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The relativistic effects due to the nonlocal character of the one particle exchange,
derived from the light front field theory, are illustrated in a model of scalar nucleons exchan-
ging a particle of mass 4 = 138 MeV. For the llaboratory energy of the order of 0.1 GeV,
and momentum transfer squared |t] < (2u)* we find a substantial change of the shapes of
the phase shifts and the shapes of the differential cross section. These effects cannot be
accommodated in an appropriate change of the coupling constant, if for the clarity of
separating them we consider only one particle exchange as a driving force.

PACS numbers: 11.80.-m

To estimate the relativistic effects at low energies one would either compare the relativ-
istic and nonrelativistic expressions for the kinetic energy, or use the smallness of the
momentum transfer. For the laboratory energy E;,, of the crder of 0.1 GeV, and scattering
of particles with the nucleon mass, at low momentum transfer (Jt| < (2p)?, 1 = 0.138 GeV)
one would expect negligible relativistic corrections. Indeed, on pure kinematical grounds,
if Ey, € (0.02+0.2) GeV, and q denotes the center of mass momentum, then the difference

(P +mD P —m]-L ¢*m ' ~ L g*m™3

gives only an effect of (0.3+3)%. Moreover, if forces are assvmed to be local (at low ener-
gies), then for the small momentum transfer we expect to be far away from the inner
region of interaction, where the relativistic effects are crucial, and thérefore for the local
forces we may have small relativistic corrections at low energies.

The aim of our paper is to see how large are these effects if we take such relativistic
framework, which has exactly the same two-body free propagator as in the Lippmann—
~Schwinger equation, and in which the off-shell continuation of the potential is uniquelly
defined by the field theory rules. Then, the answer to the question how large are the relativ-
istic effects at low energies depends only on the non-local features of the driving force.
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The relativistic scheme which we are using is the Weinberg [1] infinite momentum
dynamics, written in terms of the light front [2] variables, which are then replaced by the
projections of the four-momenta on tetrads (Vierbeins). This scheme was developed in
Refs [3-7], and here we only mention its main properties: 1) all particles, including the
intermediate one, are on their mass shells, while the off-shell continuation is in the “minus”
component of the total momentum, 2) the rules of evaluating any diagram are similar
to the old fashioned perturbation theory rules, with the replacement of the energy denomina-
tors by the “minus” component denominators, and with the new simplifying property
that many of the old fashioned diagrams contribute zero (at each vertex there are conserved
the perpendicular and the “plus” components of the total momentum), 3) the Weinberg
equation is fully relativistic, nevertheless it is a three-dimensional integral equation, without
the problem of the relative time (relative energy) variable, which arises in the Bethe-Salpeter
equation, 4) the intermediate states correspond to the fixed number of particles, 5) the
inverse of the two-body free propagator is a quadratic function of the relative momentum,
allowing for the probabilistic interpretation of the relativistic bound state wave function,
6) there is a cancellation between the higher order irreducible diagrams (e.g. some parts
of the ordinary box diagram are cancelled against the crossed box diagram), and 7) if we
extend the scheme to the many body system, as it was done in Refs [4] and [6], then we
have naturally the cluster decomposition property for the S matrix, arising from the addi-
tivity of the “minus” component momenta in the denominators evaluated within the
Weinberg rules.

For the clear isolation of the relativistic effects at low energies, due to the nonlocality
of the field theoretic potential, we consider a model of two scalar nucleons exchanging
only one scalar meson of mass u = 130 MeV. Thus, the interaction Lagrangian is
2mg: ¢?@y:, where m is the nucleon mass, g is a dimensionless coupling constant, and
@, @, describe the nucleon, meson flelds, respectively. From this Lagrangian, the Weinberg
rules, and the appropriate change of variables we get the driving force, corresponding to
the one meson exchange in the Weinberg equation, as

