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In this paper, the point of view is stressed that the total four momentum must primarily
be defined with respect to a certain set of spacelike hypersurfaces which do not intersect.
Each total four momentum defined with respect to a single hypersurface can then be handled
like a free vector under affine transformations of coordinates. It may be possible that the
total four momentum does not depend on the choice of a certain hypersurface from this set,
which means a conservation law. This set of hypersurfaces is the main ingredient of the frame
of reference. Replacing such a set of spacelike hypersurfaces by another, whose elements
intersect those of the former one, is in principle equivalent to changing the frame of reference.
1t is also, on the other hand, possible that certain sets of spacelike hypersurfaces be equivalent,
which means the principle of relativity. Then the problem is whether the total four mo-
mentum can be defined in the same way with respect to different frames of reference and
whether it behaves like a four vector under the invariance group of mappings between the
equivalent frames of reference. Not for all energy-momentum tensors the answer to this is
affirmative. Several examples are discussed. They demonstrate the difference between such
concepts as a transformation of coordinates and changing the frame of reference.

PACS numbers: 04.20.—q, 04.20.Me

I. Introduction

It is well-known that the total energy and momentum of a physical system can be
defined without any difficulty if the system does not disturb certain symmetry properties
of space-time in which the system is situated. This is realized for physical systems in Min-
kowski space-time. However, if such symmetry properties are not present, the total energy
and momentum can only be defined with respect to certain classes of coordinate systems.
But the total energy and momentum will not form components of a four vector if we make
a transformation from one such class to another. Confusion arises if there is no clear
understanding of what is the frame of reference (a certain set of observers) and how it is
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related to coordinate systems. It seems to be F. Klein’s merit [1] to have given a clear
distinction between these two different concepts. Certainly, F. Klein did not mention in
his paper explicitly that his intension was to explain what was a transformation of coordi-
nate systems and what, on the other hand, changing the frame of reference. The covariance
of certain integral quantities defined with respect to the given frame of reference is only
one part of the problem of “the total energy and momentum”. The other one is how to
define integral quantities with respect to different frames of reference. Here, the require-
ments of a certain principle of relativity can enter the problem. In frames of reference
which are equivalent in the sense of this principle, integral quantities should be formed in
the same way. And, moreover, these quantities should be the elements of a representation
space of the group which interrelates such equivalent frames of reference.

Some time ago transformation properties of the total four momentum were related
to the structure of physical systems. Some authors claimed that the total energy and mo-
mentum behaved like a four vector if the physical system under consideration was stable.
In the context “stable”” meant that certain integrals of the components of energy-momentum
tensor taken over space-like hypersurfaces had to vanish [2]. We will see that the v. Laue
theorem [3] quoted in this connection has, perhaps, quite another meaning, too. v. Laue
considered physical systems which allow one to compute the total energy and momentum
in the same way with respect to frames of reference which are equivalent under the principle
of special relativity. For being able to do so, derivatives of fields the physical system is
built from must tend to zero in a certain way if far away from the “centre”. Components
of the energy-momentum tensor enter the integral quantities in which we are interested.
Originally, only energy-momentum tensors were considered which were bilinear expressions
in the first derivatives of the fields. In the case of static fields, these derivatives behave
like r—2 (r — radial coordinate) for r — co. And then the components of the energy-mo-
mentum tensor behave like r—*. But in the theory of gravitation proposed by Jordan and
Brans and Dicke [11] an energy-momentum tensor was introduced which contained second
derivatives of the field variables, too. This tensor behaves like r—3 for r — co. In conse-
quence, the total four momentum cannot be computed in the same way in all frames of
reference which are equivalent under a principle of relativity. Perhaps, we can say that the
particle concept has a more restricted meaning in this theory than in the theories mentioned
above.

2. v. Laue theorem

Here, 1 would like to gather some ideas known as v. Laue theorem. Originally, this
theorem was formulated by v. Laue in the framework of the theory of special relativity
(SRT). In this paper, however, the theorem will be written in a form more suitable to such
theories like Einstein’s GRT.

