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We reanalyze the probabilistic description of inelastic hadron-nucleus and nucleus-
-nucleus collisions with diffractive channels present. We give several formulae which may
be useful in analyzing data on multiparticle production in high-energy nuclear scattering.
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1. Introduction

It was shown some time ago [1] that the classical probability calculus can be successfully
applied to the description of inelastic hadron-nucleus collisions at high energies. Indeed,
in the absence of diffractive processés the formula for inelastic hadron-nucleus cross-
-section obtained in this way generates, via optical theorem, the correct Glauber formula [2]
for the elastic hadron-nucleus amplitude. Also the quasi-elastic cross-section comes out
right {1}

In the present paper we extend this application of the probability calculus by taking
into account the presence of the diffractive channels (which were neglected in Ref. [1])
in hadron-nucleus and nucleus-nucleus scattering. These diffractive channels are represented
in the language of Good and Walker [3, 4] through the eigenmodes which are the eigen-
states of the absorption operator and hence propagate through nuclear matter without
any diffractive excitations. The methods of Ref. [1] are then applied to these eigenmodes
and the formulae for different coherent and incoherent cross-sections can be written down.
1n particular we calculate the expressions for (a) elastic, (b) diffractive coherent, (c) quasi-
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-elastic, (d) diffractive-incoherent (quasi-diffractive) and (e) non-diffractive hadron-nucleus
and nucleus-nucleus cross-sections. The physical meaning of the obtained formulae is
discussed and the Glauber model-type approximations are obtained.

In the next two Sections it is shown how the argument of Ref. [1] can be applied to
the absorption eigenstates. In Section 4 the formulae for different hadron-nucleus cross-
-sections are obtained. The Glauber model-type approximations [2] are derived and
discussed in Section 5. In Section 6 our analysis is extended to nucleus-nucleus interactions
and the Glauber model-type approximations for such interactions are discussed in Sec-
tion 7. The last Section contains summary and conclusions.

2. Propagation of the absorption eigenstates in nuclear maiter

Let us consider first hadron-nucleon scattering. Following Good and Walker [3]

we expand the states of incident hadrons into the eigenstates of absorption operator:
ihs iy = 3 o B <o Blhs he), (2.1
af

where h and hp denote beam and target hadrons.

The cigenstates |a; B> are, by definition, either absorbed or unchanged during the
collision. The interaction of the states |«> and |f) can thus be described as follows:

Let o,.,(2; B; b) be the probability of absorption of the state |o; £ in the collision
at impact parameter b. The total absorption cross-section is

aabs(a; ﬁ) = j-dzbo-abs(a’ ﬁ; b) (2.2)

Assuming that the elastic amplitude #(o; f; b) is purely imaginary, we obtain from the
unitarity condition [5]

n(t; Bs b) = 4 0(@s B, b) = 1=V 1= a3 B3 B) (2.3)
where o,,(2; B; b) is the probability of any interaction at impact parameter b, with the
total cross-section given by

Tl B) = [ d’boo(a; B b). (2.4)

Consider now interaction of hadron /2 with the nuclear target of atomic number B.
Again, to obtain a simple description, we have to expand the initial state into the eigenstates
of total absorption. For incident hadron / and for all nucleons of the target 25 (i = 1 ... B)
this can be done using Eq. (2.1). Furthermore, we observe that the state characterized
by fixed positions of all nucleons in the target nucleus diagonalizes also nuclear degrees of
freedom with respect to absorption.

Thus the initial state can be expanded as follows

h;By = Y [d ... &%l By ... By o ¥R
a.f81 ... fn

Cas By - Bgsry ... rglhs B, (2.5)



461

where r, ... rp are the positions of the nucleons in the target nucleus. Since the state
fa; By ... Bgs ¥y ... rpy diagonalizes the absorption operator, we can apply to it the argu-
ment from the beginning of this section and write the probability of absorption of the
incident state |o) on the target state |f, ... Bg; ¥, ... > in the form:

B
Gfbs(u; By ... Bgiry ...rgsb) = 1— r[ {1052, B3 b—sy)}, (2.6)

i=1
where b is the impact parameter and s; are the transverse positions of the nucleons in the
target nucleus. To justify the formula (2.6) we observe that w; = | —o,,(a; f;; b—s))
is the probability that no absorption takes place at the i-th nucleon in the target. If the

nucleons of the target absorb the incident state «) independently of each other, then
B

