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On the grounds of the BPHZ procedure, the criteria of correct regularization in per-
turbation calculations of QFT are given, together with the prescription for dividing the
regularized formulas into the finite and infinite parts.
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1. Introduction

In order to avoid infinite results in perturbation calculations of QFT, we must regu-
larize the distributions coming into indefinite products and after all calculations we have
to “take off” the regularization.

Up to now many methods of regularization were worked out [1-6]. For each
method we have to compare separately the finite results with the results given by the
R-operation in the BPHZ procedure [7-9]. This procedure, in principle, may be used
instead of any regularization [10], but in practice we often use regularization.

In this investigation we look for a simple, easy to check and universal criterion satisfied
by any correct regularization. The second question we deal with, lying close to the former
one is how to define the so-called infinite part to ensurc consistency with the BPHZ pro-
cedure.

2. The BPHZ procedure

In order to fix the notation we report on the main steps of the BPHZ procedure.
In the classical approach [7, 10] the R-operation is performed on the expression given in
the so-called a-representation i.e. the propagators are represented by the expressions

%
(pz—mz—{'is)wl = j‘etas(p~—ml+r'a)da’ (21)
[
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thanks to which the integrations over the internal-momenta are of the gaussian type. For
a given diagram with / internal lines, after these integrations we obtain an expression
proportional to

!

e =R
I(k) = do, ... doyD” “(a) exp] i —i a(m;—ie) |, 2.2)
D)  /

j=1

@ = a,, ... o (the set of variables a;), k = the set of external invariants, where D(«),
as usual, is the sum over all the trees of the diagram from the products of a-s connected
with lines being absent in the tree, whereas A(«, k) is the sum over all the 2-trees of the
diagram from the products of a-s absent in the 2-trees, each product multiplied by the
“squared”’ sum of external momenta coming into one part of the 2-tree. The ultraviolet
divergences are “‘shifted” to the du-integrations: the denominator D?(«) in the integrand
may possibly lead to some singularity in the lower limit of integration. This singularity
may appear when we have to deal with a loop in the diagram. In building any tree we have
to drop a line (or lines) from this loop, so in each product in D(«) we have some a-s con-
nected with the lines of the loop. When these a-s are zero simultaneously, D(«) is zero.
As we know, this singularity may be ostensible, when the loop contains a sufficiently large
number of lines. In every case, when the singularity is essential for the dx-integrations
we must perform the BPHZ procedure or we have to regularize the integrand.

The BPHZ procedure is based on the following: every differentiation of the integrand
of (2.2) with respect to the external momenta k lowers the order of the possible pole in
«-s, because the index A(x, k)D(a) is a homogeneous function of the x-s of the order
(+1) (every tree contains one line more than every 2-tree). Thus, if the singularity appears
only when all a-s are zero simultaneously (there are now divergent subdiagrams) it is
sufficient to subtract from the integrand some first terms of its Maclaurin expansion with
respect to the external momenta. In the case when the diagram contains divergent sub-
diagrams a similar operation must be first performed with respect to these subdiagrams.
So, for I(k) given by (2.2) we have the classical definition of the R-operation in the form

RI(k) = [i—Mm_;wo] {i—M%grk)]I(k), (2:3)

where I’y ..., I', is the set of divergent subdiagrams of the diagram I' (containing, if neces-
sary, the whole diagram I') and the operators (1 — M) realize the subtractions mentioned
above'. The index

w;

5= L —2(n;~1) (24)

is the “highest power” of invariants in subtracted terms, where /; is the number of lines
and #»; the number of vertices in I';.

! Formally, expression (2.3) is not well defined since I(k) is not defined. Sometimes the regularized
expression Ireg(k) is considered [11], but the right-hand side of (2.3) may be understood with subtractions
performed before integration as well.
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The inductive structure of the R-operation was the difficulty to overcome in proof of

the finiteness of the right-hand side of (2.3) [7, 8].
The most simple proof was given by Zavyalov. It was based on the formula [10, 11]

. s (AB K
RI(k) = jj dae™ T am IOy [D (Pe mm] (2.5

where

2(1,,—u,,+ 1 (2.5)

e g

B; = w; in the case when the line (i) does not enter into the composition of any divergent
subdiagram I';. f; = k, ..., k,o; when the line (i) belongs to divergent subdiagrams
r,..,r,.

