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GAUGE INVARIANT SURFACE CONTRIBUTION
TO THE NUMBER OF PHOTONS INTEGRAL
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The surface contribution to the total number of transverse zero frequency photons
is calculated as a gauge invariant surface integral around the tip of the light cone in the
momentum space. A similar integral is introduced for nontransverse photons and is shown
to be equal to — Q%7, where Q is the total charge of nontransverse photons.

PACS numbers: 11.10.Jj

1. Introduction

When a charged particle is scattered by an external field, low frequency radiation is
produced. The amplitude 4,(k) of the radiation has, for k° — 0, the form

_e(n
i = = (L2 - 2}, (1)

Here ¢ is particle’s charge, p is the initial momentum and g is the final momentum. The
amplitude (1) has a characteristic homogeneity property: for each real A

a,(Ak) = 27 'a (k).
In a real scattering process the amplitude (1) is the first term of the asymptotic expansion

of the amplitude for k® — 0. Disregarding higher terms we can write the low frequency
part of the electromagnetic potential produced in a general scattering process as follows

1 d3k —ikx
4, = - J@- a, (K)f(k)e™™ tc.c. . 2)
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Here

1 p
k) = — E L = 0.
au( ) 27! es psk ;es

s

In the sum above terms corresponding to incoming particles are taken with their proper
sign while terms corresponding to outgoing particles are taken with the opposite sign. f(k)
is a function which cuts off higher frequencies: f(k) = 1 for k° = 0 while for k° > 0 f(k)
tends very rapidly to zero. In other words, the domain in which f(k) differs significantly
from zero is an infinitesimal volume around the tip of the future light cone kk = 0. Follow-
ing Zwanziger [1] we call each field of the form (2) a zero frequency field. It turns out
that zero frequency fields cause finite observable effects for each f(k) i.e. regardless of how
rapidly f(k) falls off to zero.

Units and conventions used in this paper are summarized in the expressions for the
action S, the potential A,;(x) and the number of photons N:

1
S=— o d*xF,F*, F,, = 08,4,~0,4, (3)
1 d3k —ikx
A (x) = o a,(k)e"" +c.c., 4)
a’k
= - JF a(k)a*(k). (%)

We shall repeatedly use in this paper the invariant element of integration over the set of
null directions of the light cone. The element can be introduced as follows [I]. The element
d3k(k® is known to be Lorentz invariant. Let us put

This is the definition of d2k. Since dk°/k° is obviously Lorentz invariant, d%k must be also
an invariant.

To illustrate these remarks consider the integral which frequently occurs in low
frequency calculations. Let p and ¢ be time like vectors. Then

J‘ 2 pq 2r . 1+v

k = In—o0,
(pk)(gk) v 1-v
where

) \/1_ (ep) (49)
(pa)*

The Lorentz invariance od d2k means that if one integrates an invariant and homogeneous
of degree —2 function of k, one obtains a manifestly Lorentz invariant result.
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2. Observable effects produced by zero frequency fields

Suppose that a test particle moves in the zero frequency field (2). The field is extre-
mely weak and contains only extremely small frequencies. Therefore one can solve the
equations of motion in the quasiclassical approximation. The phase S of the wave function
has the form § = —px-+J, where p is particle’s momentum and & describes the correction
caused by the external field. Putting this into the Hamilton-Jacobi equation

oS aS 2
g — +ed, )| — +ed, | =m
ox* ox”

and dropping squares of J and 4, one has
) — o,

a6
u
P ((3x“

This equation can be solved in particle’s rest frame in which it reads

06 e [d%k
5= —eAg = — — o ao(k)f(k) cos kx.

Integrating one has
e [d%k 1 .
6= — -;:- F ao(k)f(k)lza sin kx.

Integration constant was chosen so that the correction vanishes for x = 0. Going back
to the original system we have

A p
b= —— j s a,(k)f(k) sin kx

0
- i_ f dzk%; a,(k) - J % (k) sin kx.
For x at the future or past infinity

;°
i
this follows from Dirichlet’s lemma.

