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The binding energy of the A particle in nuclear matter, By, is calculated for a number
of central hard core AN potentials and for the OMY6 NN potential. Firstly, the
Jastrow method in the Fermi-hypernetted-chain (FHNC) approximation is applied.
Secondly, the Brueckner reaction methed is used. The FHNC results for By are
much bigger than the reaction-matrix matrix results. Possible sources of this discrepancy
are discussed.
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1. Introduction

The investigation of the binding energy of a A particle in nuclear matter (NM), B,,
is of considerable interest as it enables us to gain valuable information of the AN interac-
tion, v,y. Furthermore, the A+ NM system, i.e., NM with a A “impurity”, is an interesting
testing ground for nuclear many-body theories.

In the theoretical analysis of B,, two methods have been applied: the Brueckner
reaction matrix method, and the Jastrow correlated function method (for a review, see [1]).
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Most of the existing calculations of B, have used the reaction matrix method. Their
results may be summarized as follows:

(i) Purely central AN potentials, fitted to Ap scattering and to A binding in 4 = 3, 4
hypernuclei, with hard cores of radius ¢, = 0.4 fm, and with suppression in odd-angular-
-momentum states lead to overbinding. The value of B,, calculated with these potentials,
is about 10 MeV larger than the semiempirical value B,(SE) < 30 MeV [2].

(if) Because of the suppression of AX conversion in NM, realistic AN interactions
with coupling to the ZN channel lead to values of B, which agree with B,(SE) [3].

The Jastrow type calculations of B, have been restricted to central, possibly spin
dependent, AN interactions. (Suppression in odd-angular-momentum states requires the
presence of a space exchange operator in v,y, and has been treated in [4] (see also [5],
[6]) only approximately.)

So far, several central potentials v,y have been used in calculating B,,, both with the
reaction matrix and Jastrow method. Values of B, obtained with the Jastrow method turn
out to be always much bigger than those obtained with the reaction matrix method.

The purpose of our paper is to analyse the discrepancy between the values of B,
obtained by the Jastrow and Brueckner methods with semirealistic AN interactions. By
semirealistic interactions we mean central, spin dependent AN potentials, fitted to Ap
scattering and to A binding in 4 = 3,4 hypernuclei, with hard cores ¢, >> 0.4 fm, and
without suppression in odd-angular-momentum states. These interactions are not expected
to reproduce the semi-empirical value of B,. Hence, the present paper is of a methodol-
ogical significance.

Most of the existing Jastrow type calculations of B, apply a low order cluster (LOC)
expansion method (see, [4, 5, 7, 8}). The LOC approximation proves reasonable only in
the case when it is possible to select the class of the trial functions so that all higher order
clusters would yield negligible contributions to the energy. This is not possible for an arbi-
trary density (see, e.g. [9]). When the matter density is sufficiently large, certain subseries
of the full cluster expansion consist of cluster terms, or diagrams, which give increasing
contributions to the energy with increasing number of points. In this situation, the LOC
approximation loses its validity and it is necessary to sum all the diagrams of these sub-
series. This may be accomplished by solving appropriate integral (chain) equations, as
was shown by Fantoni and Rosati [10] who developed the powerful Fermi hypernetted
chain (FHNC) method of summation of cluster integrals.

This is the reason for which the chain summation method has been recently applied
in calculating B, [6, 11, 12]. However, these calculations do not seem to be satisfactory
due to simplifications of various type. What we mean here is either approximating
the expression for B, [6, 12], or not applying a full optimization procedure [I1, 12,
or applying the chain method in its simplest version — the chain (CH) approxi-
mation [11].

One of the main accomplishments of the present paper is a chain type calculation of
By, which appears to be more adequate than the former ones. Thus the full expression
for B, is calculated in the FHNC approximation by means of an optimization procedure.
We apply the FHNC method for the impurity problem, described in detail in [13], hereafter
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referred to as DP. Our calculations are performed for a number of semirealistic AN po-
tentials.

The resulting FHNC values of B, do not differ significantly from those obtained
previously in the LOC approximation, and are much bigger than the values of B, obtained
with the same AN and NN interactions by applying the reaction matrix method. Conse-
quently, the serious discrepancy between the Jastrow and Brueckner methods of calculating
B, remains an open problem.