In (2.5) the subtractions in the variables k and in similar variables of the subdiagrams
are replaced by the subtractions in the variables « realized by the operator M,. Thanks
to this the integrations over external momenta of divergent subdiagrams are independent
of the subtractions.

A single operator [1 — M(I'))] cancels the infinity arising when all parameters o; connec-
ted with the subdiagram I'; are zero simultancously. The action of this operator may be
substituted by the following operations?: proper regularization of the subdiagram I,
separating and removing the infinite part and finally, by taking off the regularization in ;.

3. Regularization

We want to answer a question “What does proper regularization mean?”

We consider a diagram I from which all singularities connected with divergent sub-
diagrams are removed by suitable operators [1— M(I';)] and only the possible singularity
connected with the whole diagram I' remains (I may be a part of some bigger diagram).
As we know, the singularity, with which we possibly have to deal, arrives when all the
parameters o of the diagram [” are zero simultaneously because of the presence of the term
[D(B)]? in (2.5). Of course now I' does not belong to I, ..., T,.

Let us separate from the integrand in (2.5) the part depending on the variables o

. (ALK
e EHCETID T gy DB, (3.1)
We perform a standard change of variables
aj == }Léj, /:. [ [0, w},
J=lolL el 1], Y& =1, 3.1
J

Y@
3G, &)

2 We do not discuss overlaping divergences.
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Now, 4 = 0 is our singularity. The function D(p) is proportional to A¢™"*! (a tree con-
tains n—1 lines)

D(B) = 27" DAk, &), (3-2)

where A(k, &) may be zero when some sets of x-s and £-s are zero but, according to our

assumption, these singularities are removed by the operator M, for subdiagrams. M, is

an operator analogous to M, (2.5), but without I in the set I’ g cos T
From (2.5), (2.5"), (3.1) and (3.2) we have

r

R'I(k) = [fd¢, ... A&, M [A™XQ) | dA(L, K, 1), (3.3)
4]
where
AGR .
f6, k,A) = premel 4 Do) e"tl.i;Cj(mj ~iz) (3.3)
/1*5,+1

and the set of variables { is created from & in the same manner, as the variables B are created
from a (see the definition after (2.5)).

The integral over A is singular in the lower limit if v, = 0.

From the definition of A((, k) it follows that every differentiation of f({, k, A) with
respect to some invariant of the set k introduces A into the numerator of the integrand,
so the expression

o131 Atm

a;cf(C, ka 2’) = . _M'f(é’s k’ '{)’

wr
t = — +1, 34
E 3 (3.4)

i=1

(k; ..., k,, denote any subset of invariants k), is integrable over A, which is the basis of
BPHZ procedure.

The alternative solution (with respect to BPHZ) is regularization. We can look for
some function &(¢, k, 4, y), where

lim ¢l k, 4,7) = J(§, k, 4) (3.5)
?70

(at least in the sense of point-wise convergence with respect to the variable A for 4 # 0),
and the pole A = 0 becomes integrable (e.g. the analytical [3, 5] or dimensional [4, 6]
regularization) or is removed from the domain of integration for y # y,.

After integration over 4 is performed

g dip(, k, A, y) = F(&, k, v), (3.6)
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we have to separate in F({, k, y) the “infinite part” S({, k, y) singular for y = y,

F& k,y) = SE&, k, y)+ao(&, k)+ N, k, y), 3.7

where
N(C, k: Y)|7=yu = [al(z:’ k) (V")’o)‘i'az(c, k) (Y“)I%)-F "']y=yq = 0’ (3'7,)

and to remove it (formally, by introducing a suitable counterterm into the lagrangian).
Putting y = y, gives the finite part ay({, k).