Summing up we can say that if a test particle moves through the zero frequency
field (2), the phase of each plane wave receives a finite shift

dk® . T
—Tf(k) sin kx = 3 sign kx;

5 ¢ [ 2k 2 (k) sign k
== e ——a S1 X.
2 pk 1 g
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Between plus and minus infinity the shift amounts to.
pll

dp) = —e szk — a,(k). (6)
pk

For a single plane wave the shift is obviously unobservable, but for a normalizable wave
packet the shift 6(p) for each plane wave will produce an observable interference effect.

The result (6) is gauge invariant; performing a gauge transformation a,(k) — a,(k)
+ @(k)k, one sees that the corresponding change of 6(p) does not depend on p and therefore
gives an unobservable change of the overall phase of the wave packet.

3. The total number of zero frequency photons

The results of the preceding section show that zero.frequency fields are observable.
However, they do not belong to the Hilbert space of one photon states: the number of
photons (5) computed for the zero frequency field (2) is infinite:

szkau(k)a"(k) Jﬂ—f (k). (M

The first factor is a well defined, Lorentz and gauge invariant integral but the second
factor diverges because f(k° = 0) = 1.

The problem of finding a norm of one photon states applicable to zero frequency
fields as well as to ordinary fields was posed by Zwanziger [1]. He gives an expression
(formula A. 19 in Ref. [1]) which does indeed exist for zero frequency fields but is not
gauge invariant. This may be seen as follows: for a zero frequency field which is a gradient,

a (k) = @(k)ky

where @(k) is an arbitrary homogeneous of degree —2 function of k, one obtains from
Zwanziger’s norm
2

<0

ljz
= || dke(k)
T

while, looking at the ordinary norm (5), one would say that the norm of a gradient field
should vanish. For this reason we think that the problem of constructing a norm appro-
priate for zero frequency fields remains open.
We shall argue that the norm of a pure zero frequency field i.e. of a real field a,(k)
such that a,(1k) = A~'a,(k) should be defined as
N, = — | d*ka,(k)a"(k). 8)

Because of (7) this apparently implies that

dk°
j k) = ©)

0
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But this equality contains a contradiction and cannot be properly derived. Therefore our
argument should be interpreted as supporting the choice (8) rather then the impossible
equality (9).

Our starting point is the usual norm

d’k u
N = — J‘—k—(—)— a,(k)a"(k),

in which

_ 1 Dsu
au(k) = Z %k J(K).

s

Suppose for a moment that ) e, = Q % 0; later we shall come back to the case Q = 0.
Q is the missing charge i.e. the charge which came in but did not go out. For Q # 0 the
usual norm ceases to be gauge invariant. Moreover, one can choose a gauge so that

a,(k)a'(k) = 0.

This requirement fixes the gauge uniquely. In this gauge the total number of photons
ceases to be infinite and becomes an undefined expression 0 - co.

Now, if the probability current in the k-space vanishes at each point, the probability
current in the x-space is a divergence and the total number of photons can be unambiguously
computed by means of the Gauss—Ostrogradski theorem as a surface integral at spatial
infinity. We shall now perform this calculation.

Since the functional form of f(k) is not releva}nt, we choose

flky = 7,
where v is an extremely large distance. Integrating over k° in (2) we have
1 2 0 : ~1
A,(x) = o dka, (k) (vk” +ikx)” " +c.c..
T
The total number of photons equals

i
N = ZT-EJ‘dB'x{AL‘)aOA“(“—C.c.},

where 4{*) are, respectively, positive and negative energy parts of 4,. Hence

1
N=-1 3fd2kau(k) [ d*la*(l) f APx(vk° + ikx) T OGP ~ ilx) "2 +c.c. .
T

0=0
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The integral over the volume x° = 0 is not absolutely convergent. If, however, one inte-
grates over angular variables first, one obtains a well defined result

2

2
f d>x(VK° + ikx)-O(vI° — ilx) "2 = k_"l .

x9=0
Therefore
1 (d*kd®l
4r ki

a"(k)gna’(). (10)

Note, that the gauge condition a,(k)a"(k) = 0 is necessary and sufficient for the existence
of the last integral.