The starting point is the assumption that there is a coordinate system in which time
derivatives of the components of the energy-momentum tensor density are zero':

£, =0. )

' Greek indices are ranging from 0 to 3 and Latin indices from 1 to 3.
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If a local conservation law holds
g, =0, (2
a consequence of (1) is
Qul = (x’(‘suk),k' (3)

In (3) physical systems are considered whose energy-momentum tensor differs from
zero only in a space-bounded region. Assuming the regularity of €,”, we obtain from (3)
as a result of integration over a certain spacelike hypersurface x° = const that

$,d’x = . @)
x0=const

So, v. Laue theorem can be formulated in the following way: There exist a Minkowski
coordinate system such that under the assumptions (1) and (2) the net sum of tensions, as
well as of the energy current density, taken at a certain time is zero.

But, in case the system considered is not space-bounded, at first we have

[ gjd’x = [ x'g}tdS,, &)

x0=const Vs

and in order to obtain relation (4), CSM" must again behave like r~@*® (¢ > 0) for r — o0.

3. Transformation properties of integral quantities — their independence of the choice of the
hypersurface

Let us suppose that there is a certain local conservation law
a1, = o. ©)

In the case of SRT, A, is the energy-momentum tensor density €, of the physical system
under consideration. For theories of gravitation, 2, is the sum of €," and of a term &,
which is a contribution from the gravitational field. For metric theories of gravitation,
this part is a tensor density with respect to affine coordinate transformation only.

In the framework of GRT, Einstein has considered the question of the existence of
integral quantities which are conserved. The assertion that the total energy and mementum
are time-independent means that some of the integrals of £,” do not depend on the choice
of certain spacelike hypersurfaces. Einstein made the choice-of coordinate systems which
was most suitable for those spacelike hypersurfaces. As a result of this, a clear-cut distinc-
tion between coordinate systems and frames of reference became obliterated. It is said
that this was the starting point for F. Klein’s papers.

A similar problem arises when you try to define the total energy and momentum of the
electromagnetic field of a charge distribution. The discussion of this question was continued
untill 1960, and even later [5], although Klein’s paper was published in 1918.

F. Klein considered only the mathematical aspect of the problem. It was the discussion
which went on for many years that made a little clearer what was the content of the prin-
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ciples of general relativity and of general covariance. In consequence, it has been understood
that the choice of a family of spacelike hypersurfaces means essentially the choice of the
frame of reference. According to the point of view taken here, the frame of reference
(a family of observers) is the congruence of timelike curves which covers the whole space-
time. The spacelike sections of this congruence by a hypersurface, which always exist,
define the moment at which observers do their measurement [6]. Then, it is clear that by
giving such a congruence of timelike curves and a family of spacelike hypersurfaces nothing
is said about the coordinate system which can be used for describing these two geometrical
objects. Surely, there will be coordinate systems which are more suitable for describing
them than some others [7].

We are mainly interested in transformation properties of integral quantities under
the global Loreniz transformation. Therefore we restrict the class of coordinate systems
to those we can consider as rectilinear in an affine space. Since we do not exclude the case
that space-time can be curved, perhaps the following remark is not needless here. We
suppose that space-time is a differentiable manifold which can be endowed with a metric
whose curvature is not zero and which is, besides that, endowed with an affine structure.
To simplify matters, we restrict the family of spacelike hypersurfaces in such a way that
it only contains hypersurfaces which are flat with respect to the second structure. With
the affine structure, there are given four constant vector fields the components of which
are K,* (A4, B, ... enumerate the vector fields and range from 0 to 3). Then a special coordi-
nate system exists in which

K/ =968, N
Together with (6), we also have
(KU, = 0. (®
(X,)
22
Zy
(X4)
Fig. 1

We integrate (8) over a four volume the boundary of which consists of three parts (Z,),