Without any additional requirements, the division of F into the singular S and non-
singular @o+ N parts is non-uniquely defined. Namely, we can write

F=S+n k—n( k)+ay+N, (3.8)

where n({, k) is an arbitrary function, then remove S’ = S+n and obtain a new finite
part ao—n. These additional requirements can be found on the grounds of the BPHZ
procedure, what will be discussed in Section 4.

4. Correctness and uniqueness of regularization

The regularization leads to a proper result if two requirements are satisfied:

1. the method of regularization (the function ¢) is chosen properly,

2. the separation of the infinite part is properly realized.

We want to show, how the BPHZ procedure fixes the criteria of satisfying these two
requirements.

The effects of regularization and BPHZ procedure coincide if

ao(k) = Oj droyf(k, ), 4.1)

where 0} is defined by (3.4).
Let us take y # 4 and differentiate both sides of (3.7)

S, b, 1)+ ko, D)+ AN, k. y) = g didi(C, k, A, ). (4.2)

Let us assume also

lim | didip = | dAdsf. (4.3)
y=v0 0 0
Then
Y0 0

3 Writing ¥  yo we mean y belongs to the area, where the integral (3.6) is well defined.
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and to satisfy (4.1) the necessary and sufficient condition is

lim 0S¢, k,y) =0 “4.5)
7?70
and the sufficient condition is
S&, k,y) = 0. 4.5

So, if (4.3) is satisfied, the regularization is correct and the separation (3.7) is fixed
by (4.5) or (4.5') up to some additive function n({, k) (cf (3.8)) satisfying

i, k) =0

for every operator 95 defined by (3.4).

However, in the case when (4.3) is not satisfied, no prescription for separating can
be given — the regularization is incorrect.

To satisfy (4.3) it is sufficient (but not necessary) for the function &3¢ (treated as a func-
tion of 4) to be uniformly convergent to d;f when y — 7y,.

5. Examples

5.1. The analytical regularization

The analytical regularization applied to propagators Ag(p)

a0

Aep) = 5 = [ dnerrmrrion 5
F 2_m®+ie i
(1]
A reg(P) = —1—- = doo?™ ! gP? T H i) (5.1)
i (p*—m?+ie)’ F(y)

gives

k) = j]’ do, 'doz
fre [1"( T

x D™ *(a) exp [i il%—)k—) ~i Z J(m 18)] 5.2)
instead of (2.2).

Changing varidables according to (3.1") we obtain

(k) = . H drds
gy JANt G rgtoy gty

i

x D73(&) ex [ Ag’;;) 25(;1; ;5)] (5.3)
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We assume @ > 0. For Rey > 1 the term A”7! removes the singularity from the
integration over A whereas the product &~ 1 ..., &} is responsible for removing the sin-
gularities from subdiagrams of the diagram [I'.

We have to take off the regularization for each subdiagram separately to avoid “inter-
ference” of terms proportional to (1 —y) with the singular terms of different subdiagrams.

We assume our regularization to be correct for all divergent subdiagrams and replace
the product &7 1 ..., &77! by the operator M, (3.3), which results in

i , 3
LK) = ——— j déM, [A 20 f dAg(l, k, 4, 7)] , (5.4)
[rol :
where
DI Ay = A7 VT2 exp [i 468, S £(m j—is)]. (5.4)
L- D) ya

The integral with which we have to deal is of the form

Jd'l fi{” GHK+inh (5.5)
0 0
where
~ wr _AGH) N
o =I(y—D- ER W) z &;m;. (5.5

As we know, the integral (5.5) is definite for Red >0 <= Rew, <0 (with y = 1)
and in these cases the regularization is not necessary: after the possible singularities in
subdiagrams are removed, the whole diagram is finite.

We have to check, whether the condition (4.3) is satisfied. In the notation of (5.5) the
function f (cf. (3.3")) is of the form

Sk ) = SR 5.6)

A 2

The differentiation &% would introduce A2 'to the numerator of (5.6) — the singularity
in A = 0 would disappear. The differential 8¢ is also a regular function of 4 and tends

uniformly to &} f when § — — c;— (Re & > 0), so the condition (4.3) is satisfied.