The expression (10) is a part of Zwanziger’s generalized norm [1]. Actually, it is the
part responsible for the undesirable property of Zwanziger’s norm which has been indi-
Fated above: for a,(k) = p(k)k, equation (10) gives

1 2
N=-— -Ud2k<p(k)] <0.
4

Our calculation shows the physical meaning of (10): it is the value of the integral

N = ] dxjo(x),

where

i
= A0, 4% tce. (11)

calculated in the gauge in which the integrand is a divergence.

For a transverse field (Q = 0) the integral (10) does not exist. However, the integral
(10) is actually a surface contribution and we can change it by adding a divergence to the
current (11), for example a term like

i
y HATAT - 474, 12)

The additional surface term should be chosen so that the total number of particles vanishes
for a gradient field.

Investigating the surface contribution to N resulting from (12) we were led to the
conclusion that the right additional term is chosen by the following Ansatz: the tensor
g, in (10) should be replaced by

; 2
ko2 g S
B F R o TR G
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where the differential operators are supposed to act on a“(k):

dzkd2 ¢ 9\ ,
= — — a(\ gwtk, — P kvw a’(k). 13y

The last integral has two important properties: it does exist for a transverse field and it
vanishes for a gradient field.

The integral (13) is always equal to the integral (8). One can prove this calculating
both integrals for the most general infrared field

1 P
k) = — E R ‘e =
a,(k) o e, y ges

The proof relies on the identity

1 pk
Pk—— ok P -4,
(pk)* gk pkak

valid for each pair of unit, future oriented time like vectors p, ¢g; the identity is easily
established by integration over angular variables.

Summing up we can say that the integral (13) (or (8)) gives the gauge invariant surface
contribution to the total number of zero frequency photons.

4. The case of nonvanishing missing charge

Suppose that @ = Y e, # 0. Processes with Q # 0 are impossible in the Maxwell
electrodynamics but are possible in the generalized Dirac-Fock-Podolsky electrodynamics
[2, 3] (see also the Appendix). For Q # 0 the integral (13) does not exist. Now, the integral
(10}, which does not exist even in the Maxwellian case Q = 0 is made convergent by the
substitution

) é
g guv—*—ku akv —kva_];,]
and, after the substitution, gives the reasonable result (8). The integral (13) does exist
for a transverse field but does not exist for a nontransverse field. One might therefore try
to make it convergent by applying the substitution twice. Thus we are led to the integral

y 1 {d%kd?l AP Y
Ny =~ — —Ja
2 i | T (Bt g TR e 4t

N ﬁ —
X (g +1 a, 01,1) a,l(i)} (14)
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‘The last integral does indeed exist and equals
2
Z\’YZ = - Q—— 3
K4
where Q = Zes is the missing charge. In fact, putting
s

1 E : p
k = — el
a,(k) 21 % pk

s

into the integral (14) one has

1 oat(k) da'(l
Ny = — | a2k | a2 250 04°O)
iz ok o

]

A a0
4n ok* i

5. The total action of a zero frequency field

We shall calculate now the total action

L d*x(F ., F" +2F?)
167 w ’

where
F,, =0,A4,—0,4, F =¢"4,

and A,(x) has the form (2). If equations of motion hold, the integrand is a divergence:

F™F,,+2F* = 20%F,,A"+FA4,)

and the total action can be computed as a surface integral over a suitably chosen surface
which subsequently will tend to infinity. Following Gervais and Zwanziger [4] we choose
as a surface of integration the four-dimensional pseudosphere |[xx| = R? = const. We
assume that R is so large that f(k) in (2) can be replaced by f{k® = 0) = 1. In this way

we have
Aylx) = jdzka”(k)é(kx).