[ 1w is the probability that no absorption takes place on any of the nucleons. Thus
i=1

B
I— [] w; is the probability of absorption, as stated in Eq. (2.6).

i=1

The amplitude for elastic scattering of the states |[x)> and (B, ... Bg; r; ... ¥5> can
now be computed by substituting Eq. (2.6) into the condition of unitarity

o By ... Bas ¥y ... rpib) = 1—v1 :ofbs({;‘;ﬁl /i,;,;; r,;; Ij)

B e e
= 1= [T V1= 0u(x; Bis b—s)). 2.7)
i=1
Using Eq. (2.3), this formula can be written as

B

n%a; By oo Bas vy o rgy by = 1= [T {1=n(a; B;: b—s)). (2.8)

i=1

3. Diffractive and non-diffractive interactions in hadron-hadron scattering

To obtain formulae for various hadronic cross-sections from Eqs. (2.1)-(2.4) of the
previous Section we have to invert first the formula (2.1). One obtains

o5 B = Z 1h5 i <95 hY e, B, (3.1)

where the indices &, / run over all diffractive excitations of the hadrons /1 and Ay
Using Eqs. (2.1) and (3.1) we can write the amplitude for the scattering 1 +h{®
- h® 4+ 4 in the form

P Py 1h9; DS

= Y <h®; hPlas Bon(a; B; b) Ca; BIAY; b)), (3.2)
a,p
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The special case of clastic scattering reads [4]!

na(b) = < R in(b) 5 1Y =Y Pa, Byn(a: B3 b), (3.3)
. p
where
Plos ) = KO 1P o, B2 (3.4)

is the probability of finding the state |a; > in the initial state #; A{"">. The elastic
scattering probability is given by

ga(b) = ina(b)*. (3.5)
It follows from the optical thcorem that the total cross-section is given by
oo(B) = 2n4(b) and g, = [ d*bo,(b). (3.6)
The total probability of diffractive collisions (including elastic scattering) is [4, 6]
oa(b) = 3 1K™ KPin(b) (' )1 = 2 PO ) (s B b (3.7)

Consequently, for non-diffractive collisions we obtain
(illd(b) = O-lol(b)_ad(b)
= Y P(o; B) {205 B3 b)—[n(e; B3 BT} = 3 P(os Bows(@: B3 B),  (3.8)
N 2,

i.e. the average over the absorption probability of the absorption eigenstates. Similarly,
for inelastic cross-section we have

Ginel(b) = Umt( b) - O—cl(;b‘)
2,3 P(o, )20 8, b)— {Zﬂ P Pyn(e; B3 b)) (3.9)

I

Finally, we may ask for the probability for the single diffraction (i.e. diffractive dissociation
of one of the incident hadrons, say A). The result is

oa(b) = 3 (ChY R in(b) [h5 hE) (P

k#0

Y. P(x) {n(o; b)Y —aey(b) (3.10)

where P(a) == [{a{h®©) 2 is the probability of finding the cigenstate |« in the state |#'®)
and

ns b) = 3 Pr(Byn(ac; B3 b) (3.11)
B

is the amplitude for elastic scattering of the eigenstate on the target [, Pi(f)
= [KBIM’>)? being the probability of finding the eigenstate |f) in the state |A{").

1 The formulae for all the cross sections given in this Section were first employed for a special case
of diffractive and non-diffractive nuclear interactions (see e.g. Ref. [6]), where, as we argued in Section 2,
the eigenstates of absorption are specified by fixed positions in space of all nucleons in the target nucleus.
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We shall now discuss briefly the momentum transfer dependence of the obtained cross-
-sections. From the amplitude #(b) in the b space one obtains the amplitude ;(A4) as function
of momentum transfer 4 by performing the Fourier transform

N 1 i 2 id-b .
Wda) = . d7be" "n(b) (3.12)
LT
consequently,
Ha(4) = %P(a; Pinas s 4), (3.13)
where
1
no; B 4) = jdzbe"’ Pu(as 1 b). (3.14)
The elastic differential cross-section is given by
(16 ] iA-(b—~b' ’
M a(4))? (zn)zjdzbdzb’ed BB (DY (B). (3.15)

