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THE NON-RELATIVISTIC SPACE-TIME MANIFOLDS
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A new notion of non-relativistic space-time is proposed. The dimension of the space-
-time manifold depends on the order of approximation.

PACS numbers: 03.30.4+p

The geometry of space-time in special relativity is determined by the group of Poincaré
transformations:
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In (1) and (2) ¥ denotes the relative velocity of two inertial frames of reference in which
the space-time coordinates are given by (X, ) and (X', ¢'), respectively, while a and b de-
scribe the corresponding translations. The matrix £ may be written in terms of the ortho-
gonal matrix R which describes the pure rotation:
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The standard way of getting the non-relativistic approximation to the above formulae
is to take in them the formal limit ¢? — c0. In this way from (1) and (2) we get the Galileian
transformations:

X' = Rx+vt+a, (6)
t'=1t+b. 0

For the goals of non-relativistic physics it is necessary, however, to use the one-parameter
extension of the Galileian group. This extension is obtained by adding to the four space-
time coordinates (X, t) a new quantity § with following transformation property

0 = 040 Rx+1vt+¢. (8)

The appearance of this fifth “coordinate” looks mysteriously from the point of view of
our “usual” non-relativistic intuition. Below, we shall find a satisfactory resolution of this
puzzle by a suitable definition of the notion of non-relativistic limit of the Poincaré transfor-
mations.

The second question which we are going to explain is connected with the impossibility
of taking in (1) and (2) the whole expansions of the right-hand sides into power series
in ¢=2. It is expected that if we could use such expansions we would obtain better “non-
-relativistic”” approximations to (1) and (2) which presumably could describe some relativi-
stic effects. It is well-known that such way is forbidden because it leads immediately to the
violation of the group property of space-time transformations. Our methed provides
a new notion of non-relativistic space-time in which the group property of the relativity
transformations is maintained.

The method which we propose to use in the investigation of the non-relativistic limit
of the transformation properties (1) and (2) rests on the following observation. Assuming
that the space-time coordinates (X, ) in a given inertial frame of reference ate quantities
of some fixed order of magnitude, we obtain from (1) and (2) that, in the non-relativistic
domain, the transformed coordinates (x’, ¢’) are in general sums of quantities of different
order of magnitude. Since the space-time coordinates in each inertial frame may be treated
as those obtained from the space-time coordinates in another inertial frame, we shall
assume that, for the purpose of non-relativistic physics, the space-time coordinates are
represented as sums:

A=Y G ©)
n=0
t = ZO th (10)

where on the right-hand sides the symbols with subscripts # denote quantities of n-th order
of smallness. Obviously, in order to make this statement precise we should define what
the order of smallness means. We shall not do that, however, because it is not necessary
for our purpose. For us it is necessary only to rememeber that the product of the quantity
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of the n-th order of smallness by the quantity of the m-th order of smaliness is a quantity
of the order (n-+m).

Let us now decide how to treat the other quantities, like 7, #, a and b, in (1) and (2).
Looking at the composition laws for these quantities:
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dy, = d;+Rdy+7,0:by, (13)
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by = by+yiby+ (—1’*’021 2 > (14)

it is easily seen that the assumption that they are quantities of fixed order of smallness
immediately leads to a contradiction. In order to see this let us look, for example, at the
formula (11). Assuming that v, and v, are quantities of the first order of smallnes, we get
from (11) that v, , is a sum of quantities of all odd orders of smallness. Since every velocity
may be regarded as composed of two or more smaller velocities, the only assumption con-
sistent with the composition law (11) for velccities is to represent all o’s as sums:

0= Uppurs (15)
n=0

where o, are quantities of the n-th order of smallness.
A similar argument, applied to (12), shows that the matrices # must be represented as

R= Y P 16)

n=0
where, from (5), it follows that
Z, = R. a7

Finally, from (13) and (14) we get the representations for g and b:
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Substituting into (1) and (2) all these representations and comparing the terms of the same.
order of smallness on both sides, we obtain an infinite set of transformation properties
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for x, and 1,. Explicitly, up to quantities of the third order of smallness, we have:

Xy = RXo+a, 0)
to = to+b, 1
X = RX;+0ty+4d, (22)
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where for latter convenience we change shlighty the notation:

ag = 4a, al=2, 62':—‘_7; 53"—";;,
bo = b, b]_ = e, b2 == g, b3 = k,
- - - 02 -
vy =0, u= Z;v+vs,
3
Uy
(Z2)a = 202 Ry + Qi (28)

=1
From the condition (4) we get the following condition for the matrix Q:
RTQ+QR” = 0. (29)

Under this condition, the transformation laws (20)-(27) possess the group property with
the following composition laws:

RIZ = Rle, (30)
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By = vy +RyD,, (32)

(v, Ryvy)+03 .

