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The convergence of the linked graph expansion for the binding energy of “°Ca is
discussed in the 2#w model space. 1t is found that when the lowest energy of the 2#w states
matrix is above the closed shell energy the expansion can be always made convergent. Under
this condition, the first few terms of the expansion can be used to approximate the full
result even if the expansion is not convergent.

PACS numbers: 21.10.—k, 21.10.Dr

1. Introduction

The properties of the perturbation expansions in the nuclear shell model have received
much attention in recent years. The pioneering calculations of the nuclear energy levels
by Kuo and Brown [1]and by Barret and Kirson [2] have been followed by formal investiga-
tions of the convergence properties [3, 4]. In particular the role of the intruder states has
been pointed out [3} and different methods of removing divergences have been suggested
[4-6]. Most recently, the convergence of the Brillouin—-Wigner expansion has been studied
{7] and a shift of the unperturbed spectrum has been shown to improve the convergence
of the expansion.

Recently the convergence of the linked graph expansion for the energy {8] and the
radius [9] of ground state of #*°Ca has been investigated numerically in a model space of
0-2hw excitations. Using the inversion technique analogous to the Q box approach of
Ref. [4], it was possible to obtain a closed sum of the expansion, which in turn has been
compared with the first few terms of the expansion.
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The existence of the closed sum allows us to give a rigorous discussion of the conver-
gence in this model case. In Section 2 we derive conditions for the convergence in terms
of the lowest eigenvalue of the 2hw energy submatrix and of the shift of the unperturbed
spectrum. When the expansion is convergent its sum is equal to the closed sum. Next
we derive limits for the exact energy in terms of the first few terms of the expansion, which
are valid even when the expansion diverges. The discussion is given in Section 3.

2. Derivation of the conditions for convergence

The linked graph expansion in the space of the 2w excitations of Ref. [8]

H02H20 H02V22H20 1_102V22V22H20
4E = — et
a a a

has the closed sum
AE = _H02(H22)—1H20’ (I)

where HY are submatrices of the energy matrix
HOO H02
H = <H20 H2? ) 2)
The superscript © denotes the closed shell state and the superscript ? stands for the group
of states (175 in #°Ca) with 2hw excitations. We have

HO0 = 0’ H°2 = V02, H?° = Vzo’ H??2 = sz_a’ a = _zhw’ (3)

where the closed shell energy H°? is assumed zero. The linked graph expansion is obtained
by expanding AE of Eq. (1) in the powers of (1/a). Equation (1) is further discussed in the
appendix.

We shall now derive conditions for the convergence of the expansion in terms of the
eigenvalues of the submatrix H?2. We have

H?%* = (VP2 —ap® = (A —a), k=1,2..175 4)

where o* are eigenvectors of H22 and #* = #*—a are the corresponding eigenvalues. The
%5 are the eigenvalues of V22, We have then for 4E of Eq. (1)

dk 2
AE = K%k, (3)
ad— A
k
where
d* = H?*®- v (6)

Expanding in (1/g) we obtain the linked graph expansion

=] 1 - lk r—2
AE = Y AE,, AE, = — 2 (d")? (_—) @)
r=2 a a

with AE, being of order r in the potential V.
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The necessary and sufficient conditions for the convergence of the series in Eq. (7) are
[A¥ < |a| for all k, or Al < la] and |24l < lal. (8)

We assume that d*, and d%,, are different from zero.
As discussed in Refs. [7, 8] and [10], the convergence can be improved by subtracting
a constant s (4, in notation of Ref. [8]) from a and from ¥'?2. With this shift Eqgs. (7) will

become
d 1 s\ 2
AE = Y E, AEl= — E (dy? (-——) . (7a)
= a—s a—s
k
The conditions of convergence are now
,S—‘lmin! < ls_a‘ and Is—j‘max! < !S—al' (Sa)
There is no solution to Eqs. (8a) if

Ain < A < A &)
If
}“min > a (10)

Fig. 1

one can see from Fig. 1 that conditions (8a) are equivalent to

Amax+ @
s> Tl 1
3 (11)
din -+ |
g > fminTE (12)

2
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Only condition (11) needs to be used because (12) follows from (11). Condition (10) can
be written as

Amin— @ = Ny > 0 = Hyo = closed shell energy, (10a)

which says that the eigenvalues of the energy submatrix H?? must be greater than the closed
shell energy. Under this condition, one can always find such an s (according to Eq. (11))
that the shifted linked graph expansion of Eq. (7a) will converge.
Next we shall derive limits on AE in terms of the first few terms of the expansion.
Consider the partial sum from Eq. (7a)
A4S, = Y AE, n>=2.
r=2

Using the identity

we obtain for AE of Eq. (5)

(dk)l ;tk___s n—2 a—s
AE=a5- = ) oo\esy) oo
k

When a < Ay, and » is even all terms in the sum are negative and

{AE—AS,_ | < C*|4ES], (13)
where
a—s 2hw+s
C'=Max| - | =| 75—
k a-—A 2’lw+/'min

Equation (13) has been derived assuming a < A, for all even #» == 4. Under the addi-
tional assumption s > a one can extend Eq. (13) to the case of n = 2

0 > AE > C°AES,. (14)

The proof of Eq. (14) is easily obtained by direct substitution of 4E, 4F; and C* from
Eqgs. (5). (7a) and (13) into Eq. (14).