One checks the correct normalization of this formula by observing that it reproduces the

.. do—cl
condition ¢, = {d’4 —— =
d24

particular interest. Taking 4 = 0 we have

fdzbl%(b)lz- A special case of the Eq. (3.14) is of

4o Pbd?b' by (B) = — T (3.16)
3 = 7 Hal D) = -3 .
PA e @rp ) @04 TN De (27 4

where in the last equality we used the Eq. (3.6). Similarly, the amplitude for diffractive
dissociation of the beam at momentum transfer 4 is given by

L[,
Ch®5 hPn(d) 15 Wy = 5["“["#' s ha(b) 1hs APy (3.17)
T

The differential cross-section for single diffraction of the beam hadron (including elastic
scattering) at momentum transfer 4 is thus

d d s
71%1 ad g 1™ 5 ROy 11 i1
[

1 . :
= 3 j d*bd*b'e P8 ; P(ayn(a; b)n(es b'), (3.18)
s hed

fed

where #(a; b) is given by Eq. (3.11). For 4 = 0 this formula takes a simple form

dog d“sd) 1 a2 =
—c ull = — P *)° = s 3.19
(¢12A YA ), T ) z @)= oot (3:19)

n = | d*by(a; b). (3.20)

where
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4. Diffractive and non-diffractive interactions in hadron-nucleus collisions

Using the results from Section 2, in particular the Eq. (2.8), we can write the amplitude
for hadron-nucleus scattering in the form

W, B*in(b) 10, By = Y. [dry .. drglh™; B¥ja; By .. Bty .. v

B1...88
xn(o; By oo Pas ¥y e vg; b)Y as By oo Byivy o #glh'05 B, 4.1)

where B* denotes the final state of the target nucleus and n(o: 8, ... Bg; ry ... rg; b)
is given by Eq. (2.8). The nuclear excitations can be of two kinds: the diffractive excita-
tions of individual nucleons (corresponding to parameters f3, ... fz) and excitations
of the nuclear structure including a possible break up (parameters r, ... rp).

From Eq. (4.1) one can derive formulae for probabilities and cross-sections of various
physical processes.

Elastic amplitude is given by

nb) = Ch; Bln(b) [h'; BY
B Z jd3r1 d3I‘BP(a; By .. Beog(ry .. r)n(e; By ... Bpivy ... rp; b) (4.2)
f1...88

where P(a; f8, ... Bp) is the probability of finding the state |o; §, ... fp> in the physical
state |A©; B> and gg(r, ... rp) is the nuclear density normalized to unity.
The total cross-section is thus

oo = 2 d*bnl(b). (4.3)

The total cross-section consists of several contributions corresponding to different physical
processes. We list them below together with the formulae for the corresponding probabil-
ities.
(i) Elastic scattering, when both beam and target remain in the ground state
oa(b) = {na(h)}* (4.4)

where 75(b) is given by Eq. (4.2).
(if) Quasi-elastic scattering in which nucleons undergo elastic scattering but target
does not remain in the ground state

ol (b) = ; [R5 B*|n(b) |h'”; BY|* —a(b)

=[Py ... drgop(ry ... rs) { Y P@P(B; ... B)n(a; By ... By #y ... vg5 D)}
f1..88

—na)}’, (4.5)
where we accepted

P(a; By .. Bg) = P(ax)P(B, -.. Bp)-
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(i) Diffractive production including all processes in which the incident hadron and/or
any nucleon of the target nucleus become diffractively excited, but no non-diffractive
interaction takes place. The probability of such collisions is

oiee(b) = ; ; [R5 B¥n(b) | BY|2~ (a5 (b)+ 0% (b))

=y , Z [d®y o drgP@)PBy ... Bplog(ry ... rg) in(o; By ... Pgiry ... rp; b)}?
—(a5(b)+ a2 (b)) (4.6)

The processes of diffractive production represented in formula (4.6) include both coherent
and incoherent interactions. Coherent diffractive production in which the incident hadron
is diffractively excited and the target nucleus remains in the ground state deserve special
attention. The probability for such coherent diffractive production is

Gon(b) = ; i<h®; Bin(b) h'; BY*—al(b)

=3 P(a) {ﬁ Zﬂ §d3n o dPrgP(By ... Be)os(ry . ¥)(es By ... Bai vy ... ks B} —an(B).