Uy, =ty + Rl + 00, + Yo Uy, (33)
dy, = a;+R,a,, (34)
by, = by+b,, (35)
dy; = d;+Rydy+5.b,, (36)
v, - Rya

e, = e t+e+ (_16——212), 37

- - . (v, - Ryay)
fiz=fi+R f,+Qa,+ve,+ %c—'z‘l"‘%‘ , (38)

v}b, +2(0, - R,d>)

812 = 81 +82+ 20 , (39)
7 7 7 - (@ Rd) . . -
h12 = h1+R1k2+Q1d2+ "“2(:2—— Ul+vlg2+ulb23 (40)
2 e b, - - - -
v, vy * Ry f2)+(vy - Qyaz)+(uy - Rya
klZ — k1+k2+ '2_1_552. +( 1 lf2) ( 1 CQ21 2) ( 1 1 2)‘ (41)

The geometrical properties of the quantities x, and ¢, are specified by the transforma-
tion rules (20)~(27). Looking at these transformation rules we see that it is possible to
reinterpret the meaning of X, and ¢, in the following way. Instead of treating X, and #, as
components of x and ¢ of the different order of magnitude, from now on we may treat
them as coordinates of points of some new manifold which replaces the four-dimensional
relativistic space-time. While the former procedure was in fact a numerical approximation
to the relativistic transformation rules, this reinterpretation gives the real clue to what
we call a non-relativistic approximation. The coordinates X, and ¢, do not need to be quan-
tities of a given order of smallness since the transformation rules do not remember such
statement and consequently we may “forget” the limitation of their meaning. In this
way, for the N-th order of non-relativistic approximation, we obtain the 4(N + 1)-dimen-
sional manifold which is a proper arena for the quasi-relativistic description of space-time
events from the non-relativistic point of view.

Let us add to this conclusion a few remarks concerning the lowest order cases. In the
zeroth order of non-relativistic approximation we obtain the four-dimensional manifold
with geometry determined by the transformation rules (20) and (21). This shows that in
this case we have the Aristotelian model of space-time. Our derivation, however, shows that
this picture is applicable to space-time events in some neighbourhood of the light-cone
in the non-relativistic limit.
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In the first order of approximation we obtain the eight-dimensional manifold with
the geometry determined by the transformation rules (20)-(23). This manifold contains the
four-dimensional submanifold defined by the conditions

Xo=1t; =0, (42)
which is invariant under the subgroup of transformations with
a=-e=0. (43)

It is easily seen that this submanifold realizes the usual Galileian space-time with the usual
Galilei relativity group. In view of our original procedure, the conditions (42) mean nothing
else than the restriction to the deep time like region of the Minkowski space-time.

In the second order of approximation we have the twelve-dimensional manifold
with geometry specified by the transformation rules (20)-(25). This manifold contains
the five-dimensional submanifold determined by the conditions

Xo=X,=1 =0, (44)
which is invariant under the subgroup of transformations for which
d=e=f=0. (45)
Denoting
6 = c¢’t,,
g =c’g, (46)

we get just the five-dimensional Galileian space-time, where the one-parameter extension
of the Galilei group operates. In this way we have found the answer to the question of the
origin of the fifth dimension in non-relativistic physics.

In the third order of approximation we obtain the sixteen-dimensional manifold
with geometry specified by the transformation rules (20)-(27). This manifold contains
the eight-dimensional submanifold defined by the conditions

§0=§2=t1=t3=0, (47)

which is invariant under the subgroup of transformations for which

d=e=f=k=0. (48)
This subgroup is a new relativity group which, apart from non-relativistic physics, describes
the first order corrections coming from relativistic physics. The precise meaning of this
statement needs, however, further investigations which are beyond the scope of the present
paper.