(X,) and Z (see Fig. 1). (Z,) and (X,) are subsets of two spacelike hypersurfaces ¥, and Z,,

respectively, and are connected by a subset Z of a timelike hypersurface. Then we have
| Kj“2u2ds,— | KL dy, +§ K, ", dE, = 0. )
(22) (Z1) z

Let us now suppose that 2" does not vanish only in a space-bounded region.
Then, 21," is equal to zero on Z. In this case, (9) means that the quantities

P(2) = | A)dz, (10)
(&)
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do not depend on the choice of the hypersurface. This remains also true when Z,; and %,
intersect. To prove this, we have to take a third hyperplane X3, such that (X;) does not
intersect both (Z,) and (Z,) and apply (9) to the two combinations (£3), (£,) and (Z3), (Z,);
see Fig. 2.

As a result of integration over a hypersurface Z, in a certain system of affine coordi-
nates. we obtain four numbers P,(X). We cannot ask what the transformation law of P (%)

2
(}:3}
oy 23
l AN
} \'\ (Z2}
| Y
| AN
|
|
i by
(5,)
Fig. 2

is, but must instead define how P,(Z) behaves when the affine coordinate system is changed.
A reasonable definition seems to be that P,(2) are components of a free four vector with
respect to affine coord’rnate transformations. This means

<

Pu(®) = = Pu(®). (1D

Because of the local conservation law (6), it does not matter which hypersurface Z is
chosen for computing P,(Z) with respect to a certain coordinate system. If there were no
local conservation law for Q1" we could yet determine P,(Z). But now, these quantities
would depend on the chosen hypersurface . And we could define the quantities P, (Z)
to be vectors with respect to affine coordinate transformations in this case, too.

As an explanation why we should define P(Z) to be the components of a free four
vector, one can point at the transtormation properties of 2,” with respect to affine coordi-
nate transformations. No matte: whether there is a local conservation law (6) or not, we
have
[ KJ,%dz, = | KU, dz, (12)

)

(Z )
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when replacing one affine coordinate system by another, because K,"Q dX, are four
scalars. From (12) we obtain

ox* .
J‘ Qlu x, = "EXT Iglu’ az, (13)
53} (I
or
, ox*
P2) = T P(2). (14)

So we get the transformed P,(2) by integrating the transformed Ql,,“” over the same hyper-
surface Z and transforming the result like a vector. This is rather trivial in the case when
the physical system is space-bounded. It is not so trivial in field theory where the fields are
spread over the whole space-time.

Let us now come back to the case when a local conservation law (6) holds and 21,”
differs from zero on a space-bounded region only. Then we have

PZ;) = P(Z)). (15

Furthermore, let us suppose that X, is given by x° = const’ and X, by x® = const, where
x%" is the time coordinate in an affine coordinate system {x*'} and x° is the time coordinate
in another affine coordinate system {x"}. Instead of (15), we can write then

of 043, ox" a( 043
Wod'x = = A,° dx (16)
x0:=const x0’ = const’
or
0 Lo o’ ,
P, (x" = const) = —— P,(x" = const’). {7
(3.9

Egs. (16) and (17) correspond to the requirements of the special relativity principle. The
two hypersurfaces x° = const’ and x° = const belong to frames of reference which are
equivalent under this principle of relativity. Then, this principle seems to require that physi-
cal quantities must be measured in the same way (here: projection of A,” on dZ, =6 ,°d*x)
with respect to equivalent frames of reference. Quantities obtained in this way in equivalent
frames of reference should be elements of a representation space of the group relating equiv-
alent systems of reference (here: vectors).

Let us stress once again: transformation properties of P, (X) are ccupled with changing
from one affine coordinate system to another one. But primarily they have nothing to do
with passing over from one spacelike hypersurface to another. If we choose a new hyper-
surface which intersects the former one, this means essentially that we changed the frame
of reference. In this latter case we have to ask whether there is a tensor relaticnship between
quantities which are measured in equivalent frames of reference in the same way.