g cos 8'01Y|g" cos 6"¢""> = —2mg*My 2 (A+u)T My TV, 6

where M, = 2(q>+m?)¥, 4 = (¢'—4"")>*+u?, and ¢’, ¢"’ are shorthand notations for the
projections of the space-like relative four-momenta g’ and ¢’’ on the appropriate tetrads.
We note, that the Fourier transform of —g24~! is the standard Yukawa interaction
—(g*/4n)r-1 exp (— ur). The essential new terms in Eq. (1) are the so-called “minimal
relativity” factors (MgM )~ * and the term « in the denominator, which changes effectively
the u? term in the denominator of the Yukawa interaction. Using Refs [1], [4] and [7]
we get from the Weinberg rules the following expression for «

o =2lgMy cos 0 —q "My cos 0| (¢ +q"* =1 s—2m?)
— g’ My g "My T (Mo~ M{y)? cos 6" cos 607, ®)

and we note the highly nonlocal behaviour, manifesting itself through the separate de-
pendence on ¢’ and ¢”', as well as through the energy dependence in terms of the Mandel-
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stam variable 5. The “minimal relativity” factors (MM )% are also responsible for the
nonlocal behaviour of Y. The entire effect of the nonlocality of the driving force ¥, given
by Eq. (1), can be separated out in a form factor F, which is defined by the equation

Y = —g?4"'F. 3)
From Eq. (1) and (3) we get
F = [1—a(A+a0)" " [2m(Myhig)~ /2. ()]

The presence of this form factor F influences various physical quantities, as it will be
illustrated in our paper.
The Weinberg interaction Y'is the kernel in the following two-body relativistic equation

(g cos 0'0{T|g 10> = {g' cos 8'0}Y|g 10
—(2m) *m [ §'"?dg"'dQ"'{g’ cos 0'0|Y|g" cos 0" ¢"»

x(@"* =g —ie)' <g" cos 0"¢"|T|7 1 0). )

The scattering amplitude T is normalized in such a way, that the invariant differential
cross section is given by

n” g doldt = (5 m)’ Qm) K ITIgd g =5

where g2 = Ls—m?, and ¢ = (¢'—¢)%

Solving numerically Eq. (5), with the driving force given by Eq. (1), for energies below
and above threshold (s = 4m?) we can find the effects of the relativistic form factor Fon:
the binding energy, partial wave phase shifts, and the differential cross section. The form
factor F decreases the attractive Yukawa interaction —g24-1, lowering down the values
of the binding energy, phase shifts, and differential cross section, if we keep the coupling
constant fixed. In Ref. [7] we studied the relativistic effects on the binding energy, and on
the S-wave phase shift for different values of the mass of the exchanged particle and the
coupling constant. We found the following relativistic effects: for the S-wave phase shift
from 10% up to 309, and for the binding energy from 60%, up to 90%.

Looking at the curves in Ref. [7] one is tempted to say, that an appriopriate readjust-
ment of the coupling constant could completely accomodate the whole relativistic effect.
In the present paper we disprove this expectation, by showing that the shapes of the phase
shifts, and also the shapes of the differential cross section, for low energies and low mo-
mentum transfer, are very sensitive to the presence or absence of the relativistic form
factor F. Only at one energy, and at one value of the momentum transfer we can get a zero
effect by adjusting the coupling constant, but then at other energies and other values of
momenta transfer we get substantial differences (roughly an order of magnitude larger
than the kinematical estimates made at the begining of this paper). To show this we consider
several examples, keeping the mass of the exchanged meson u = 138 MeV fixed, and
making different choices for the coupling constant g. Although the real nucleon-nucleon
force is approximated by several meson exchanges, with different masses and coupling
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constants, we feel that for the clear separation of the relativistic effects at low energies, due
to the nonlocal character of the one-particle exchange derived from the field theory, it
is more appropriate to consider a model of only one light meson exchange.