The paper is organized as follows. In Section 2, the Jastrow method of calculating
B, is outlined, and the expression for B, in terms of radial distribution functions is derived.
In Section 3, we apply the FHNC method of DP to calculate B,. The AN potentials, and
the NN potential as well as the form of the AN and NN correlation functions are specified.
In Section 4, we compare our results for B, with the results of other Jastrow type calcula-
tions. In Section 5, we outline the reaction matrix method of calculating B, and present
the resulting values of B, obtained with the AN and NN potentials used in our FHNC
calculations. In Section 6, we discuss possible sources of the discrepancy between the
results obtained for B, with the Brueckner and Jastrow methods.

2. The Jastrow method of calculating B,
B, is defined by

B, = ENM-EA+NM3 (2-1)

where Exy and E, ny are the ground state energies of NM and of the A+NM system.
Let us denote by H, ¥,, and H, ¥, the hamiltonians and the ground state wave
functions of NM and of the A+NM system. We have

Eny = KYolH[Y o) [<Wol Wo) < CHIHIPHIKPIY), (2.2)
Exinm = HolHIW o) [K¥oi¥Wo) < KYIHIPHKPIY), (2.3)

where the last parts of the two equations, with ¥(¥) being approximate trial functions
of the NM(A +NM) ground state, express the variational principle. For B, we have an
approximate expression

_KYIHY) <(YH|Y)

~ - 2.4
AT e XA @4

which becomes exact for ¥ = ¥, and ¥ = P,.

If we vary ¥ for a fixed shape of ¥, expression (2.4) for B, attains its maximum for
¥ = ¥,. On the other hand, if we vary ¥ for a fixed shape of ¥, expression (2.4) for B,
attains its minimum for ¥ = ¥,. For arbitrary shapes of the trial functions ¥ and ¥,
expression (2.4) may be both bigger or smaller than B,, in contradistinction to expressions
(2.2) and (2.3) which have the properties of upper bounds on Eyy and E, .
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In the Jastrow method, we make the following Ansatz for ¥ and ¥:

Ya, ..., A) = kaNN(rjk)<I>(1, v A), 2.5)
Y(4,1,...,4) = HfNA(riA)(pA(A)lP(la oy A), (2.6)

where the arguments of the functions indicate the full sets of space, and spin-isospin
coordinates of the respective particle. The Slater determinant ¢ is an antisymmetrized
product of single particle wave functions (products of spin-isospin functions and plane
wave functions normalized in the periodicity box of volume Q). The function ¢,(A) is
the A particle spin function multiplied by 2-1/2, i.e., by the normalized plane wave function
with zero momentum (in the ground state of non-interacting A + NM system, the A particle
has zero momentum).

For the NY (Y = N, A) correlation functions, we assume a simple, state independent,
parametric form. First, we fix the values of the free parameters in fyy by minimizing the
expectation value of the NM hamiltonian, Eq. (2.2). (In practice we use the results of
other authors who performed this minimalization.) Then we fix the free parameters in fy,
by maximizing expression (2.4) for B,. This maximum value of (2.4) is our Jastrow method
result for B,.

In our procedure, we use the same optimal NN correlation function fyy in pure NM
and in the A+NM system. This is justified for the following reason. The difference in
fan in NM and in the A+ NM, dfyn, is of order 1/4. This difference introduces a change,
SEnwm, 10 Eny. Now, Eyy is proportional to A, but it attains a minimum for the optimal
Jarns 0Enm/0fan = 0. Consequently 0Eyy is proportional to 4 x 4=2 = A~ and the whole
difference dfyn may be disregarded. (This point is discussed in [5]; see also the comments
after Eq. (4.26) of [14], and Appendix D of [15].)

The expectation value of H may be expressed in terms of the one- and two-body
distribution functions of the A+ NM system:*

ogn(x) = (¥| Y 8(ri—x) W) KPP, (2.7)

QZgNN(xla x,) = szl‘%N(XIZ)(’gNN(XIZ)

= KW| ) o(ri—x)o(r;—x,) |¥) /PP, (2.8)

iFj
Q_IQgNA(xla X)) = Q—IQfI\%A(xlA)gNA(xlA)
= (¥ Y 0(ri—x)0(ra—x,) 1POKP|P), (2.9)

where 0 = A/Q is the density of nucleons (¢ = 2k2/372, where kg is the Fermi momentum
of NM in units of #). Similarly, the expectation value of H may be expressed in terms of
the one- and two-body distribution function of NM, gy and gy, defined by Eqs (2.7)
and (2.8) with ¥ replaced by ¥. For the difference in the two expectation values, Eq.
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(2.4), we get

— By = Vaat+AVan+1 (h*2My) 41, (2.10)
where
Van = @ § difia(1Ena(r)inar), (2.11)
AVan = 5 02 [ difin(Gan(Nin(r), (2.12)
At = o | drA®[gn(r)—gn(1)]. (2.13)
where @y = Dan—Funs and the effective two-body potentials are:
Bun(r) = oan(r)+ 7 (/M) [(V/an(P fran)* = A1)/, ] (2.19

Taa(r) = vaa(r) +3 B2 [(My+ M)/ MM 4] [(Vfual?)] fnn)* = Afsa(P)] fua s (2.15)

where vyy is the NY potential. (To simplify the formulae, we assume here that ryy is of
pure Wigner type.)