(4.7)

It is characterized by very steep momentum transfer dependence, controlled by the radius
of the target nucleus.

Other diffractive processes, in which the target nucleus is excited or breaks up (inco-

herent interactions) shall be called quasi-diffractive. The corresponding probability is

Gcfd(b) = Ggiff(b)‘gfoh(b)- (4.8)
The quasi-diffractive collisions can be again split into two categories: (a) those in which

the beam hadron remains unexcited (but at least one of the nucleons in the target nucleus
becomes diffractively excited) with the probability

ofd(b)mrgct = 5 Zﬂ jd3f°1 w. PrgP(B, ... Bg)os(ry .- Tp)

X {Z P(n(o; By ... Bgs vy - g3 b)}z—(ﬁfx(b)'ﬂff,cn(b)), 4.9
and (b) those in which the beam hadron is diffractively excited with the probability
ac?d(b)beam = agd(b)_agd(b)target (410)

(iv) Non-diffractive processes, which represent all the remaining cross-section
ao(b) = 0o— Y. [Ch®; BXin(b) |h'¥; B)i?
k.B*

=3 Z j'd311...d3rBP(oz)P(ﬁl...ﬁB)QB(rl...rB)

a ..
X {2n(0; By - Bys ¥y oo g3 BY—[n(es By <. B ¥y - ¥g; BT}
= Z Z jd27'1 ds"BP(O‘)P(ﬁ1 BB)QB(rl rB)o-abs(a; Bi... Bgiry ... 1p; b),

a pi..fs
(4.11)
where o,,(2; B, ... Bg; ¥y ... rg; b) is given by Eq. (2.0).
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5. Glauber model-type approximations

The general formulae of Section 4 are not directly applicable to practical calculations.
For that one needs information on probabilities P(«) and P(f, .:. B5) and on absorption
of different eigenmodes. But this information is not available from hadron-nucleon scatter-
ing where, as was seen in Section 3, only some averages can be measured. Consequently,
it is of interest to obtain the formulae which, although approximate, would allow one
to calculate the nuclear cross-sections from the measured hadron-nucleon cross-sections.
The well-known example of such an approximation is the Glauber formula for elastic
amplitude. It reads

B
Yi8(b) = JdPry o drpog(ry o) (1= TT [ =na(b—s)1} (5.1)
i=1

where 1.(b) is the elementary elastic hadron-nucleon amplitude at impact parameter 5.

A comparison of the general formula (4.2} and the Glauber formula (5.1) shows that
the Glauber formula arises from (4.2) if the fluctuations in the elementary amplitude are
neglected, so that the actual value of the elementary amplitude can be replaced by its average
value n.(b). It is known that the Glauber formula reproduces quite well the elastic hadron--
-nucleus amplitudes. One may hope therefore that analogous approximations shall also
work for other cross-sections listed in Section 4.

In the following we shall also use two simplifying assumptions which allow us to
write down compact formulae and do not seem to introduce serious errors (particularly
for large nuclei): we shall assume that both P(fi, ... fp) and og(r, ... rp) factorize:

B
P(ﬁl ﬁB) = I;Il PT(ﬁi)a (5-2)
and
B
og(ry ... ¥g) = H ou(ry). (5.3)

i=1

The approximate formulas following from (5.2) and (5.3) shall be called “optical’” formulae.
Using Eq. (5.3) we obtain from (5.1)

“nad) = i—{1—% o, D(b)}", 5.4
where
+w
2
D(b) = ”‘“J“ls"QB(")ﬂel(b“‘s) ~ f dzog(h, z), (5.5)
fot

and o, is given by Eq. (3.6).
Consequently, in the “optical”” approximation the probability of elastic interaction
at impact parameter b can be written as

“oa(d) = [%a®)” = 1-2{1=} 0, D(B)}" + {1 = (01 D(B) % 65D’ (B)}".  (5.6)

Let us now proceed to other cross-sections discussed in Section 4.



