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CONFIGURATION OF A NEUTRON STAR WITH AXIALLY
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It is shown in the framework of the affine theory of gravitation that the surface of a
neutron star differs slightly from sphere because of the contact spin-spin interaction of
polarized neutrons.

PACS numbers: 04.50+th, 95.30.5f, 97.60.1d

Among reasons leading to the deviation of the form of a neutron star from sphere
Kerlick in his paper [1] indicated the neutrons’ spin axial polarization originating in the
intensive magnetic field. He also estimated the differenice between the longitudinal and
transversal (with respect to the direction of the polarization) dimensions of a standard
neutron star, basing his considerations cn the results cbtained by Wald [2].

In our opinion the way of the investigation undertaken in [1] is not sufficiently correct,
because Wald in his work [2] considered spin-gravitational interaction using for different
special cases the Papapetrou equations [3]. Solutions of the equations describe the motion
of test particles with spin or the force affecting them in the gravitational field of non-test
bodies which can also possess their proper angular mcmentum. Collective effects of spin—
-spin interaction are described in the most logical way by the U, theory of gravitation,
in which the spin of matter is considered to be the source of the space-time torsion. So
we propose to consider the problem in the framework of the U, theory.

The exact solution of the self-consistent system of field equations and equations of
motion and state would be the most interesting case. But such a solution is not known
so we shall consider the equations in the approximation of weak gravitational and torsional
fields. Moreover, since pure torsional effects are in question, it secms natural to abandon
rotational non-static terms in the metric describing gravitational field inside the star.
In the Appendix we show that these assumptions and physical conditions of the chosen
model are not contradictory.

Let the star consist of incompressible ideal fluid with spin. Then its energy-momentum
tensor is

nT* = '[(e+p)v'n+v;Ds"] —npg" M
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and axial polarization of spin S¥ = 2561'6)} determines the gravitational field

ds? = ¥ — 2 (dx? + dy? +dz?). )

Here ¢ = const, S = const and p are respectively the energy density, spin density and
pressure, s = SYt*p,, 1, is the 3-form dual to the basic 1-form 6%, 5 is the element of
4-dimensional volume, D is the operator of the exterior ccvariant derivative (all notations
correspond to those of paper [4], see also [S]). The vacuum velocity of light is chosen to
be equal to unity.

The configuration of the star determined by the surfaces of equal pressure follows
from the equations of motion of the fluid

D(T*n) = Cyf T™ 07 An,, + 4 Ry 0 As¥, 3

which generalize for the U, manifolds the Papapetrou equations. Here G’ # 0 is the
torsion tensor. The algebraic connection between the torsion and spin density of the source
assume in the natural form C*;, = x v’ S},; x is the spin-torsion coupling constant, 4-velocity
vector v = &} for the particles of matter being at rest in the chosen frame of reference.
Calculating the connection 1-form and the U, curvature tensor components we find from

Eq. (3

PatTe+p+38%) =0, (4a)
pa+tae+p) =0, (4b)
where
1S? 1S?

A=l,2, E=p s é=8—-~——.
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Note, that the difference in form of Eqs (4a) and (4b) is due to the first term of the right
hand side in Eq. (3), i.e. the deviation from sphere in this case is the result of the spin—spin
torsional interaction, but not of the spin-gravitational interaction which is described in
GR by the last term of Eq. (3); as a matter of fact the latter was used in [1].
Near the surface of the star p < ¢; after the substitution of the expression for 7 (see
the Appendix) Egs (4) have the solution

. s? s
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which means that the surfaces of equal pressure are the z-prolonged rotaticnal ellipsoids.
Determining the constant of integration p, at the pole (p =0, x =y =0, z = z,) we
find the expressions for the coordinate values of semi-axis
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where R = (xo+2¢) is the mean radius. Eq. (6) yields the formula for the deviation
of the shape of the star from sphere

= = X252
ol = 2<J‘ etdz— jeldx) o 2(ze—x0)+~~é— R Q)
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For the neutron star we have § = ——— with my ~ 10-24 g (mass of a neutron); then,

My
introducing the velocity of light in explicit form, we obtain the final expression

. XE X . XE
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If we choose the neutron star with typical parameters: mass ~1033 g, R ~ 10° cm, then
under the assumption of maximal spin polarization in the framework of the Einstein~
—Cartan theory, where the torsion—spin relation is determined by the Einstein gravitational
constant (y = k), we have 8/ ~ 10-3* cm, which surprisingly is of the same order as the
estimate given in [1]. But there is also another possibility. Let 6/ ~ 102 cm, so that the
gravitational radiation would beccme the main reason of the energy loss of the star re-
sulting in deceleration of its rotation {6]. In this case the value of the torsional-spin constant
becomes y ~ 10'2 g~! em?3s~2, which still satisfies the used weak field approximation
and is 20 orders less than the similar coupling constant of the theory of strong gravity:
~1032 gt cm3 s 2 (see e.g. [7D.

APPENDIX

1. In the computations we needed:
a) the basic 1-forms

0° = e'dr, 0" = e'dx, 0° =édy, 0 = tdz,

b) the components of the connection 1-form

—ipo X b4 . - . a2
wWo, = 14 0°—ZS0%,  w,, = Z80°—i,e7 M0 =i 0702,
. > 5 , ,
oz = 727 0%+ £ 56! =~y e 0 A e
02 = 1€ + 5 , W3 = —Aze +4,e ,
- u — 2 —
wo3 = T3¢ *0°, W3 = —Ae "+ ,e 0%,

¢) the components of the curvature tensor
Rizor = —x¢ X% S:1+57,),  Ryzps = —ye (3 S,+517,),

Ris03 = —ye "5 S3+513),
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d) the U, theory field equations
—Rgg = At ~ L (ke—x*S?),

AA ~ —Zxe which is the R,,, @ = 1, 2, 3, when 7 ~ —1 (y2S? < k¢); the simplest non-
-spherical solution of these equations is
7252

T A r e(x?+yH)+ ~ e—-" z?
= — A = e X ki —— f— .
12 . 12 4

2. Possibility of using the weak field method. The expression for 7 in the interior of
the star is

Near the surface of the star 7 ~ 10-3—y2 - 10-4° ie. it is a rather small quantity if
% < 1029 g-t cm? s—2, Itis easy to show.that all derivatives of 7 are also small at the surface.

5

The same can be shown for A.
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