Notice that for the Jastrow trial functions, Egs. (2.5), (2.6), and for the Jackson-
~Feenberg form of the kinetic energy applied here, only one- and two-body distribution
functions appear in our formulae. By A®, we denote in (2.13) the Laplace operator acting
on r which appears in the |®|? component of the one-body distribution functions.

In calculating the radial distribution functions, we apply the FHNC method described
in detail in DP. In the FHNC method, we approximate the complete cluster expansion
of the distribution function by hypernetted chains of cluster integrals. The summation
of these hypernetted chains is accomplished by solving (numerically) the chain equations
derived in DP.

3. Calculational procedure and FHNC results for B,

In our calculations, we have used the OMY [16] NN interaction,

oy = 15 TS ow G.1)
NN T (A+P) {3 A+P () +3 (U=Poin(M}, 7> e

where P, and P, are the space and spin exchange operators, and
U = — W exp [~k (r— W] (3.2)
The parameters of this potential are:
ey = 0.6fm, ¥, =3.6765fm™, K, =2.6272fm™’,
Vin = 947.02 MeV,  Vgx = 397.31 MeV. 3.3)

We chose the OMY potential, because it has been used in almost all Jastrow type calcula-
tions of B, [4-8, 11].
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For the NA interactions we use the potentials HNX, ENX, E'NX of Herndon and
Tang [17], and the potential DW of Downs and Ware [18]. Our notation for the potentials
is the same as in [19] (hereafter referred to as DH), e.g. HNX is the potential H of [17] with
no exchange (x = 0). All these potentials have the following form:

w9 r < CA,
— 34
ona {% (1 +PJ)U;IA(V)+% (1 -Po')vél‘\lA(r)’ r > Ca» ( )

where
vRa(r) = — Vs exp [—A(r—ep)]- (3.5)

The parameters of these potentials are given in Table I, which also contains the intrinsic
range b, and the triplet and singlet well-depth parameters s,, s,. All these potentials have
been used in several previous calculations of B,.

TABLE 1
Parameters of vna
, | ; ;
NA CA Z.A 1 b Ra VNa St S5
(fm) (fm1) (fm) (MeV) (MeV)
| ’ : o
HNX2 0.6 3.935 ‘ 2.1 676.9 713.1 0.792 0.834
ENX# 0.45 3.219 2.0 402.1 451.7 0.703 0.790
E'NX2 0.45 3.219 2.0 378.7 o 459.5 0.662 0.803
DWP 0.4 3219 | 1.9 330.9 | 3309 0.578 0.578
a Ref. {17]. * Rei. [18].
For the correlation functions, we assume the following form:
0 r < cy,
Say(r) = { : (3.6)
{t—exp [—ay(r—cy)]} {1+Byexp [~yy(r—cy)]}, 7> ¢y,

This form of the NN correlation function was used by the Pisa group [20] in the NM calcu-
lation, in which the expectation value of the NM hamiltonian, in the FHNC approxima-
tion, with the OMY interaction was minimized with respect to the parameters of the NN
correlation function, Eq. (3.6), under the subsidiary ‘‘average Pauli condition”,

e f dr[1—fan(r)]ge(r) = 0, (3.7

where gg(r) is the radial distribution function of noninteracting NM. The parameters of
this correlation function (which we denote by fRn), for ky = 1.366 fm—!, are given in
Table II which also contains the value, Iy(FHNC), of the normalization integral

Iy = ¢ dr[1-gu(n], (3.8)

for gny calculated in the FHNC approximation. The fact that the value of Iy is very close
to one indicates a good accuracy of the FHNC approximation with the fgy correlation
function (Jy = 1 for an exact gny)-
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TABLE I
Parameters of fyn and values of /iy (FHNC)
e N . S S
an(fct) Bn C oadm) | nGFRNO)
; ‘ i |
R “ 2.5 | 0.884» ’ 2.0 f 1.06

AN 2.3 1.394» | 2.3 0.87

» Ref. [20]. P Ref. [4].