467

Neglecting the fluctuations of absorption in hadron-nucleus collisions we obtain
from Eq. (4.5) and (2.8)

qcl(b) = jda'l . ‘]3"303(" . Tp) Ll - H [1~ ”Iel(b“‘sf)]}z—cﬂfl(b)a (5.7)

i=1
which in the *‘optical’” approximation becomes
Ooa(b) = 1=2{1=3 0D} + {1 ~{(00—7)D(B)}" = “ol(b)
= [1 _o-inell)(b)]n_ [l —(Ulml)(b)_% o-tszz(b))]B' (58)

This formula has a simple physical meaning. Indeed, the probability of quasi-elastic colli-
sions is the sum of probabilities of any number of elastic collisions which lead to break
up of the target nucleus. This probability can be calculated as a difference between the
probability of any type of collision (breaking the nucleus) equal to [1]

—~ (1= (6, D(B)—§ 05 D*(B))}" (5.9)
and the probability of inelastic collision equal to
1= {l=0;,aD(b)}". (5.10)

Consider now the coherent diffractive production. According to Eq. (4.7) and using
Eqs. (5.2) and (5.3) we obtain in the “optical” approximation

Teon(B) = 3, P(2) {1 =2[1=n*D(B)]" +[1 =21"D(b)+ (")’ D*(b)]"} —oi(b),  (5.11)

where #* = [d?bn(a; b) and n(x; b) is given by Eq. (3.11). Using Eq. (5.6) we thus have
Go'foh(b) = {l*[amD(f’)*ﬂzDz(b)]}B"{1 [Utml)(b) O'totD (b)]} (5.12)

As shown in Section 3, the coefficients 162, and 7? = Y P(x) (n*)? can be expressed by

hadron-nucleon elastic and single diffractive cross-sections at zero momentum transfer
(cf. Egs. (3.16) and (3.19)). Consequently, we obtain

658 (b —{ p(b)—m2 (199 4 979 pag }B
Oeon(b) = [Utol ) —( )( it d24>4zo ()]

B
- {1— [am,l)(b)—(zn)2 :;‘;Z‘ Dz(b)]} . (5.13)
A4=0

Using the Eq. (4.6), the cross-section for diffractive production in Glauber approxima-
tion can be written as

B
Gagiff(b) = fd3"x ‘73"BQB("1 .. Pp) {1“2 1:11 [L—ne(b—s)]

B
+ ] [1=00(b~s)+0a(b—3)]} = (Gi(b) + ‘o (D)), (5.14)

i=1
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where we have used Eqgs. (3.5) and (3.6). Substituting intothis formula Eq. (5.7) we obtain

B B
Gggiff(m = 5(23;-1 ‘13"398(*'1 Vs){H [1 _Gnd(b_si)}— H [1 _ainel(b—si)}}'
i=1 i=1

(5.15)
In the “optical” approximation we thus have

Go'giff(b) = [1 - GndD(b)]B - [1 - O'inelD(b)]B~ (5.16)

The physical meaning of the formula (5.16) is analogous to that of Eq. (5.8). %6%,(b) can
be interpreted as a difference of the probability for any number of inelastic collisions (both
diffractive and non-diffractive), equal to

1- [l —G inelD(b)]B (517)

and the probability for any number of non-diffractive collisions, equal to 1 —[1 —a,,D(5)]%.
The result of this difference is given by Eq. (5.16).

It is also of interest to calculate the probability of quasi-diffractive collisions in which

the beam hadron does not dissociate. Starting from Eq. (4.9) and using the arguments
similar to those employed before one obtains

Gagiff(b)target = {1 —(Ciner— Oﬁ))D(b)}B - {1 - UinexD(b)}B> (5.18)

where 63’ is the cross-section for single diffractive dissociation of the target proton in
hadron-proton collision.

Finally, using Eqgs. (4.10), (5.16) and (5.18) we obtain
Gagiff(b)beam = {1 —O'ndD(b)}B" {1 _(ainel“ag))D(b)}B~ (5.19)

The last formula we like to quote is that expressing the non-diffractive cross-section.
Using Eqgs. (4.11), (2.6) and (3.8) we have

B
Soly(b) = 1— [&ry ... dPryop(ry ... rg) T] [1—0na(b—s)]. (5.20)
i=1
In the *“‘optical” approximation we obtain
Sa2y(b) = 1-[1~0,4D(B)}", (5.21)

which confirms interpretation of 1—[1—o,,D(b)]® as the probability for any number
of non-diffractive collisions.