I have already pointed out that we have started from an 21" which vanishes outside
a space-bounded region. For field theories, this is in generzal not fulfilled. In this case one
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has to be cautious. Although Einstein says in [4] that the components g,, of the metric
tensor shall be constant outside a certain space-bounded region and that the energy-
-momentum tensor is zero there, it should be understood, of course, that he has in mind
a system which is put into the Minkowski space, that means g,, # 1#,, is spread over the
whole space-time, but g,, — 7, far away from the “centre” of the physical system. It seems
that F. Klein interpreted this statement of Einstein too literally and did not take into
account that 21" is not identically zero outside a space-bounded region.

Our starting point is again that a local conservation law (6) holds. If 21" is not identi-
cally zero outside a space-bounded region then (depending on how 2" and/or its deriva-
tives tend to zero at large distances from the “centre”) the quantities

oz, (18)
z

where we have to integrate over the whole hypersurface X, can depend on X. If the two
hypersurfaces 2, and 2, do not intersect, the volume of the timelike hypersurface Z behaves
like 72 for r — oo. In this case, 2, has to approach zero like r~?*% (¢ > 0) to assure,that
the integrals (18)\do not depend on the choice of non-intersecting hypersurfaces.. If we
choose such a coordinate system that the family of hypersurfaces x° = const coincides
with the family of spacelike hypersurfaces 2 of the chosen system of reference, then this
independence of the choice of a hypersurface in the integrals (18) expresses the time inde-
pendence of
P(x° =const) = [ A . (19)

x0=const
Now, we can proceed as described above. We attach the quantities P,(x° = const) to each
point of the affine coordinate system and transform them like a four vector when passing
over to another affine coordinate system:

A

Y —_ [ —
P,(x” = const) = Ewrs

P,(x° = const). (20)

Let us stress once again, this vector field can depend on the choice of the family x° = const.
As above, also in the case when 21" does not identically vanish outside a space-bounded
region, we have

P,(x*=const)y = [ A,7dz,. (2D

x0=const

Now, the question is again what is the relation between the quantities

P,(x®* =const) = | A0 dx (22)
x0 = const
and
P, (x* =const) = | AV, (23)
x0* =const’

which are measured in the same way with respect to equivalent frames of reference. In
order to obtain the relations (16), (17) also in the case when (" does not identically vanish
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outside a space-bounded region we must require that the integrals (18) do not depend
on the choice of a hypersurface, no matter to which family it belongs. To deal with this
situation we take again a hypersurface X, which does not intersect both ¥, and X, (see
Fig. 3). If we want the relation
fards, = | Ardz, 24
pX )
to be valid, we must require that (18) taken over the timelike hypersurface which connects
(Z3) and (Z,) approaches zero for r —» 0. Now, however, dX, behaves like 73 for r - ©

2,

Fig. 3

and, therefore, 2" must behave like r~®*® (x > 0) for r — oo. If this is assured, relation
(24) holds also for the combination of X3 and X,, and, in consequence, also for X, and 2.

So we see that for proving the time independence of P,(x° = const) all we need is
that 20, behaves like r™?*® (a > 0) for r - 0. To prove, however, that P,(Z) can be
determined in the same way with respect to equivalent frames of reference, we need more:
2" must approach zero like r™?*9 (¢ > 0) for r — c0.

