")

(45)

1418 g* (M) log (

The function, Eq. (45), is normalized [Eq. (28)] and has the asymptotic behaviours given
by Eqgs. (43) and (44) for all values of the parameters 4, p2 and p2. This trial function
was then inserted into the right-hand side of Eq. (34) and the parameters were varied so
that the output matched the input for as large a range of g2 as was compatible with the
accuracy of the numerical integrations. In Fig. 2, the solid curve is a plot of Z-1(g?),
Eq. (45), obtained from using the best values of the parameters in the case g2(M?) = 2.
For this curve 4 = 0.375, p, = 0.5M72 and p; = 0.6M?2. The dots on the curve represent

T T T
| 5 ! B

—

- i 1 i
0 05 1.0 2 1.5 20 Al
W2

Fig, 2. Z-!(q? as given by Eq. (45) with A = 0.375, i =0.5M2 uZ=06M2 for g2(M> = 2n
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the output values of Z—!(g?) calculated from the integrals on the right-hand side of Eq. (34).
The thickness of the dots represents the difference between the input and output values
of Z-1 at various values of g2. The agreement between input and output is within two per
cent for all values of g2 where calculations were made. Thus we feel that it is likely that our
equation has a solution which varies continuously from its large g2 behaviour, Eq. (43),
to the singular low g2 behaviour given by Eq. (44).

The output points on Fig. 2 were calculated for a value of y = 4. The output points
obtained by using y = 2 in the integral equation are essentially indistinguishable from
these. For y &~ 10 the output deviates from the input by about 5% at intermediate values
of g2. Since we only expect that Z(g?) should be independent of y in the infra-red and ultra-
-violet regions some y dependence might be expected. It is encouraging that it is not too
drastic. This dependence is now being further investigated by Ball.

Knowing the solution of Eq. (34) for one value of g2(M?), one can obtain it for any
other value g2(M?2) from the equation

Z a (M3) —;—_———— (46)
Mg’ & 2 - ~(M§ 2)).

Equation (46) was actually used to extend the range of ¢? for which the input and the out-
put could be compared.

I § { I | { I { i 1 1 {
o] or Q2 03 04 035 06 2 O7 08 09 LG 1 12

M

3 ~
Fig. 3. 4—g2(q2) calculated from the solution for Z-1(g?) of Fig. 2, using Eq. (37) for g%(¢?)
TT



136

Using the solution, Eq. (45), for Z(g?) we can calculate the running coupling constant
from Eq. (37) as a function of ¢g%/M?. The value of the scale M? was arbitrary. We define
M? by the normalization condition

3 2 2
Eg(M):L 47)

3
With this definition of M2, the function ng(qz), obtained by substituting Eq. (45) into
T

3

Eq. (37), is plotted in Fig. 3 as a function of ¢?/M?2. In the limit as g2 - 0, ~4—g2(q2) has
n

the 0.215(M?%/q%) behaviour given by Egq. (9).

3
In Fig. 4, we plot —B(g)/g as a function of \/ a g. This curve starts from the weak
T

coupling quadratic behaviour and makes a transition in the vicinity of ng ~ 1 to the
T

constant behaviour for large g2.
Finally we remark that Eq. (34) for Z has been obtained by contracting the vacuum
polarization tensor IT,, with n*n”. A second integral equation can be obtained by contracting

T T

! 1
10 100

/3 2
a7 9

3
Fig. 4. —B(g)/g vs \/— g
4

I v With g**. The third and the fourth terms in Fig. 1 (one of which involves I';) contribute
to this contraction. However, we have seen that it is consistent with Eq. (14) to omit these
terms and it would be very interesting to check the extent to which our solution satisfies
the equation for g*Il,, if we continue to neglect I',.
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8. Qualitative comparison with data

We now give a rough comparison of our calculated running coupling constant to a
phenomenologically determined heavy quark potential used to fit spectroscopic data by
Richardson [12]. His potential corresponds to a running coupling constant,

1
_
leog(H- %)

1
bR = 1—6?(11—‘% Nr).

gr(g®) = (48)

where

He takes N; = 3 and finds a good fit with A% = (400 MeV)?, a charmed quark mass of
1490 MeV and a b quark mass of 4180 MeV.

In the limit of large g2, Eq. (48) takes on the asymptotic freedom result, while for
small ¢?
3 4 4p?

A 49
)47,[ quZ q2 ( )

3 2,2
4__7-1 gR(q ) 220

The next term in the low q? expansion is a constant so his potential differs significantly
from the solution of our equations. However, it is interesting to compare the coefficient
of the 1/¢g® term in Richardson’s phenomenological potential with the low g2 behaviour,

3 0.215 M
an 8°(q )"m . ?‘
of the solution of our equation.
To make this comparison we must relate M? to A2, which follows from the normal-
ization condition, Eq. (47). Normalizing gZ(g?) in this way yields

M? = A*(e3*™=* 1) x 6542 = 20(GeV)>. (50)
Note that the —1 in Eq. (50) is negligible and the value of M2 is essentially determined

by the large g2 behaviour of ga(g?), which is just asymptotic freedom. Putting M2 =~ 65 A2
in our solution we obtain

3 6542 2.3(GeV)?
2, 2 2, 2 !
;tg(q);z_,—()»0215( e >~14A la ~—~é-2—. (51)
Comparing Eqs. (49) and (51) we see that the low momentum coupling of our solution
is about three times stronger than that determined by Richardson.