To test the sensitivity of the calculated value of B, to the shape of fyy, we have also
used the NN correlation function f{y of Mueller and Clark [4] who minimized (at
ke = 1.366 fm~!) the expectation value of the NM hamiltonian (with van(OMY)) in the
lowest (two-body) cluster approximation, with the subsidiary normalization condition

o § dr[ fa(r)—1]gp(r) = 0, (3.9)

which expresses the lowest (two-body) cluster approximatioi to the requirement, Iy = 1.
The parameters of fuy, as well as the corresponding value of I(FHNC), are given in
Table 1I.

The NN and NA interactions, and the NN and NA correlation functions described
above, were used in calculating B, according to Eq. (2.10). Since our interactions depend
on spin and parity, we applied the properly modified form of expressions (2.11) and (2.12),
given in Appendix C of DP. The main computational effort of this work consisted in de-
termining %y, and @yn. The functions %y, and Gyy were determined by solving chain
Egs. (4.6) and (4.14) od DP, respectively. Both systems of chain equations, (4.6) and (4.14)
of DP, require the knowledge of the gadial distribution function in pure NM,
gnn = fin%nn, Which was determined by solving chain equations (A.5-8) of DP.

Each of the three systems of chain equations was solved numerically by an iterative
procedure. In the chain equations for the chain functions (denoted in DP by N,,)) in a given
iteratien, the link functions (denoted in DP by X)) resulting from the previous iteration
were used. Consequently, the chain equations in a given iteration were systems of lincar
integral equations which were solved in terms of Fourier transforms.

The 4t part of B,, Eq. (2.10), turned out to be very small (of the order of our numeri-
cal accuracy) and therefore have been neglected. Notice, that the corresponding 7 term
gives only a very small contribution to NM binding. Now, the 47 term in (2.10) represents
the change in ¢ caused by the presence of A in NM, and one expects it to be very small.

The determination of B, consists in finding the maximum value of expression (2.10) for
B, with respect to the parameters in fy,. With fiy, given by Eq.(3.6), it would require a search
for a maximum in three-dimensional parameter space. The size of the computation of B,
for a given fy, prevented us from such an extensive search, and led us to consider a restricted
two-parameter version of expression (3.6) for fy, with o, = y,. To justify our procedure,
let us mention that the one-parameter fy, function {a special case (, = 0) of our two-param-
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eter function) was found by Clark and Mueller [5] to work almost as well as the more
elaborate fy, function [4] in their Iwamoto-Yamada cluster expansion method of calculat-
ing B,. Moreover, we know that an optimal\ three-parameter NA correlation function
of Eq. (3.6) would obviously lead to an even bigger value of B, than our two-parameter
function.

All the calculations have been performed for kp = 1.366 fm~! with the NN correlation
function f Ry, and for comparison, also with fNy. Our results are shown in Table 1I1.

TABLE 111

FHNC results for B obtained for Ar = 1.366 fm~' with the two-parameter fna with the indicated optimal
values of @y = ya, and fa

oA — PN —AVNN Ba
v
NA an I (fm-") 1 Pa (MeV) (MeV (Me V)
R - e e IR SR
HNX P ! 6.0 . —0.05 80.1 —3.1 77.0
- omMc 65 1 —0a0 80.0 -39 | 761
L o . R - . L
ENX P 63 | —o02s | 98 L5 68.3
MC 63 1 —020 . 67 19 61.7
ENX P 6.0 ~0.20 ‘ 64.3 ~15 62.7
MC 6.0 —020 | 642 2.0 62.2
— R B S — ‘ e _ ‘,
W P S5 005 447 —1.1 43.6
MO | S5 005 | 447 1.4 433

We see that values of B, obtained with f iy are systematically larger than those obtained
with 5. We consider fhy to be a better correlation function since it is optimized in the
FHNC scheme and gives the value of 7y closer to one than fNg does. And by changing
"g"ﬁ into frn, We expect to improve the wave function ¥, Eq. (2.5), of NM, and also the
wave function ¥, Eq. (2.6), of the A+NM system. These simultaneous improvements
lead to an increase in B,, Eq. (2.4), which is practically equal to the decrease in*AVyx.

4. Comparison with other Jastrow type calculations of B,

We start with the LOC calculations of B,. In these calculations, only few leading
terms in the cluster expansion of radial distribution functions (2.7-9) are taken into account.
For comparison with our FHNC results, we choose the work by Mueller and Clark [4],
[5], and by Ali, Grypeos, and Kargas [8].

