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ON GAUGE INVARIANT EXTERNAL SOURCES
IN YANG-MILLS THEORY*
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We analyse classical gauge potentials generated by static external sources coupled
to gauge invariant, nonlocal operators. For the gauge invariant operaiors involving fermions
we find two sharply distinct cases. In the first one, the external source decouples from Yang-
~Mills equations what leads to zero gauge potentials. The other one is found to be inconsistent
with classical Yang-Mills equations. We consider also nonlocal, gauge invariant operators
without fermions. We argue that there exists a possibility that the corresponding classical
gauge field configuration is that of the closed magnetic flux tube with quantized energy.

PACS numbers: 11.10.Np, 11.10.Lm

1. Introduction

The nonlocal, gauge invariant operators (shortly NGIO), constructed from nonabelian
gauge potentials, were considered in a number of papers, e.g. [1, 2]. Presently, there exists
a hope that such operators provide a string picture of hadrons within the framework of
nonabelian gauge theories [2]. They are expected to be directly related to the long distance
structure of the nonabelian gauge theory. The elementary fermion and nonabelian gauge
fields are not expected to reflect the long distance structure of the theory because of confine-
ment of quarks and gluons.

We shall consider the following examples of NGIO:

y
W(y, xIC) = x(»)Pexp [ig j A,dz"]y(x), )

where x, y are points in Minkowski space-time, C is a path connecting y and x, P denotes
path ordering of exponentials along C, y, v are fermion fields, and flu = A,T", where
77 are generators of SU(2) (or its representation). As the fermionless NGIO we take

WO(x, x|C) = Tr Pexp [ig ?; A,dz"], (2)
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where the trace is with respect to colour indices and C is a closed contour which starts and
terminates at the same point Xx.

In order to calculate S-matrix in terms of NGIO it is necessary to consider Green
functions for such operators [3]). As an intuitive starting point for this calculation one
could take the Feynman path formula for the generating functional for Green functions.
Apart from the gauge fixing and F-P ghost terms which are not important on the classical
level, the total action in such a formula would be

S = SYM+SF+ jJW’, (3)

where
SYM = —‘% I:Z\,Fm”, a = l, 2, 3,

is the Yang-Mills action, S; is the Dirac action for fermions, W denotes NGIO and [JW
is specified in Section 2.

In this paper we start an investigation of the static classical approximation to the
above sketched problem. Our expectation is that this can be an easy way to get important
information about properties of Green functions for NGIO. We restrict ourselves to the
most interesting gluonic sector of the theory by neglecting S

The paper contains our results concerning the most interesting question, namely what
are the classical stationary points of the action Syy + [JW. As W we take the NGI1O (1)
and (2). The fermion fields present in (1) are regarded as apriori fixed external fields. In
other words, we try to find classical gauge potentials generated by the external source J.
This external source is, of course, gauge invariant, as it is coupled to the gauge invariant
NGIO.

We observe that such sources imply classical Yang-Mills equations with an external
current of colour along the path C. In the case of NGIO given by (1) we show that the
Yang-Mills equations are inconsistent, unless the fermion fields satisfy certain condition.
When fermions do satisfy the condition, the external current in Yang-Mills equations
vanishes and the external source decouples from Yang-Mills equations. This gives zero
gauge field for such a source.

The fermionless case (2) is more complicated. The gauge potentials generated by
the current of colour flowing along the path C can be easily found. Because the line C has
zero thickness, the potentials are singular on C. This is an unpleasant difficulty for the
classical approach, because the external current of colour contains explicitly /Aiu(z) taken
for ze C and this is infinite. Of course, this difficulty could be resolved by a quantum
smearing of the curve C. One should use some smooth J(x, y|C) and to average (2) with
it. We say “quantum smearing” because results of papers [2] strongly suggest that J(x, yIC)
can be interpreted as a wave functional for a string.

However, there still exists a possibility of a classical description. Namely, one could
think of such a wave functional J(x, y|C) that it can be described classically by some very
complicated curve C, so complex that fiﬂ will be finite on C. In fact, in the quantum theory
the curve C (being the shape of the string) strongly fluctuates, and therefore there is no
reason why the best classical description should be given by geometrically simplest lines.
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We consider a curve C that fills in a torus, the twodimensional manifold. Such a curve
could be considered intuitively as a limiting case of a curve winding around some given
circle, when the number of windings increases to infinity. Continuous curves filling more
than onedimensional manifolds are known in mathematics, e.g., Sierpifiski curve [4].
The corresponding solution of Yang-Mills equations is given by some colour magnetic
field restricted to the inside of the torus and zero electric field. The classical selfenergy
of the source is, unexpectedly, quantized through a selfconsistency condition. For a thin
torus the energy spectrum is linear. Such a toroidal magnetic flux tube we would like to
interpret as a classical picture of a glueball.

Two remarks are in order:
1. We consider the simplest, so called abelian, solutions of Yang-Mills equations. It is
known, [5], that for a given external source Yang-Mills equations admit also other types
of solutions. A similar phenomenon should be expected also in the case of the gauge
invariant external sources.
2. Note that the action S is not in general real because of the term S, = [ JW. It is
interesting that in spite of this, one could choose an overall constant in S,,, in such a way
that the stationary points are given by real gauge potentials Aj.