This can be understood qualitatively by the fact that our solution has a suppressed
high momentum behaviour because of the factor 12 in Eq. (42) and because of the absence
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3
of fermions. Since, as seen from Fig. 3, the value of ng(qz) near g%2/M? ~ 1isessentially
n

given by its asymptotic high momentum form, we must normalize it by an anomalously
large factor to raise it to the value 1. This in turn increases the value of its low momentum
behaviour.

We can estimate this effect by supposing that the asymptotic form of the exact theory

3 3r
agreed with our approximation, i.e., by = 1% byy. In this case el and thus
OR
3 3
= gi(a}) > = A%g® ~ 254%%, (49
4r 4

From Eq. (50) we would obtain M? ~ 1142, and hence our solution would have the
low momentum behaviour

3 (0.21) ,
o g ~ e (114%) ~ 2.34%/¢%, (51)

in close agreement with Eq. (49).

The point of this discussion is that it is difficult to make a precise comparison of the
low g2 behaviour with experiment because the normalization condition involves the large g
behaviour which differs by a factor 1%+ from the correct value. The comparison will then
be somewhat sensitive to how one accounts for this factor as well as for fermions. E.g., we
could either choose to compare Eq. (49) with Eq . (51) or Eq. (49') with Eq. (51’). However,
in either case our zero parameter calculation yields a long-range one-gluon force of qualita-
tively the right strength.

Altarelli [13] has suggested other ways to check the implications of our calculation.
Recall that Egs. (50) and (51) only make use of the asymptotic freedom result for g2(g2)
since the —1 in Eq. (50) is negligible. The estimate, Eq. (50), for M2 then does not depend

. . 3 . ‘
upon Richardson’s fit. From Fig. 2, we note that e 2%(q?) does not begin to deviate
T

significantly from its asymptotic freedom expression unless g2 is of order 0.1 to 0.2 M2,
Using M? = 20 (GeV)? from Eq. (50), we see that our solution predicts no substantial
deviation from asymptotic freedom down to values of a few (GeV)?, which is consistent
with experiment. It is also interesting to evaluate the value of our running coupling con-
stant at a nucleon size. Putting g2 = m? in Eq. (51) yields

23) _
0.02) ~

*lAn ~ ,

which is of the order of magnitude of the expected size of the strong interaction coupling,
at a pion Compton wavelength.

The discussion is clearly only semi-quantitative, but it indicates that our low g2 running
coupling constant is not unreasonable from an empirical point of view.
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9. Summary

We have presented a systematic approach to calculating the infra-red behaviour of
Yang-Mills theory using the Schwinger-Dyson equations and the Ward identities. It is
argued that this theory leads to an axial gauge running coupling constant which behaves
like 1/g% as g* — 0. In the first stage of our approximation scheme we have an explicit zero
parameter expression for g%(¢?) given by the curve of Fig. 3. The strength of the long-range
confining part of this curve is of the order of magnitude of the value obtained from spectros-
copic data on heavy quark systems as well as from other empirical estimates.

Our program, when carried to the next stage, will hopefully make clearer the extent
of the generality of the 1/¢* infra-red behaviour of g2(g2). It also might give us some esti-
mate of the two-gluon exchange force.

APPENDIX

Ward’s identity and the vanishing of the gluon mass

Starting from Eq. (10)for IT uv and assuming that I'y satisfies the Slavnov-Taylor iden-
tity, Eq. (12), it is easy to derive the following identity

. 2
i J
_ '8 dpg, —

ne =, —imy =
uy " I3 ) 6q#

[Fg?r}.a(—q’ -p, - r)Dll'(p)Dco"(r)r36).'0'(qa 12 T)],

(A1)
where 17} is given by Eq. (23). If we use dimensional regularization 11%Y = 0, and
2 = 1,,. Equivalently, we can simply replace I1,, by I1S, when we calculate the vacuum
polarization. Because of the derivative on the right-hand side of Eq. (A.1), ﬁ,?v contains
only logarithmic ultra-violet divergences. One can show that ﬁ,‘,’vv vanishes if we put
Z = 1;p2. Hence ﬁffv, like ﬁ,w, is infrared finite, if Z is set equal to 1/p2. Furthermore,
Eq. (A.1) implies

lim [12(q) = 0, (A2)
q-0
provided we can take the lim under the integral sign in the integral on the right-hand

q-0
side of Eq. (A.1). Now if Z did not contain a strong infra-red singularity this integral would
be sufficiently convergent to justify the interchange of the limit with the integral sign.
Hence we would obtain a vanishing gluon mass by Eq. (A.2).

On the other hand, we have seen that ﬁ,?v, although infra-red finite, is not absolutely
convergent and hence depends upon the infra-red regularization procedure. We can re-
move this ambiguity by regulating the integral in Eq. (A.1) so that the lim can be taken

q—+0
under the integral sign. This eliminates possible finite infra-red contributions to the gluon
mass just as dimensional regularization eliminates potential quadratically divergent ultra-
-violet contributions.
Equivalently if we do not use an infra-red regularization procedure which implements

(A.2), we then must subtract lim [72(g) from T2(q), just as we must subtract IT5,
q-0
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from I1 uv if we do not use dimensional regularization. Thus we see that gauge invariance
dictates that we must replace I1,,(q) by

ﬁ,?v(q)—lirr; 12(q), (A.3)
-

which gives us Eq. (25) when IT »(q) depends only upon Z.

I am indebted to F. Zachariasen for help in preparing these lectures. 1 would like to
thank G. Altarelli and the Rome theory group, and aiso the members of the CERN theory
group for their hospitality. I would also like to thank the John Simon Guggenheim Memo-
rial Foundation for its support. Finally, I would like to thank the organizers of the Zako-
pane Summer School for the opportunity to participate in the programme.
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