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The vacuum field equations of scalar meson, Sen-Dunn scalar tensor theory and that
of Brans-Dicke scalar tensor theory are studied in P-space times in a unified way.
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1. Introduction

The plane wave solutions of Bondi et al. [1] of Einstein equations are not really plane
as a plane electromagnetic wave in Maxwell’s theory. But, there do exist homogeneous
plane gravitational waves, according to Ebner [2], for which g;; can be put in the form

8ij = g{Z), Z= z aixi, gijz,iz,j =0. (L.

Using (1.1), Takeno [3] defined the plane gravitational wave, and studied the wave solu-
tions of various field equations in general relativity and those of non-symmetric unified
field theories. In his studies, the space times P and H play an important role, and they are
interpreted as “plane wave like” and “plane wave” solutions, respectively. The former
is characterized by the following two tensor conditions:

(i) It admits a parallel null vector field.

(i) 1t is a gravitational null field.
On the other hand, in studying the wave solutions of various field equations in general
relativity we obtained a space time represented by the line element [4-6]

ds> = — Adx®—Bdy*—(1 —E)dz*—2Edzdt+ (1 + E)dt?,
A=A@Z), B=BZ), E=Exy2Z), (Z=:z-1), 1.2)

in cartesian like coordinate system x' = (x, y, z, t). This space time is a P as it satisfies
the conditions () and (é). Further, the simplest form of the line element of P is obtained
ifweput 4 = B = 1. We call them P, and P, respectively. An important difference between
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them lies in the energy content of the gravitational wave. In P, gravitational wave does
carry some energy and momentum in the direction of propagation whereas in P, it does
not do so {6].

Therefore we consider here in the coordinate system of P,, the plane wave like solu-
tions of scalar tensor theories, namely, scalar meson field equation [7], scalar tensor
theory of Sen~Dunn [8] and Brans-Dicke scalar tensor theory [9]. These theories are cou-
pled with the gravitational field via Einstein’s field equations.

2. Field equation
In vacuum the field equations for a scalar meson field are [7]
Rj—3g;R = —9,9;+% gij(¢,l(p,l—nlz¢2) 2.1

where we have set X = 1, and where ¢ is the meson field and m is the mass of the meson.
Equation (2.1) can easily be rewritten as

Ry = —@:p,;+% giym’p”. 2.2)
Similarly the vacuum field equations of Sen-Dunn scalar tensor theory [8]
Ry=%g,R = 0,6,,—% 80,07, 2.3)

where ee¥273 is the scalar field in the theory, can be rewritten in the form

Rij =040, 249
The vacuum field equations of Brans-Dicke scalar tensor theory [9]
Rij_% gi;R = —(CU/WZ) [%",i’/’,j"% gij'%’,l‘l)’l] —(1/y) (‘P,i;j—gijD’P) (2.5)
can accordingly be put in the form
Riy = —(@/v*)p,0p,;~(1[9) (¥,0;+F g;09), (2.6)

where y is the scalar field, @ the dimensionless constant and [Jy = v./’. Here a coma
and semicolon denote partial and covariant differentiations respectively.
The equation (2.6) can further be reduced to the form

R = —(@+3)yiy} @27
if one sets
85 = V&
R}; = the Ricci tensor formed out of gf,
p* = log y. (2.8)

Thus, it is evident that the vacuum field equations of these theories, that is, (2.2), (2.4)
and (2.7) are quite similar in appearance although they are different as they describe
different systems.
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Therefore, we propose to consider the field equation
Rjj=opp; (% 0) (2.9)

in the coordinate system of P,, where u can be assigned the role of scalar fields for the
above theories. If o = 0 or u = const the field equation (2.9) reduces to the Einstein
vacuum field equation.

3. Solution
In the coordinate system of P, it can easily be seen that
n = u2). (3.1

Further, it should be mentioned that the Brans—Dicke metric g;; also takes the form under
consideration on performing the coordinate transformation

z¥ = 3 (z+1)+3 [ pdZ,

t* = L (z+0)—% | pdZ. 3.2)
Therefore the solutions of field equation (2.9) are
(a) 1 = const, vacuum Ricci tensor,
(b) a’*~K =0, (3.3)
where

K = (A"[A+B"[B)[2—(A"*|A* + B?|B*)/4—(E 1, /A+E ;2/B)[2,
(A" = 0A[0Z, E, = OE|ox, etc.). 3.4
This last implies that K depends only on Z, and hence that the metric coefficient E satisfies
a) M=0 or b)M=f2, (3.5
where
M = E | ,/A+E ,,/B.

This is true directly of g;; in both the meson and Sen-Dunn cases. In the former case this
means that the solution of massive scalar meson field in vacuum does not exist in P,.
Further it is true of E* = y*E in the Brans-Dicke case whence it is also true of E
in this third case.
The solution

p= [ (Kjo)\dz (3.6)

gives p and ¢ in the first two cases and gives p* in terms of 4%, B* and E* (= yp*4, y*B
and 9*E) in the third case using

Z¥ = j pdz = z*% —t*,
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Thus even in this third case all solutions can be generated by choosing A*, B* and E*,
though it is not as easy as in the first two cases to solve for y with a given 4, B and E:
for this the second order equation is still required.

4. Remarks

As is seen in the above, the scalar fields of these theories depend on Z = z—¢ in the
coordinate system under consideration. Also there is no restriction imposed on the de-
pendence of E on Z. However, (3.52) in P, means that E is a harmonic function of x and y.
If so, then P, identically satisfies the Einstein vacuum field equation. This implies that
u = const. Hence P, in which E is a harmonic function of x and y can not be the solution
of these scalar tensor theories.

Further, a form of E that satisfies (3.5b) is

E = szl +2xyF2+y2F3+xF4+yF5+F5, F" = F‘(Z), i = 1, coey 6- (4.1)

So, P, (or P;) with (4.1) satisfies E ;. = 0, (a, b, ¢ = 1,2), and hence it is an H [3], [6].
Hence the solutions of these scalar tensor theories in P where E is given by (4.1) are “plane
wave solutions”.

Furthermore, the value of dimensionless constant in Brans-Dicke theory in P, is
given by
o = (p/y)(M~L—y"[y) (4.2)
where
L = (JA)'|JA+(JBY'|VB
and is positive or negative according as

M >or < L+9y"[y. 4.3)

Obviously in P,, L = 0, and then (4.2) becomes
o = (P9 (M—y"[y). (4.4)

Editorial note. This article was proofread by the editors only, not by the author.
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