3. Discussion

Our main result about the convergence of the expansion is condition (10) which can
be written as

Jpin =@ = Hpiw > 0 = Hyo = closed shell energy, (10a)



287

which says that the eigenvalues of the energy submatrix H2? must be greater than the
closed shell energy. Under this condition, one can always find such an s (according to
Eq. (11)) that the shifted linked graph expansion of Eq. (7a) will converge.
Condition (10a) is quite similar to one obtained by Schucan and Weidenmiiller [3]
which is often stated as the condition about the intruder states. The difference from (10a)
is that in Ref. [3] the inequality is between the eigenvalues of the full energy matrix H
and not between the eigenvalues of the submatrices. We think that the difference arises
because we truncate the expansion to the 2he states. Otherwise ours is the special case,
with only one state in model space, of the more general situation considered in Ref. [3].

TABLE I

Some terms and sums of the linked graph expansion from Ref. [8] in MeV

i
I

|

o = 10.41 MeV | Linked graphs Partial sum  Sum Eq. (1)
G.#0 Ty T T T T T o k=6 AE
AE, | AE; 1 AE. | AEs | J4Es |
. i 43’-.. § t _ ; :
5= 0 | —21.90 200 | —5.45 333 | —3.82 —25.84 —24.07
s == hin | —14.60 | —398 | -—2.64 | —1.20 ‘ —0.75 —23.17

As an example we apply conditions (8), (10) and (11) fo the case considered in Ref. [8].
The case we consider is one with @ = —2hw = —20.83 (b = 2fm) and G, # 0. The linked
graph contributions for s = 0 and s = hw are given in Table I. We compute the eigen-
values of V22

Ioin = —T35MeV  and A, = 27.3 MeV.

According to condition (8) the expansion will not converge in the s = 0 case. However,
for s = iy = 10.41 MeV conditions (10) and (11) are satisfied and the expansion will
converge. We have proved thus the conclusions of Ref. {8], which were obtained from the
inspection of the first six orders of the expansion and of the expansion sum.

The even terms in Eq. (7) or (7a) are coherent sums of negative contributions and
should be negative and on average larger than the odd terms, as can be observed in Table 1.

We observe in Table I that the second order term alone is a good approximation
to AE in the case when the expansion does not converge (s = 0). The possibility that the
first few terms of a diverging linked graph expansion can give a good approximation to
the full answer has been considered by Schucan and Weidenmiiller [3] for a more general
model problem. They conciuded that this is not very likely to be correct. In our model
case we proved Egs. (13) and (14) which show that the first few terms of the expansion
can be used to approximate the full result even if the expansion diverges. As an example
we apply Eq. (13) to the first six terms of the diverging expansion in Table I (s = 0 and
n = 6) to obtain AEx —224+6 MeV in agreement with 4AE = —24.07 MeV.

Thus our result seems to provide a justification for adjusting parameters in a formalism
so as to suppress the last computed order of the perturbation expansion, even if the terms
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in the following orders become large again. Eq. (14) which uses only 4E; provides a weaker
limit. For s = 0 we obtain AE 2 —34 MeV.

The sum (1) for AE derives its physical meaning from the convergence of the linked
graph expansion. One could ask if AE could be obtained from Eq. (1) or Eq. (5) when
the condition (10a) is not true and the linked graph expansion does not converge. We
suggest that this is not possible. When 4_;, < a sum AE in Eq. (5) is very sensitive to small
changes in eigenvalues A* which are near to @ and consequently it is very unstable with
respect to small changes in the potential V.

Similar considerations apply to the convergence of the linked graph expansion of

2 .. The sum of the linked graph expansion truncated to 2fiw space is [9].

rms-

r
ArZ — 2R02(H22)—IV20+(2b2,,A)V02(H22)—2VZO’ (15)

where R°2 has as components the matrix elements of r? between the closed shell state and
the 2hw states, b is the oscillator constant and A is the number of nucleons. Only H?2
depends on a and therefore the conditions of convergence for 472 are the same as for AE.
The first term in Eq. (15) will converge faster than the second term. For b = 2 fm A#?
= —2.03fm2 as compared with r2; = 12fm2

APPENDIX

That expression (1) is indeed the linked graph expansion in the space of 2hw excitations
may be shown as follows:

The linked graph expansion illustrated for a closed shell system in Fig. 2 can be
written as

H02I120 H02V22H20 1_102‘:/22‘/221120 ‘
= + e (A1)
a a a

()L HE R B’
Fig. 2. Closed shell linked graph expansion for the ground state energy including all 24w excitations
(all exchange and topologically equivalent graphs implied)

AE

since in this space expression (Al) involves no unlinked graphs. Define

GZZ = Ml_ (1122+v'22622)
a

(A2)

a

I

i 22 1/722 I//ZZ}/ZZ V22V22V22
T A A AN AR A AR
a a a

In terms of G?22

AE = HOZGZZHZO, (A3)
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but from Eq. (A2)
<1[22__ Xﬁ) GZZ — I_Iz_z
a a

”22 ”22

ST
a

Substitution of expression (A4) into (A3) yields expression (1).

implying

(AD
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