Mueller and Clark [4] apply the Twamoto-Yamada [21] cluster expansion, and for
fna assume the form:

O> r § CA’

{1 —(cp/r) exp [—a\(r—ca)]} {1 +ﬁA exp [—Falr—cp)l}, ¥ > cas 1)

faa(r) = {



483

with the subsidiary normalization condition (compare (3.9)):

o J dr[fia(r)—=1] = 0. (4.2)

For vn(OMY) and with the NN correlation function fNx (see Table 1I), they determine
the parameters g, S5, 74 by maximizing B, in the Iwamoto-Yamada approximation.
The optimal values of @y = y, f, = u, 74 = v are given in Table I1I of [4]. (Throughout
the present paper, we use results of their procedure (7).) Their results for B,, denoted by
B)), are given in Table IV. Actually, Mueller and Clark consider NA potentials H, E, E’
of [14], with suppression in odd angular-momentum states. (They treat the suppression

TABLE 1V
Results of Jastrow type calculations of Ba in MeV at kg = 1.366 fm~! for OMY NN interaction (except
for [12])
Ref. f HNX ENX E'NX DW
. | R R SR R

B3 83 77 70 ‘ 46
[4] BYY 74 71 63 42
LY 75 71 65 42
(8] B3 89 80 74 48
2LY 75 71 65 42
n BH 71 70 63 40
HH 77 72 65 43
[6] FRHNC g Lo 7s 68 45
[12] BRHNC 78 73 65 T 44
present B} 74 70 64 43
calcul. BERHNC 77 68 63 44

in the approximation, in which the NA space exchange operator does not act on the
correlation function.) The values of BY in Table IV have been obtained by rejecting the
suppression effect (with the help of Table 1V of [4]).

Westhaus and Clark [22] (see also {5]) derived an expression for B, alternative to
(2.10), by assuming that ¥ in (2.6) is the exact wave function of NM ground state. With
this assumption, definition (2.4) of B, leads to:

Br=—0 j d"fﬁA(")gNA(")WNA(”)’ (4.3)
where

wral(r) = 5NA(V)+(112/4MN) [(VfNA("‘)/fNA)2 + Afna(P)/ fual- 4.4

To derive Eq. (4.3), no assumption concerning the specific form of ¥ is necessary. However,
if we want to use Eq. (4.3), we have to calculate %y,. And to do it, we have to know Y.
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Here, we make Ansatz (2.5) for ¥, and calculate %y, by applying cluster expansion.
Now, ¥ given by (2.5) is not the exact ground state wave function of NM, and conse-
quently expression (4.3) is an approximate one. We use the notation £, for expression
(4.3), to visualize the difference between (4.3) and our original expression (2.10) for B,.
Notice that 4,, in contradistinction to B,, does not depend explicitly on vyy.

Results for 4#,, &Y, obtained with the Twamoto-Yamada approximation to %y,,
and with the AN and NN correlation functions of [4], are shown in Table TV.

The paper by Ali, Grypeos, and Kargas [8] is based on the cluster expansion scheme
of Aviles {23], applied to the A binding problem by Downs and Grypeos [7]. In the low
order approximation (three points), used in [8], the cluster expansion scheme of Aviles
applied to the B, problem coincides with the Iwamoto-Yamada approximation. For this
reason, we denote the results of [8] with the superscript 1Y. The AN correlation function
is determined in [8] by maximizing B, in the lowest order of the cluster expansion (in this
order B, = 4,), with the subsidiary healing condition,

Kna = 0§ dr(fya—1)* = const. (4.5)

The Lagrange multiplier, which appears in the Euler equation for fy,, is determined by
maximizing the sum of the lowest and next order term in.the cluster expansion of 4,.
The results of [8], denoted by Y, obtained with the NN correlation function fNx (see
Table 11) arc shown in Table IV. The use of /Ny implies that the OMY NN interaction is
assumed.

Notice that for a given NA interaction, all the LOC results, BY and #%, shown in
Table 1V are identical, except for a small (1 MeV) discrepancy between BY and #Y in
the case of the HNX interaction.

Now let us turn to the recent calculations of B, which apply the chain summation
technique.

The simplest chain summation is accomplished in the CH approximation. In this
approximation, the summation is restricted to single chains built of the simplest links,
without parallel connection of chains (see DP). The CH results for B, and #,, B{" and
#H, obtained in [11] and [I5] for vyy(OMY) with the Mueller-Clark form of fy,, Eq. (4.1),
and with /5 (see Table 1), are shown in Table 1V. The reliability of these results appears
to be less certain because they have been obtained without any optimization procedure,
and with the very simple CH approximation.