In the next Section we shall present an analysis of Yang-Mills equations for the case
of NGIO (1). In Section 3 we analyse the case of NGIO given by (2). In Section 4 we
make some ending remarks.

2. Yang Mills equations with the gauge invariant sources involving fermions
We search for a stationary point of the action
S = =3[ d*xFiF™ +8,, 4)
where
Sen = [ d*xd*y § [de,)J(p, x|IC)W(y, x|C), (5)

W(y, x|C) being given by (1). Here [de,] denotes a functional measure in a space of paths C,
connecting the points x, y in Minkowski space-time. Observe that the terms yyAy, present
in the neglected Sy, would act as an additional gauge noninvariant external source for ﬁu.
Such sources are already well investigated [5]. In this paper we are not concerned with
them. '

In the following we assume that the external source J is strictly localised in three-space
and that it is static, i.e.,

J(p, xIC) = gd(X = X,)0(y — %) [3(C — C)] [6(Co = x6)]0(x0 — ¥o), (6)

where [6(C—C)], [6(Co —x,)] are the functional delta functions, X,, x, are fixed points
in three-space and C is a curve connecting x,, x,. The two deltas, §(x,—y,) and
[6(Co— x,)] make the configuration to be equal time configuration. The fact that x, is
unspecified implies that the configuration is the static one. We assume that ¥, y are constant
in time. g is a constant characterising the strength of the external source.
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The action (4) implies the following equations for the gauge potentials

Duﬁuv = _fevxt’ (7)
where
.av ( ) 5Sext (8)
ext\X) = — -~ >
Jext 5A4°(x)

and D, = d,+ig[d,, ]
In order to calculate explicitly jéy, we parametrize the line C¥: A€ [0, 1], C{» = C{O(2)
= z,(2), C(0) = x,,, C(1) = x,,. Of course, x,0 = X0 = Zo(4). Then

Xb 1
Pexp [ig | A,dz"] = Pexp [ig| dw'A,],
Xa 0

dz*
where " = R and the variational derivative in (8) yields after a straightforward

calculation
Ja =0,
Jouw = 24 i A (N(Z(1))3(x—2(4)), ®
where
I°(Z(4) = ix(p)VelEp ZANTV(ZA), X)), (10)
and

Ve(X, y) = Pexp[ig | AidZ'].
cy
Thus, j& = 0, except for the line é(o), along which there is a flow of colour charge.
It is well-known [6] that Yang Mills equations (7) imply the constraint

Duj‘el;(‘t = auj:;ll_ggabCAnggt =0 (11)

for any current on the r.h.s. of them. For gauge noninvariant external sources this constraint
is a nontrivial condition to be satisfied. For the gauge invariant sources, the current (9)
satisfies the constraint identically on the whole C'©, excluding the end points X,, X,. At these
points the constraint is not satisfied unless the fermion wave functions y, y obey certain
condition. Namely, from (9) we get

dujee = (BN +1°0,f" (12)

1
where j{(X) = ggq [ dl'(4) 8(x—z(A)) is the usual current obeying the static continuity
0

equation 0;j° = 0 for X # X,, X,. Thus, the last term on the r.h.s. of (12) vanishes for
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X # ;a, X,. It is easy to verify that the first term on the r.h.s. of (12) cancels with the term
e 4% ji< present on the Lh.s. of the constraint (11). For X = X,, x = X, we have
8;j' ~ 8(x—X,,) and therefore the constraint (11) implies

I'(x,) = I(x,) = 0. (13)
However, from (10) it follows that
I(2) = D*(VOI'(xy),

where D®(V() is the matrix of the adjoint representation of SU(2), corresponding to the
group element V(z(4), x,). Therefore the condition (13) implies /%(x) = 0 for all X e 6(0’,
i.e. the external source decouples from Yang-Mills equations. This means that the externat
source does not generate any gauge field. In particular, it has zero classical selfenergy.

To summarize, either the external source decouples from classical Yang-Millsequations
or it is not consistent with them. We would like to interpret this result as an indication
that NGIO for which 7%(x) = 0 are, in some sense, favored by the nonabelian gauge theory.

3. The gauge invariant sources without fermions

Now we shall consider the action (4), (5) with W replaced by W°(x, x|C) given by (2)
and J = J(x|C) = ¢g8(X—Xx,) [6(C — C®)] [6(Co—x,)]. In the corresponding Yang-Mills
equations (7) the external current j&, has the form (9), where now

ext
I%Z) = i Tr [VdX, X)TVe(X, X,)]- (14)

V¢ is calculated along the other arc of C'® than that used in V. One can verify that the
external current satisfies the constraint (11) on the whole C®.