302

In order to separate the infinite part S, the expression (5.5) must be analytically

[43]
continued to Red > — 5 -1

2 £

(—iK)?"

J diz’ " exp [i(K+ig)] = j P 2 exp [i(K+ig)A]dA. (5.7
s 5(5+1)...(5+ ;))o

)
The singularity 6 = - -if(y = 1) is a pole of the first order, whereas the integral

{5.7) is already regular at this point and may be expanded in the Taylor series around it

3772 exp [i(K + ig)A]dA

O ey B

[Sa} , 2
= (—iK)" "+ U In ldie“"”‘”] <5+ ‘;’) +0 [(5+ ;’> ] (5.8)

The first term of this expansion together with the singular term before the integral
{5.7) gives the singular part S({, k, 9)

w

_ (—iK)?
S, k,0) = — s (5.9)
8(0+1)... <5+ »-5)

which satisfies the condition (4.5") because of (3.4), (5.5) and the definition of A(k, &).

5.2. Shifting the pole

Another possibility is to remove the pole in 4 from the domain of integration. In this
case we have, instead of (5.5),

‘ A e,
f dip(l, k, A, ) = J e glK i (5.10)
)
0 o (A+n)? *

and the criterion about uniform convergence is easy to verify.
The separation of S is not so simple as in the previous case. Let us write

[ dig = f dib+ | did. (5.11)
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The second integral of (5.11) is regular for n = 0, and the singular part must be
found in the first one. For n = w/2+1 we can write

1 1 n

o ) . (iK)"™’ nt1
Jd/uj) = jdﬂ. exp [—i(K+ie)n] {Z O»'*"?)i(ﬂ Y +O[(A+n) ]}
0 I=0

ik j Z(H—n)d(—u_l)“' +o(n, K, (5.12)

where a(n, K) is finite for # = 0. After integration over A we have

e [GKY L GRYT
iKn| N7/ —
e [ - (A+n)+ i 1)! In(A—n)

o 11 n—1I _‘_]___ .
+ Zl—-l(“") (iK) (n—l)llzoﬂ(”’ K)

=2

= S(K, p)+a(K,n)+e” "‘"( ') = S+a+p, (5.13)

where

n

spean— 1 §
S(K,n) = """[((’fjl)' In 1_;1 + Z fl—_l [+ =" JGK"™ (5.14)

and B is finite for n = 0.

The expression S(#, K) still does not satisfy (4.5") because of the presence of exp (—i(K
+ig)n). Expanding the exponent about n = 0 and bringing together the suitable terms
of this expansion with the contents of brackets in (5.14) we obtain

S(K, n) = -_(':_)1-— In n—(iK)"™* z (K" Z(? ),(n;;;”, +9(K, )

= S(K, n)+v(n, K), (5.15)

where (1, K) is finite for n = 0 and S(y, K) satisfies (4.5"). The finite part is the sum of
the second integral in (5.11), «(y, K), p(y, K) and y(y, K) taken for n = 0.
5.3. Incorrect regularization

Finally, we give an example of a regularization similar to the analytical one, but not
satisfying the criterion (4.3).
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Let the singular integral be of the form

i .,
I(K*) = _[—/1— e = fdif(/l, k). (5.16)
0 0
Let us take
1. (k) = d ke ™ = | dig(h, k*
reg(k”) = IIT’( Ye = o4, k%, p). (5.17)
0 0

The condition (3.5) is satisfied for (5.17), but

d R d
lim |~ ¢di = lim | 277 '9(k? " te ™+ | dA — f(4, k) (5.18)
y—0 dk =0 dk
4] (1]

and first term in (5.18) is not zero, because the integral

oo

. ) (Rey>0)k2 N
fﬂ“e‘“‘dz = — | Ae M (5.19)
b

0]

0

defines a function with a pole of the first order in y = 0, so

lim p(K3)" "' [ A e Mdh = [ e ™dL £ 0 (5.20)
[¢]

y=0 ()]

and 'the condition (4.3) is not satisfied.
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