An FHNC calculation of #, has been performed by Barbato [6]. Her results, Z5"™¢,
for NA potentials without suppression in odd angular momentum states are shown in
Table IV. Among her results, we have selected those obtained with the Mueller-Clark
form of fy,, Eq. (4.1), and with fNx (see Table IT) corresponding to ry(OMY). Although
Barbato performs a complete FHNC calculation, she uses the approximate expression
(4.3), i.e., she calculates only %, but not B,.

In a recent paper, Usmani [12] derives the FHNC equations for the Vy, and 4Vyy
parts of B,, Eq. (2.10), which coincide with the corresponding equations of DP (he uses
chain equations for %y, and %y in the form denoted in DP as Egs. (4.6) and (4.14)).
The At part of B, is not considered in [12]. In his numerical calculation of B,, Usmani
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uses the fug form of the NN correlation function (with parameters given in Table 1I),
and fy, in the form given in Eq. (4.1). The values of the parameters 4 =y, fix = (1,
ya = v, quoted by Usmani, are the optimal parameters of [4] for the NA potential E, and
their use for other NA potentials would be questionable. In [4], the NN correlation function
M was adjusted to vn(OMY). In [12], however, fux is used inconsistently, together
with the pure Wigner type potential of Tang and Herndon [24], which has a hard core
radius ¢, = 0.45 fm. Furthermore, the values of B, at two differcnt densities ¢ are calcu-
lated in [12] with unchanged correlation functions, whereas the optimal correlation func-
tions change their shape with changing density. Nevertheless, the Bf'™ results obtained
by Usmani for B, at kg = 1.366 fm~!, shown in Table 1V, approximately agree with the
results of other calculations.

Table IV also contains results of our own FHNC calculations (with fRy) described
in Section 4.

It is instructive to consider the lowest order (two body) part of B,,

BR = ¢ | drfia(r)Ona(r). (4.6)

Values of BY for all optimal correlation functions under consideration are given in Table 1V
(notice that % = B3). We see that B, is determined predominantly by the lowest order
cluster term BY. Next order cluster terms, present in the LOC results, constitute only
a correction to BY, of an order of magnitude of 10%,. Higher order terms present in the
CH and FHNC results are much smaller. Thus, for the class of correlation functions
considered, and at the equilibrium density of NM (kr = 1.366 fm~1), the LOC approxi-
mation turns to be adequate.

5. By calculated with the reaction matrix method

The starting point in the reaction matrix method of calculating B, (see [1] for a review)
is Eq. (2.1) in which both Eyy and Eyy , 4 are expressed in terms of the Brueckner reaction
matrices Kyy and Ky,. Following the systematic approach in terms of the number of hole
lines, worked out for pure NM (see [25] for a recent review), we group the contributions
to B, (energy diagrams) according to the number of interacting particles (number of hole
lines). In the low-order Brueckner method (LOB), only diagrams with two hole lines are
considered usually with the “‘standard choice” of pure kinetic single particle (s.p.) energies
in the reaction matrix equation. In this *’standard” LOB the self-consistent expression for

B, = —V, (V5 = s.p. potential of zero momentum A) is:
<kp
—By=V,=4 2 (knka = O|Knalknks = 0), (5.H
kn

with the reaction matrix equation (for ky < kg):

>kp
i Kyalln0
Knalkn0) = vnalkn0)+ Z Z UNAIPNPA) (PP Al Knalkn0) (5.2)
PN P

ex(kn) + Va—en(pn) —&a(Pa) ’
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where ¢y is the kinetic energy of Y, and ey the nucleon s.p. energy (ex = &y+ Vy, Where
Vy is the nucleon s.p. potential). To simplify our formulae, we assume here that vy, is
central, of the pure Wigner type.

Calculation of B,, according to Egs (5.1) and (5.2), have been performed in DH and
[26] with practically identical results. Here, we shall rely on the calculation of DH which
we are going to modify before comparing the resulting values of B, with the Jastrow
method results. (The calculations in DH were done at &z = 1.35fm"!, and the Jastrow
calculations reported in the previous sections were done at kg = 1.366 fm=1. To correct
this difference we multiply ail the DH results by (1.366/1.35)3 before discussing them here.)