Now, once again we start with (23) and express the integrand in terms of such A,
which follow from 21, as a result of a special global Lorentz transformation (a special
affine transformation). We have

<= Uy X0 = Uyt
I *=x%, xX*=x%  x=--——") (25)

and

(26)
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This gives

2
. , v
P,(x% = const’) = f A,° \/1—7 d*x

x0’ = const’

ox* 1
=‘a§~'[ J Ql”°d3x+% J Qlu‘d%c]. @7

x9" =const’ x0"=const’

Here we have to take into account that integration is taken over the hypersurface
x% = const’. This is not influenced by changing the integration variables. If 21" depends
on x°, we have to choose x°(x*) in such a way that (x°(x*), x*) is a point on the hyper-
surface x° = const’. Only in the case when 2l (x*, x°) does not depend on x°, we can
pass from x% = const’ to x® = const in the second line of (27). Then, in order that
P (x% = const’) could be measured, with respect to the frame of reference to which the
coordinate system {x"'} is adapted, in the same way as P,(x® = const) with respect to the
frame of reference to which the coordinate system {x*} is adapted, we must have
| A} d’x=0. (28)
x0=const

Sometimes ([2], {[8]) one can read that if (28) is fulfilled, then P,(2) is a four vector.
We have seen that (28) is not related to the transformation properties of P,(X) provided
we restrict ourselves to transformations of affine coordinates. Eq. (28) is rather a require-
ment of the special relativity principle.

Of course, (28) reminds of v. Laue’s theorem. Therefore, let me examine the presump-
tions which lead to

axt

x0*=const’ x0=const

. . ox*
P,(x* = const’) = J AL dx = ; j A,0d%x

ox* 0
= - P (x” = const). (29)
axt

In (27) we have used only the definition of P,(x® = const) and the transformation prop-
erties of QI“,”' (x%). Especially, we did not ask whether there is a conservation law. We
were led to (28) by supposing that 2" does not depend on x°. On the other hand, if a con-
servation law holds, then the assumption that 2,%,, = 0and 2,* behaveslike r~®*“(a > 0)
for r - oo implies

| Yjd@x =0 (30)

x0 = const

In this case nothing is said about the time dependence of 21,*. Here, I do not intend to an-
swer the question whether these requirements are all independent and whether they mean
a further restriction on A,”. I remark only that (28) is fulfilled as a consequence of v.
Laue’s theorem.
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4. Examples

a. Electromagnetic field in Minkowski space-time

The question whether the total energy and momentum of an electromagnetic field
form a four vector, was discussed for a long time [5]. In this case, we have
Pu(x” =const) = [ pZ,0d, (31)
x0’=const’
where &, are the components of the energy-momentum tensor density expressed in terms
of the field strength tensor F,,,, in the well-known way. In [2] you can find considerations
similar to those you have read here in connection with (25), ..., (28). There you can read
the conclusion that gP,(x% = const’) is a four vector, if
| &fdPx=0 (32)
x0 = const
holds. The question of time dependence of ££,” was not discussed there, but it seems to
have been implicitly supposed that ¢&,”,c = 0, because the authors had in mind a particle
model and thought of the Coulomb field. According to our discussion here, itis clear that
(32) is not needed for the proof that zP,(x° = const’) are the components of a four vector
with respect to affine coordinate transformations. If we choose a family of spacelike hyper-
surfaces to which the coordinate system {x*} is adapted, which means that the family
of hypersurfaces is given by x% = const’, then gP,(x° = const’) are from their definition
components of a free four vector with respect to changes of the affine coordinate system.
On the other hand, (32) makes sure that gP,(x° = const) can be calculated in the same
way for all frames of referer.cz which are equivalent under the special relativity principle.
If there is only the electromagnetic field present, then we will have ¢£,”, = 0 and if the
Maxwell equations had had a static regular solution (which, of course, is rict the case)
which had behaved like the Coulomb field for r — oo, then (32) would have been automati-
cally fulfilled. In the case when there is another field present besides the electromagnetic
one, we have, in general,
2., #0 33)

and gP,(Z) is a free four vector which depends on the choice of the system of reference [5].
In this case, it is not possible to change the affine coordinate system and calculate P, (X)
in the same way as it has been done in the former case using the frame of reference to which
the coordinate system {x"'} is adapted now. From the point of view suggested by the
special relativity principle, the meaning of this result seems to be that it is senseless to split
the total energy and momentum of a more complex physical system into various parts.