6. Diffractive and non-diffractive interactions in nucleus-nucleus collisions

The generalization of the expressions for various hadron-nucleus cross-sections to
the nucleus-nucleus case is fairly straightforward but leads to formulae of considerable
complexity. Without going into any details, we quote the definitions and results.

Now we have the following eigenstates of diffraction of the two colliding nuclei with
the atomic numbers 4 and B

lory oo tgs Xy oo X3 By oo B Y1 - Yas (6.1)
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where o,(8;) label the eigenstates of diffraction of the nucleon ;i — in the nucleus A (j — in
the nucleus B), and x;, y; are the spatial positions of the nucleons in the nuclei- A, B2,
The analogon of the “‘eigenprofile’” (2.8) is now

A B

oty oo Xy X, By B ¥y e yes b)) = 1— H I |l {1—n(oy; B3 b—x1 +y7)).
i=1 j=
(6.2)

The general transition amplitude from the ground states of the colliding nuclei A, B to
a diffractively excited state (i.e. a state where both the spatial structure of the nuclei and
the internal structure of the nucleons is changed) is a straightforward generalization
of (4.1)

CA*B*; hy ... Wi g5 . gan(B) |AB; hy ... hys gy ... gp>
= Y [&x . dx Py Py AFBE BT R gt gl oy x,
By
X By Beiyr o yeomlay oo x o x By BRi Yy - ves B)
Xy e U Xy X3 By P Yy - YEABY by g . g8, 6.3)

where A, B; hy ... h,; g, ... gg and A%, B*; h ... h%; g7 ... g3 label the ground and the
excited states of the nuclei and of the nucleons in them.

We are interested only in the cross-sections in which a sum over all possible excita-
tions is performed and therefore we need only the probabilities P («; ... a4), Px(B; ... Bp)
of finding the states lo; ... o> in the physical ground states of 4 nucleons in the nucleus
A and of the states |, ... B> in the physical ground states of B nucleons in the nucleus B,
respectively, and also the ground state densities ¢, (x, ... x,) and gx(y; ... yp).

Eq. (6.3) implies the following expression for the elastic amplitude

’Ile(b) = Z §d3x1 d3an'3y, ds.VBQA(xl o X)0p(¥1 - YB)

81 Bp
XP oy . a JPp(y ... By ... 043Xy oo X5 By oo By ¥y - ¥s ), (6.4)
and for the total cross-section
ot = | d*bopi(b) = 2 [ d*bnl¥(b). (6.5)

Without going into any details we list the components of the total cross-section in
the same order as in Section 4.
(?) Elastic scattering. Both nuclei remain in the ground state

o&f(b) = [n&a’(b), (6.6)
with #2%(b) given by Eq. (6.4).

2 x;‘-, y,l are the projections of spatial positions of nucleons (in A and B, respectively) on the impact

parameter {(b) plane.
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(ii) Quasi-elastic scartering. At least one of the nuclei gets excited, but the nucleons
do not

c[e,(b) = ja";xl e dPx Py, o Pvgodx, . x)os(¥y ... ¥B)

x| Z Py(oy oo 2 )Pg(By o Ben(oy oo Xy o X5 By BB Yy o Y b a°(b).
T
(6.7)
The quasi-elastic processes summed up in Eq. (6.7) can be further split into two classes,
according to the degree of coherence: (a) proper quasi-elastic reactions in which both
nuclei become excited (or break up); (b) semi-elastic reactions in which one of the colliding
nuclei remains in the ground state whereas the other one is excited. These two classes differ
in their dependence on momentum transfer: for semi-elastic reactions the momentum
transfer dependence is controlled by the radius of the unexcited nucleus and is, consequently,
rather steep — particularly for heavy nuclei. For proper quasi-elastic reactions the mo-
mentum transfer dependence is controlled by the nucleon-nucleon elastic scattering cross-
-section. We shall not discuss these relations in further detail here. Let us just quote as
an example the probability for the semi-elastic process which leaves the nucleus A in the
ground state

§dy, o d®ygop(vy o ¥e)l Y Jdx . dPx04(x; . xIP (o . 2 )PH(B, .. By)

R
X0y o Ogs Xy oo X035 By Bes yy .VB)| —5 (b) (6.8)

The cross-section for proper quasi-elastic reactions can be obtained by subtracting two
semi-elastic cross-sections from the Eq. (6.7).