At first sight Yang-Mills equations look as very complicated integro-differential
nonlinear equations. Still one could find a solution for them. Namely, we observe that
because gauge transformations just rotate the colour spin vector (I“), one can perform
such a gauge transformation that the resulting (7*) will point in the 3-rd direction for all
e C©, ie. I° = Ief, where ¢f = §°, [7]. Then, the Ansatz 4%(x) = 6°° A*(x) reduces
Yang Mills equations to ordinary Maxwell equations for A,(x) with the external static
current

1
Jha(x) = Igq | dAv's(x— CO(A))
g

along the line C”. The corresponding solutions are known from a text-book electrody-
namics. As the next step, we insert the solutions for 4, on the r.h.s. of (14). Because the
Lh.s. is given (I = §°°[), this yields a consistency condition from which one could try to
determine some constants present in A,.

Unfortunately, because of zero thickness of the line 6(0), flu has a logarithmic singular-
ity on C® and we meet the difficulty mentioned in Introduction. As it is explained there,
we assume that C'© is at least a twodimensional structure. The simplest possibility is to
assume that C'” is a torus, i.e. the current ), forms a torus-like coil. This assumption is
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not as peculiar as it may look at first sight. Firstly, we recall that in Yang’s formulation
of nonabelian gauge theories, [1], one uses the exponentials exp [igA"”dx“] indépendently
at each space-time point x. There is no reason why one should arrange these infinitesimal
exponentials just along the simplest lines and to neglect more refined possibilities. Secondly,
some support comes also from energy considerations. Namely, the classical selfenergy
of an infinitely thin, static, linear current diverges logarithmically. On the other hand,
classical selfenergy of the current forming the torus is finite, equal to the energy of magnetic
field inside the torus.

Thus, we assume that C(? forms a torus-like coil. The solution of the Maxwell equations
is given by some magnetic field inside the coil. It remains to check the consistency condi-
tion. Because we have A* = §4, T° = 1 ¢“ ¢° — Pauli matrices, then

-

Ve(x, %) = Trexp [—ig | Adx'T?] = exp [—igT3®d(%, X,)x],
£(0), 5,

and
Ve(Xe %) = exp [—igT ®d(X,, X)x].

Here @ is the flux of the magnetic field through the torus, d(X, X,) is the length of the torus
between the points X,, x (that is the distance along the big circle of the torus between the
points obtained by perpendicular projections of the points X,, x on the big circle), d(X,, X)
also is the distance between the projections of x, and X but taken along the other arc of
the big circle of the torus, k is an unknown coefficient describing the density of windings
of the current around the torus. The path ordering was dropped out because now the
exponentials commute. From (14) we obtain that

I'=1*=0, I’=1=sinlgdl,

where [ = d(X, X,)+ d(X,, X) is the perimeter of the torus along its big circle. Because
for the thin, toroidal coil @ = glgkS,, where S, is the area of the perpendicular crossection
of the torus, we get the consistency condition

I=sin[}(gn)lqV], (15)

where V is the volume of the torus. Of course, our considerations require k — 0. In order
to obtain finite results we parallelly take g — 0, in such a way that gk = A = const.

The condition (15) can be read over in at least two ways. Straightforwardly, it can
be regarded as an equation for 7, in which ¥V, 4, g are fixed parameters describing the given
torus. The energy of the torus is E = + H?V = 142)2I*V. For sufficiently large AqV
there are many values of I obeying (15).

However, the condition (15) can be interpreted also as a quantisation condition for
A*V. Namely, when [ is apriori fixed, (15) implies

2
A2V = o (arcsin I+kn), k — integer. (16)
q



435

Observe that (15) implies also that ¢ is a positive number, ¢ > 0. Thus we have to assume
k=0,1,2,.. in order to ensure 2>V > 0. Then, the energy is

E = § gl(arcsin I +kn), (17)

where k = 0, 1, 2, ... Observe that the spectrum of energy is linear and that it depends
only on the strength of the external source g and on the constant I. The constant 7 in this
case is not determined. However, it is natural to assume that 7 characterises directly the
representation used for 7% e.g, I{/+1) = T°T" (for T° = £ ¢° this gives I = 1/2).

4. Final remarks

Our results indicate that classical gauge fields can be created in a gauge invariant
manner on the classical level only if the accompanying fermions satisfy the condition (13).
Then, the external current vanishes and the external source decouples from Yang-Mills
equations. In particular, this means that the classical selfenergy of such a source is given
entirely by the classical selfenergy of the set of accompanying fermions. This selfenergy
can be calculated from Yang-Mills equations with the external current w7y, [5, 7], (this
current, coupled directly to /Ai“, is a gauge noninvariant external source of gauge fields
and therefore it was neglected in our considerations). Unfortunately, we¢ cannot relate
the condition (13) to the common requirement that the fermions should form a colour
singlet state.

In the case without fermions, the classical approach seems to require rather complicated
objects instead of a simple, closed contour C. We have considered C to be a torus. The
question arises whether the resulting magnetic flux tube is stable. Presently we have no
answer to this question. [t seems that there is no reason for a topological stability. On the
other hand, the spectrum (17) is bounded from below and, intrigueingly, does not depend
on the size of the torus—this suggests an energetic stability.

The above results can be easily extended to SU(#n) groups. Of course, the number of
types of NGIO then increases.
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