In our first example we take such g, that —g24~! used as a driving force in
the Lippman-Schwinger equation gives for the deuteron binding energy 2.224 MeV.
Then, the presence of the form factor F lowers down that energy to the value 0.81 MeV.
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Fig. 1. The relative difference of the differential cross sections for the same value of the coupling constant.
The numbers associated with curves denote the laboratory energy in MeV. The broken curves correspond
to the local modification

The differential cross sections, evaluated with the F present, and F absent (denoted as
do™/dt and do"S/dt, with W and LS for Weinberg, and Lippmann-Schwinger, respectively)
differ largely as seen in Fig. 1. The largest difference reaches 409,. Note, that even for the
highest considered E,,, = 0.2 GeV, the relativistic correction estimated from the kinematical
argument is only 3%. The large size of the relativistic corrections in Fig. 1 is due to the
nonlocality contained in the form factor F. To verify this point we consider a local modifica-
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tion of the attractive Yukawa force —(g2?/4n)r-!exp(—ur) by the repulsive term
+0.2(g?/4m)r—* exp (—3ur). Such correction modifies the original Yukawa interaction
at r = u~! by 3% (like the kinematical correction), and by 209, near r &~ 0. The results
induced by this local modification are shown in Fig. 1 as the broken curves. We notice
that these effects are much smaller than those produced by the presence of the relativistic
form factor F. Moreover, if we make the partial wave analysis, and plot in Fig. 2 the phase
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Fig. 2. The relative difference of the partial wave phase shifts as function of the angular momentum /,
for the same value of the coupling constant. The numbers, and the broken curves as in Fig. 1

shifts as function of the angular momentum /, then we find, that for the D, F, G, H, and
L waves the local modification gives practically no effect (as expected), while the presence
of the form factor F makes a substantial change even for the highest partial wave. This
again emphasizes the nonlocal character of the relativistic corrections produced by the
form factor F.

In the second example we choose such coupling constants g and g, that both —g24-1
and —g2A4~'F give the same deuteron binding energy, equal to 2.224 MeV. Then, the S
wave phase shift evaluated in the Weinberg scheme is still lower than in the Lippmann-
—Schwinger equation, but the higher wave phase shifts are larger for the W than for the
LS case, due to the increase of the coupling constant. Note that g > g is necessary to
overcome the action of the form factor F, and to bring the deuteron binding energy to the
value 2.224 MeV. The final result is shown in Fig. 3, where at a particular value of the
momentum transfer we get a zero effect. However, the slopes of the curves in Fig. 3 are
comparable with the slopes of the appropriate curves in Fig. 1. This shows, that the presence
or absence of the form factor F makes an essential effect on the shape of the differential
cross section, and therefore the relativistic effects can not be accomodated in the value of
the coupling constant.

In our third example we take such g and g, that the S wave phase shift (in which the
effect is the strongest) are forced to be equal at E,,, = 0.1 GeV for both driving forces
—g?A~1, and — g2A4~'F. The coupling constant g is such, that the binding energy of deute-
ron evaluated with the driving force —g24~* is equal to 2.224 MeV. Then, already at
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E, = 0.05GeV, and at L, = 0.2 GeV the S wave phase shifts differ by +39%;, and
-3%, respectively. The P, D, F, G, H and L wave phase shifts at E;,; = 0.1 GeV differ
by 209, and the forward differential cross sections differ by 279,. The deuteron binding
energy evaluated with the driving force having the form factor F would have to be 47%
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Fig. 3. The relative difference of the differential cross sections for such g and g, that both —g24~* and
—g?A-'F bind deuteron at 2.224 MeV

larger than 2.224 MeV if the S wave phase shifts are required to be the same at
E,, = 0.1 GeV.

All of the above examples show that the relativistic effects caused by the form factor
F are much larger than either the simple effects estimated on pure kinematical grounds,
or the effects due to a local modification of the original interaction. The whole range of
energies and momentum transfer is influenced by the presence of the form factor F,
because of its nonlocal character. The shapes of the phase shifts and the differential cross
sections are sensitive to the presence or absence of the form factor F, and working even at
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low energies and low momentum transfer we cannot incorporate the substantial relativistic
corrections in the value of the coupling constant.

One of the authors (J.M.N.) would like to acknowledge stimulating discussions with
Professor F. Gross and Professor E. Lomon.
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