(iiiy Diffractive production.
ok =Y Y | Y KA*B*;h} .. higl ... ghity ... %4 X,

AYB* Ryt ha® @y cag
g1*--g8* B1-- P

X3 By By Yo yeon(o g Xy X5 By o By Yy YB3 b)
Xy 0y Xy o X By B Yy yelAB Ay o hgs gy gai’
—(o4 (b)+ﬂ'q a(b)) = jds’*) e dPx,dyy L BPypoa(xy o X008y - V)

x { Z Pyoy ... x)Pg(By ... Bg) [m(ory oo 0tys Xy oo X5 By o BBs ¥y - Y85 b)}z

dy e X4

B "'ﬁB
- Z Py(oy . a )P(By - Ba)n(oy - oty Xq oo X453 B - BB3 ¥y -o- ¥B3 b)]z}. (6.9)
B1-- BB

The processes of diffractive production can also be divided into several classes, according
to the exhibited degree of coherence:
(a) quasi-diffractive processes when both nuclei are excited (including breakup),
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(b) semi-coherent diffractive processes when one of the nuclei remains in the ground
state, whereas the other is excited or breaks up,

(c) coherent diffractive processes when both nuclei remain in the ground state. These
processes are presumably very rare.

Different classes should exhibit markedly different momentum transfer dependences.

(iv) Non-diffractive processes, which include all remaining contributions to the cross-
-section.

by =oiib)— Y Y Y (A*B*ihT .. hiiel . gpley . a4 By

AB* Iy o ha* a1 aa
g1*-gn* Bi-fim

B Xy X4 Yy e Yeon(Oy s 03Xy o X5 By e Bas Yy oo YB3 D)
X0ty ven O3 Xg o X3 B0 . By Yy YBIAB by By gy - gadi?
=2 Z jdsxt e dPx dPyy d*ypoa(xy .- X)es(¥y .. ¥&)Pu(@y - x.)Pp(By ... Bp)

B fn
X0y ... Og5 Xg oon Xq3 By oo Bgs Vi - YB3 D)— al;“ P (o ... 2 )Pg(B; ... Bp)
I
x (d®x; ... Px4d®y; ... APypoaxy .. x)0s(¥; .. ¥5)
X [0ty - 03 Xy oo X5 By o B3 ¥y o ¥as BT
= ZA Pty ... x)P5(By ... Bo)  d®xy .. x4 dyy ... @ypoa(xy - X4)
B

x @p(yy -+ yg)cg‘.ﬁ(al O3 Xy X5 By Bas ¥y Ya)s (6.10)
where, in analogy to (2.6),

AB . . .
Oabs(®q +or 843 Xy oo X5 By . Bas Y1 - ¥B)

A B
=1- [T I [1—0udo Bis b—x+y)]. (6.11)
i=1 j=1

7. Glauber model type approximation in nucleus-nucleus collisions

The motivation and approach are the same as in Section 5. By replacing in the formulae
of the previous Section the fluctuating elementary amplitudes by their average values we
obtain several formulae which express different nucleus-nucleus cross-sections in terms
of measurable nucleon-nucleon cross-sections and nuclear densities. These formulae can
thus be used for practical calculations of the nucleus-nucleus interactions. They may be
considered to be generalizations of the formula for the elastic nucleus-nucleus ampli-
tude [7]

'I:lB(b) = 5d3x1 daxAdsh dsyBQA(xl oo X4)08(Y1 - ¥B)

A B
x[1= [T TT {1=na—x; +y1)}]. (7.1)

i=1 j=1
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However, as pointed out in Ref. [7], such expressions are rather difficult to handle and
lead to calculations of great complexity. Therefore, we consider also further approximation
which, although perhaps more questionable, provides much simpler and tractable formulae.
In this second step we neglect the spatial fluctuations of elementary interactions. This means
that the actual position of the colliding nucleons is replaced by their arerage positions
inside the colliding nuclei. This procedure gives expressions which become, in the limit
A, B — oo the so called “optical limits’’. For elastic amplitude (7.1) this “optical approx-
imation” gives

1-{1- d*xd*yno(b— x* +yHD (xHDR(yH}?