b. Energy-momentum complex of GRT
In the framework of GRT C. Mgller [9] has discussed the energy-momentum complex
7, defined by
Lg—uv = Ju o 34

ve __

v —8 va
X = _Xue = T(gua,ﬂ_guﬂ,a)g ggﬁ. (35)
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It is worth mentioning that Lorentz took into consideration this energy-momentum com-
plex a long time ago [8] and that his paper was known to Klein [1].
Because of the antisymmetry of x,”, the relation

17wy =0 (36)

is fulfilled identically.
The total energy and momentum with respect to the frame of reference to which the

coordinate system {x*'} is adapted is defined by

P, (x° = const’) = T 2 d¥x.

Lhw x°’={ons£’ L (37)
I will consider only such physical systems for which a coordinate system exists that
Xu' 5o = 0 assuming that this coordinate system is an affine one. At large distances from
the matter which creates the gravitational field the line element can be written in the
form

2M 2M
dSz == (1 —'-';—) dtz bt (l +T) 6kldxkdxl’ (38)

In [8], an argument similar to that given here (see formulas (25) to (28)) is meant to be
a proof that (28) is a necessary condition for ; P, to be components of a four vector. As has
been already frequently stated here (28) means really something different. Formula (28)
must be fulfilled if one wants to be consistent with the requirements of the special relativity
principle. The quantities ; P, must be calculated in the same way with respect to all equiv-
alent systems of reference. We can simply accept the definition that P, (x® = const),
being originally calculated by integration of (7 ,,"" in that system of reference to which
the affine coordinate system {x“'} is adapted, is a four vector. This means that in another
coordinate system {x"} ;P (x° = const’) is given by
An

T P, (x” = const’). (39)

LP,(x% = const’) =
This statement is completely independent of (28). But if (28) does not hold, then the total
Jour momentum vector with the components | P,(x° = const’) will in general not be equal
to the vector (P, (x° = const) that is the total four momentum vector with respect to the
system of reference to which the coordinate system {x"} is adapted.
Taking into account (35) and (38), one gets [8]

| W)t dx= | xtdx=§y%dS, #0 (40)
x0 = const x0=const
and so the energy-momentum complex (34), (35) really satisfies the statement which is
printed above in italics. If we, however, start with v. Freud’s superpotential A, [10]
defined by

" v 8ua va @
b= = = B [ ) (6 = g, (v
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and with the energy-momentum complex
6, =h",, (42)

then (28) is satisfied. From the point of view dictated by the special principle of relativity
6,” is a “better” energy-momentum complex than {7 "

In [2] you can read that (28) means stability of the physical system considered. If this
had been true in general, we would have concluded that, in GRT stability depends on
which energy-momentum complex we choose. But this is nonsense, since physical proper-

ties like stability of a system cannot depend on the mathematical description used.

c. Scalar-tensor theory of gravitation

We start with the representation of the theory [11] in which the weak equivalence
principle is satisfied. The “Einstein” equations then read

R ) R—-gan"-i-w(wp‘“" a)+1(
33 2 guv - (,‘4 1/) " 1/)2 ‘l’ 2 guvq)aw w y”;m‘ gm[]w) (43)
The scalar field v, which can be interpreted as analogous to the gravitational coupling
“constant”, is an additional degree of freedom of the theory. It is well-known that the
Einstein tensor density may be written as

\/:.g (an_% 5#VR) = kuvg,e'_fuv' (44)
Then, as it follows from (43),

87[ v §Vv « \ 1 5 v 2 v v ¥y p
";Z‘ gp + ‘/’Tu + ;}7 (’Pu‘/’ -7z ()u Y ¥ )+ Yo _5;4 D‘P = hu Q,ng: (45)
which, in general, does nof mean that the quantity
pet wc? )
szl )(Z) = J‘ljguv'*' 8;’[’ fuv + é}; (%'Pv _% 5uv%w’) + w;uv - 5MVD "/’J dEv (46)