The self-consistent standard LOB value of B, depends only indirectly on the NN inter-
action, tnw. through the dispersive effect, i.e., the appearance of the nucleon s.p. energy
ex(ky) in Eq. (5.2). It was found in DH that B, is not very sensitive to changes in the shape
of ex(kn), as long as the average value of ey(ky) in the Fermi sea, éy, remains unchanged.
Consequently, we may replace ey(ky) in Eq. (5:2) by 2y (in DH, this approximation was
called the choice (/i) of the s.p. nucleon potential). In the LOB theory of NM, the
expression for the energy per nucleon in NM, —¢,, is

—&yo = Ent+ V2 = (en+EN)/2, (5.3)
i.e., we have for ey:
en = —[% en(kp) +2¢001]- (5.4

In the LOB calculation of B, at a given value of kg, it is sufficient to assume a given value
of ¢,,;. There is no need to specify vyy. The tacit assumption concerning vyy is here that
in the LOB theory of NM it leads to the assumed value of ¢,.

TABLE V
LOB values of Bp (in (MeV) and of xna at kg = 1,336 fm™*
UNA Ba(DH) KNA BA(OMY) Uncertainty in BA(OMY)
HNX 56.7 0.23 59.5 46-73
ENX ‘ 61.1 0.12 62.8 49-77
ENX 55.7 0.12 57.3 45-70
DW 36.5 0.09 | 37.7 29-46

In DH, the assumed value of g, was the empirical value of g,,;(EMP) = 15.8 MeV.
(The resulting self-consistent values of B,, denoted as B,(DH), are shown in Table V.)
On the other hand, in the Jastrow calculations of B,, discussed in the previous sections,
the OMY potential vy was used. This potential, when used in the LOB theory of NM,
leads to g,,(OMY) = 8.2 MeV at kp = 1.366 fm~! [27]. Hence, to make a meaningful
comparison between the LOB and Jastrow results for B,, we should use the value of
£, = 8.2 MeV as the input in the LOB calculations, instead of the value of 15.8 MeV
used in DH. The resulting values of B,, denoted as B,(OMY), are shown in Table V.,
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The values of B,(OMY) have been obtained in the following way. To get the self
consistent value of B,, one solves the K matrix equation, Eq. (5.2), for a few values of
V, = —A4, (4, is the gap in the s.p. A spectrum). For each 4,, one obtains with the help
of Eq. (5.2) a value of B, = f(4,). Self-consistency is achieved when B, = f(B,). In DH,
the curve B, = f(B,) was approximated by a straight line,

B, = rkna[4a— Bo(DH) ]+ BA(DH), (5.5)
with the slope
Kna = 0BA[04,. (5.6)

The values of the derivatives 0B,/04, obtained in DH are shown in Table V. It may
be easily shown (see, e.g., [28] for similar considerations in pure NM) that ky, in Eq. (5.6)
is equal to the NA wound integral.

Now, let us estimate the inaccuracy of the LOB method of calculating B,. The LOB
method is the first step in the hole-line expansion. In pure NM, simple considerations
suggest (see {25], [29]) that by introducing into a diagram an additional independent hole
line, we change its contribution to Eyy by a factor of order xyy (the NN wound integral)
which plays the role of the smallness parameter in the hole-line expansion method. The
same considerations applied to diagrams which contribute to B, suggest that by introducing
an additional nucleon hole-line, we change its contribution to B, by a factor of the order
of Ky Or Kya, depending on the location of the additional hole-line. Consequently, we ex-
pect that the order of magnitude of |B,/B,(LOB)| is determined by kyy and xy,. By By
we denote the first correction to B,(LOB) in the hole-line expansion, i.e., the contribution
to B, from the interaction of the A particle and two nucleons (diagrams with the A particle
line and two independent nucleon hole-lines).

For the OMY potential, we have kyy = 0.22 at kg = 1.366 fm™! [27]. This value
of kny is slightly smaller than xy,(HNX), and is bigger than the xy, values for the other
NA potentials, shown in Table V. To be on the safe side, we use the estimate
B, ~ +xB,(LOB), where « is the bigger one of the two wound integrals, icyy and xy,.
The resulting estimated upper and lower limits of B,(LOB)+ B, are shown in the last
column of Table V.

6. Discussion

The striking feature of the results described in the last two sections is, that the Jastrow
results for B, are much bigger than Brueckner results. The biggest discrepancy occurs
for the AN potential HNX with the biggest hard core radius, and with the biggest strength
parameters s. We do not know how to explain this discrepancy, and restrict ourselves to
the following comments.