1= {1 —naDa(B)}*?, (7.2)

e’ (b)

where

D p(b) = ,}]“jdzxdzwle.(b~xl+.vl)DA(xl)Da(yl) x jdleDA(b—xl)Da(xl)\ (7.3)
el
and D (x"), Dyg(y") are given by Eq. (5.5), and n. = | d2bn.(b).

To estimate errors introduced through such a procedure is a very complicated task
which we shall not undertake in this paper. We believe however that the formulae obtained
in this way do give a reasonable first approximation.

We follow steps of Section 5. First, for elastic amplitude, starting from Eq. (6.4) and
replacing the fluctuating elementary amplitudes by their averages, we clearly obtain the
formulae (7.1) and (7.2). From this formula and from Egs. (4.3) and (4.4) we obtain the
total and elastic cross-sections. In particular, the “optical” formula for elastic cross-section
reads

0’3’;5(1’) =1- 2[1 ‘“% GzozDAB(b)}AB + [1 ~ 0D ap(b)+ 5 O'm:DAB(b)] 48 7.4

where we have used the relation (3.5).
For the quasi-elastic cross-section, by introducing the averaging over the densities
Po(oy ... o)), Pg(B, ... B) under the products of the Eq. (6.7) we get

qel(b) Id3x1 e Xy, A ypou(xy . X008V - YB)

u:;

A B
H —nab—x+yP)]+ [T T [1=oialb—xi +y)]}—0&(B), (1.5
i=1 j=1

where we have used the Eq. (3.9). Consequently, using the Eq. (7.4) we obtain in ““optical
approximation”

o3e(0) = [1-0 1D as(0)]*" —[1 — 610Das(b) + 0ic:D2a(B)]*". (7.6)
We go over to cross-section for diffractive production. Starting from Eq. (6.9) and going

through the same steps as in the case of Egs (6.7) and (7.5) we obtain

afﬁf(b) = _f‘l3x1 daxAdaJH ds.VBQA(xl o X008(Yy - VB)
A

X{I;I U 1 Gnd(b x +y1)} }._I H {1 axnel(b x +y;)]} (77)

i=1 j=1 i=1 j=
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where we have used the relations (3.7) and (3.8). The corresponding ‘“‘optical” formula
reads

Ggs?f(b) = [l _O-ndDAB(b)]AB_'[] _ainelDAB(b)]AB' (7.8)

Finally, the approximate formula for probability of non-diffractive collision is obtained
immediately from Eq. (6.10) and (3.7)

aid(b) = J‘le dsxAdsyl da)’BQA(xt o X4)08(Py - ¥B)

A B
x{1= TT T1 [l =0aa(b—xi +yD)]} (7.9)

i=1 j=1

The optical approximation gives
Gna(B) = [1=0,4D 5(B)]*". (7.10)

To close this Section let us comment on possible corrections to the Glauber-model type
formulas presented in Sections 5 and 7. One possible method of constructing such correc-
tions [8] is by expanding the formulas of Sections 4 and 6 in powers of

n(a; B by —ne(h),

where 1,(b) is given by Eq. (3.3). The resulting formulae (which are rather involved) in
the lowest non-vanishing order can be expressed in terms of measurable hadron-nucieon
cross-sections. The higher orders, however, require information on eigenmodes |, 8.

9. Summary and conclusions

Having in mind recent results on multiparticle production in nuclei [9] which clearly
show the effects of diffractive collisions in such processes [10] we reanalyzed the probabi-
listic description of inelastic hadron-nucleus and nucleus-nucleus collisions, with diffractive
channels present.

We obtained formulae for elastic, quasi-elastic, coherent diffractive, incoherent diffrac-
tive (quasi-diffractive), and non-diffractive hadron-nucleus and nucleus-nucleus cross-
-sections. We discussed these formulae in the Glauber model type approximations which
express the hadron-nucleus and nucleus-nucleus cross-sections in terms of nuclear densities
and hadron-nucleon cross-sections.

In Ref. [10] we have already shown that such probabilistic approach is useful in
analyzing experimental data. We believe that it may be successfully applied to the forth-
coming hadron-nucleus and nucleus-nucleus data.
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