P

in conserved. If the integrals in (46) were defined, that means were finite with respect to
a certain affine coordinate system, we could define Pf,”(Z) to be the components of a free
vector with respect to affine coordinate transformations. In general, this free vector would
depend on the chosen hypersurface and there would be only one affine coordinate system
in which P‘(‘”(Z) is calculated as described in (46). For each other affine coordinate system
we would obtain

v

0x
P,Y(5) = ox* PV(2). (47)

There is, however, another possibility of defining the total energy and momentum in the
scalar-tensor theory of gravitation. At first sight, this possibility seems to be quite satis-
factory, but soon, it discloses some oddity of the scalar-tensor theory of gravitation.
According to the idea of this theory, the scalar field y is created by local and cosmic matter
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distributions. A consequence of this is that u does not approach zero for r — o0, but
it tends to 1y, the value of the cosmic ccalar background field. We shall see below what
it means.

From (44) we get the local conservation law

["83" a0+ — (=0T )] G
&y T 2 Yu¥ 7 Op V¥ " Y w LY ’v— ) (48)
where 87/(c*y) is the effective coupling “constant”. Now, we multiply (48) by 1/k,, where x,
is the value of this coupling ‘“‘constant” at a certain point of space-time inside the local
physical system under consideration. Then, we define

8n 1 1 w
P(Z)Z':: ._.h_gv*___v_{__m ‘,-_1_5" .
w (2) . j[041/) Ko " KOT” Kowz(w;zw 3 0, ¥, ¥")
X
1 .
+ ;—(w;u -6, y) 14X, 49)
0

and look upon P{?(%) as being the total erergy and momentum. The procedure follows now
the lines as described above. We define P{?)() to be the ccmponents of a free four vector
with respect to affine coordirate transformations. Frcm the linear approximation which
holds at large distances frem a local non-radiating physical system, reglecting additiorally
the variability of the cosmic scalar backgrourd field y,, it follows that P,(‘z)()?) do not
depend on how X is chosen from a set of non-intersecting spacelike hypersurfaces. In this
case, the first derivatives of all fields behave like r~' ard the secord cres like 2, at least,
for r - c0. But, even though we have the conservation law (48), we cannot conclude that
PP(X) and PP(Z"), where ¥ and X' belong to two different families of non-intersecting
spacelike hypersuifaces, are numerically equal. To cbtain such a result we need the ex-
pressions

Sn 1 l<yld v w v i s v (3 l v NI 4

"CZ 'q)‘*’u +fu + —1/-}5 (’P,ﬂ/) —5 0, Py )+ _1; ("/J;u —0, [:]1/)) (50)
to behave like r~©*® (« > 0) for r — . However, » tends to y, # 0 and the sccond
derivatives behave like r~3 for r — oo in the case of non-radiating systems. So, it is the
last term in (50) which makes that P{)(X) depends on the choice of the frame of reference
and cannot be calculated in the same way (given by (49)) for any equivalent frame of
reference. Of course, we can make a choice and calculate with respect to a certain family
of hypersurfaces in the way described by (49). The value of Pf,)(Z) is then a linear combina-
tion of the numerical values of P{P(Z). We cculd do the same with respect to a family
of hypersurfaces which contains X’. But then P(2') would, in gereral, not be equal
to P{(Z) nor to the mentioned linear combinaticn of P(2). This seems to indicate
that the concept of the total energy and momentum is an idea lecs meaningful in the scalar-
-tensor theory of gravitation than in GRT.



The final version of this paper was prepared during my scientific visit to Warsaw in
May 1980. 1 am thankful and very obliged to Prof. A. Trautman, Dr S. Bazafiski, and
their colleagues at the Institute for Theoretical Phasics of the Warsaw University for their
help and hospitality extended to me then.
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