NEW ISOTOPE 145Tb

By G. D. Alkhazov, K. A. Mazilev, Yu. N. Novikov, V. N. Panteleyev, A. G. Polyakov

Leningrad Nuclear Physics Institute, Gatchina, USSR

V. P. AFANASYEV, N. GANBAATAR*, K. YA. GROMOV, V. G. KALINNIKOV, J. KORMICKI**, A. LATUSZYŃSKI***, A. POTEMPA** AND F. TARKANYI****

Joint Institute for Nuclear Research, Dubna, USSR

(Received October 10, 1980)

The new isotope ¹⁴⁵Tb ($T_{1,2}=29.5\pm1.5$ s) has been identified on the IRIS on-line mass-separator facility by measuring the X-ray and γ -ray spectra of the daughter nucleus formed as a result of the $EC+\beta$ decay.

PACS numbers: 23.20.Lv, 23.20.Ck

In the course of our investigation of short lived nuclei of rare earth elements a new activity $T_{1/2} = 29.5 \pm 1.5$ s was found at the mass number A = 145.

The experimental technique and the identification were essentially the same as in our earlier study of neutron deficient Lu isotopes [1].

The isotope has been produced using a 1 GeV proton induced spallation reaction on tungsten target. The on-line mass-separator IRIS [2] was used to provide mass separated samples. The X-ray and γ -ray spectra were measured using Ge (Li) detectors.

The identification is based on the following:

1) In addition to the unambiguous A determination, with the help of the mass-separator, the Z assignment of the new activity was made on the basis of an analysis of the decay characteristics of the gadolinium K X-rays. Fig. 1 shows the Roentgen spectrum obtained for this isobar and the decay data for $K_{\alpha_1}Gd$ and $K_{\beta_2}Gd$ lines. The measured half-life of these lines $T_{1/2} \sim 37$ s is significantly lower than half-life $T_{1/2} = 85 \pm 3$ s of the known isomeric state in the ¹⁴⁵Gd [3].

^{*} On leave from the Mongolian State University, Ulan-Bator, Mongolia.

^{**} On leave from the Institute of Nuclear Physics, Kraków, Poland.

^{***} On leave from the M. Curie-Skłodowska University, Lublin, Poland.

^{****} On leave from the Institute for Nuclear Research, Debrecen, Hungary.

Fig. 1. Low energy part of the γ -ray spectrum in the first and last time interval and the decay characteristic for the Gd X-lines

2) In γ -ray spectra besides γ -ray transitions corresponding to the decay of well studied nuclei ^{145m}Gd [3] and ^{145g}Gd ($T_{1/2}=21.8$ min) [4], 15 new transitions having approximately the same half-life as Gd K X-lines were found (Table I).

The decay characteristics of the strongest new γ -lines are shown in Fig. 2.

- 3) Some of the γ -rays found in the present investigation are known from the in beam studies of the lower, medium-spin states in ¹⁴⁵Gd produced in ¹⁴⁴Sm (³He, 2n) reaction [5].
- 4) The absence of evidence of other long lived isomers in the earlier studies of the ¹⁴⁵Gd with heavy projectiles strongly suggest that we are dealing with the decay of a new isotope ¹⁴⁵Tb.

On the basis of these facts the transitions with half-life $T_{1/2} = 29.5 \pm 1.5$ s have been assigned to the decay of ¹⁴⁵Tb.

The half-life observed for K X-lines of Gd (see Fig. 1) being slightly higher than for other γ -lines is due to the inner transition of the 85 s isomeric state in ¹⁴⁵Gd.

TABLE I

Energies and intensities of γ -lines assigned to the decay of ¹⁴⁵Tb

4
3
16
2
5
9
6
2
2
2
3
3
4
7

Fig. 2. Decay curves for main γ -lines assigned to the decay of ^{145}Tb

The preliminary analysis of the decay scheme of ¹⁴⁵Gd suggests that a small part of the γ -lines with energies 27.3 keV and 721.4 keV that in our spectra have $T_{1/2} \simeq 80 \, \mathrm{s}$ should also be related to the decay of new ¹⁴⁵Tb.

Let us finally mention that we have just been informed of a simultaneous identification of ¹⁴⁵Tb by Toth et al. in abstract [6]. The half-life measured by those authors $T_{1/2} = 30 \pm 2$ s is consistent with the value found here.

REFERENCES

- [1] E. Ye. Berlovich et al., Acta Phys. Pol. B11, 455 (1980).
- [2] E. Ye. Berlovich et al., EMIS Conf., Sweden 1973, p. 349.
- [3] R. E. Eppley et al., Phys. Rev. C2, 1929 (1970).
- [4] R. E. Eppley et al., Phys. Rev. C3, 282 (1971).
- [5] J. Muhonen et al., JYFL Annual Report, JYFL, Finland 1979, p. 65
- [6] K. S. Toth et al., Bull. Am. Phys. Soc. 25, 486 (1980).