One sees that A4,(x) vanishes for time like x and the integration reduces to the time like

hyperboloid xx = —R?:

1
S=— — J dS, (F"A,+FA")
8n

xx=—R2

= — %z f d*k f d*U{[k*a (k) — K’ a*(k)a, () + K a (k)a*()} f dS,0' (kx)5(Ix).

xx= - R2
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The integral over the surface xx = — R? is not absolutely convergent. If, however, one
introduces the spherical coordinates
x° = Rshy,

x' = Rch ysin 9 cos ¢,
x* = R ch psin $sin g,
x* = Rch pcos 9,

and integrates over ¢ and 3 first, one obtains a well defined result

, d 2n
ds,0'(kx)d(lx) = P
xx=—R2
Therefore
S=1 dzﬂila"(l) +k —6~—l’ g "k
=37 % <guv “ oK y 6k"> a’(k).

Comparing with (13) we see that
S = —n.Nl'
If N, is interpreted as the number of photens, the last equality says that the total action

is a multiple of a half of the old Planck constant, which sounds reasonable and supports
the idea that

Ny = — [ d*ka(Kk)a"(k)

should be interpreted as the number of zero frequency photons.

APPENDIX

An interpretation of the electrodynamics of Dirac, Fock and Podolsky

As it is well known, one of the Maxwell equations does not contain the time deriva-
tive; this causes a considerable trouble in the quantum wersion of the theory. Dirac, Fock
and Podolsky [2] introduced a modified theory of a tensor field F,, = —F,, and a scalar
field F which fulfil the equations

alev’*—aqulﬂ_avFiu = 03
O“F ,,+&,F = 0. (A1)

A natural question arises: what is the physical interpretation of the additional field F?
We give such an interpretation below; the interpretation may sound naive and it might
be even physically incorrect but it at least helps to organize imagination.
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At the beginning of this century it was obvious that electron’s charge cannot be kept
in a small volume without some nonelectromagnetic forces which would counterbalance
the electric repulsion; these forces were called Poincaré stresses. Let us imagine that the
Poincaré stress is suddenly removed by some external agent; then the charge will be
suddenly released and will start moving in outward directions as a free dynamical system.
We propose to imagine that the Dirac-Fock-Podolsky equations (A1) describe this phase
of motion i.e. they describe a charge let loose by removal of the Poincaré stresses.

Usually an interpretation of a physical theory is not relevant. For example, Maxwell
thought that his equations describe phenomenologically a more complicated microscopic
motion. Nowadays we prefer to think that the electromagnetic field is fundamental, which
means that there is nothing ontologically deeper than the electromagnetic field. But this
difference is not really relevant as long as we use the equations which, quite rightly, are
called Maxwell’s equations. It turns out, however, that our interpretation of the Dirac-
-Fock-Podolsky equations is relevant because it diminishes the linear space of solutions:
there are well behaved, for example analytic, finite energy solutions of equations (A1)
which are not compatible with our interpretation. The point is that the total charge

does not have to be a Lorentz scalar; in general this integral will depend on the reference
frame in which it is computed. This, however, will not be the case if the charge is released
from an initially small volume. We shall now prove this assertion.
Since [J F = 0, we can write
3

1 d’k —ikx
F(X) = 5:1—[ 7c‘6‘f(k)8 +c.c. .
The function f(k) can be expressed by means of the Cauchy data for F(x) at x° = 0:
flk) = g‘l'a J d?x{e™* 0o F(x)— F(x)d,e™}.
n
x0=0

If the charge expands from an initially small volume, both F(x) and 0F(x)/0x° are functions
of compact support. Therefore we can expand the exponent

e = 1+ikx+ ...

and integrate term by term. In this way we obtain

) = — - (iQ+kAQ‘+ Lk, 0+ ) (A2)
2 2

where
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1
0* = . deu(x”ﬁ”F—Fa"x‘),
T

1
0% = o J dS,(x*9"F — Fo"x"%),

with
x* = x*x?—L xxg’;
all integrations are over the volume x° = 0.
Thus our interpretation implies the existence of the multipole expansion (A2) which

in general does not exist. In general

lim f(k)

k90
can be an arbitrary function of angular variables; in this case the total charge will depend
on the reference frame in which it is computed.
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