To remove a similar discrepancy in the case of pure NM, it was essential to go in
the reaction matrix method beyond the LOB approximation, and consider at least the
contribution to Eyy of the three-hole-line diagrams (Day [25]). The corresponding first
correction to B,(LOB) is the sum of the contributions of all B, diagrams with two nucleon-
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-hole lines, denoted by B, in Section 5. Our estimate of the order of magnitude of B,
leads us to the expected ranges of B,(LOB)+ B,, shown in Table V, whose upper limits
agree with the Jastrow results of Table IV (notice that the Jastrow values of B, do not
have any strict lower bound character).

The problem. however, is that the existing estimates of B, suggest that B) is negative,
and a negative B, would increase the discrepancy between B, (Jastrow) and B, (Brueckner).
B, consists of two parts: the rearrangement energy By, and the three-body cluster energy
B,;. For the rearrangement energy, we have the approximate expression derived in [30]

Bar = —KnnBL(LOB), (6.1)

which clearly shows that B,z is negative. To calculate the three-body cluster energy, B,ss
we have to solve the ANN Bethe-Faddeev equation, what is a very serious numerical prob-
lem. So far, B,; has been calculated only in case of simplified separable Puff type [31]
potentials vn, and vy [32]. The resuit for B, ; of [32] is negative, and is supported by an
earlier simple estimate [33] based on the method applied by Moszkowski [34] in pure NM.
However, in view of the numerical difficulties in determining B,;, it certainly would be
desirable to have more results for B, . It should be reminded that also in the case of pure
NM, the early estimates of Eyy;, the three-hole-line contributions to Eyy. could not
remove the discrepancy between the Brueckner and Jastrow method results for Eyy. The
discrepancy disappeared only after the recent extensive calculations by Day (see [25])
produced Values of Eyy; significantly different from the earlier results.

Obviously, the LOB method of calculating B, is burdened with the problem of the
proper choice of the s.p. energies in the K matrix equation. To get an idea about the values
of B, = B,, which one would obtain without any selfenergy insertions into hole lines
{en = &y, VA =0 in Eq. (5.2)), we have applied the linear extrapolation, Eq. (5.5),
and obtained: B,(HNX) =~ 88 MeV, B,(ENX) ~ 78 MeV, B,(E'NX) ~ 72 MeV, and
BA(DW) ~ 47 MeV.

One may show that B, is equal to the lowest order Jastrow value of BY if the NA
correlation function coincides with the corresponding part of the Bethe-Goldstone NA
wave function. In pure NM, an analogical theorem concerning Fyy was shown by Wong
[35]. A look at Table IV shows that the BS values of [4] and [8] approximately agree with
the above values of B,. Now, the NA correlation functions of [4] and [8] have an over-
shoot and thus are similar to the Bethe-Goldstone wave function. This is not the case
with the optimal fy, of our calculation and here we do not find such an agreement between
B} and B,.

The important problem of determining the optimal correlation functions, in partic-
ular the function fy,, has been solved in the present paper in a simplified way. The assumed
parametric form of fy, and fyy might be not sufficiently flexible, and it might be a source
of inaccuracy in our resulting FHNC values of B,. In principle, one should determine
Jua by functional maximalization of BX"™ ¢, similarly as it has been done in the pure Fermi
system by Lantto and Siemens [36].

The error of our FHNC result caused by neglecting elementary diagrams depends
on the shape of the correlation functions, With our correlation functions fy, and fyy, this
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error is not expected to be significant at the density considered (kr = 1.366 fm~'). Namely,
in the case of pure NM at this density, elementary diagrams appear to give relatively small
contributions for the type of the fiyn function used in the present paper [20]. Actually, as we
noticed in Section 4, all the higher order cluster terms, beyond those considered in the LOC
approximation, are very small for our optimal correlation functions. Similarly, a possible
state dependence of the correlation functions is not expected to introduce essential changes
into our FHNC results for B,, for our simple two-body interactions. According to esti-
mates by the Pisa group [37], the state dependence of the correlation functions in the case
of pure NM should change the energy per nucleon by not more than 2 MeV. But obviously,
conclusions based on the analogy! with pure NM should be tested in the B, problem.

It appears that the best way of resolving the problem of the discrepancy between the
Jastrow and Brueckner method of calculating B, would be to consider a model case of simple
central AN and NN hard core potentials of the pure Wigner type. In this model case one
should calculate B, with both methods. In particular in the Brueckner method, one should
calculate accurately the three-hole-line contributions. And in the Jastrow method one
should determine carefully the optimal correlations. Furthermore, one should also calcu-
late the radial distribution functions with the Brueckner meth®d, and compare them with
the Jastrow distribution functions.
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