THE A-PARTICLE BINDING IN NUCLEAR MATTER IN THE FERMI-HYPERNETTED-CHAIN APPROXIMATION AND WITH THE REACTION MATRIX METHOD* #### By W. PIECHOCKI Institute of Nuclear Research, Warsaw** and Institute of Theoretical Physics, Cologne University, Cologne ### and J. Dąbrowski Institute of Nuclear Research, Warsaw** (Received October 13, 1980) The binding energy of the Λ particle in nuclear matter, B_{Λ} , is calculated for a number of central hard core ΛN potentials and for the OMY6 NN potential. Firstly, the Jastrow method in the Fermi-hypernetted-chain (FHNC) approximation is applied. Secondly, the Brueckner reaction method is used. The FHNC results for B_{Λ} are much bigger than the reaction-matrix matrix results. Possible sources of this discrepancy are discussed. PACS numbers: 21.65.+f, 21.80.+a #### 1. Introduction The investigation of the binding energy of a Λ particle in nuclear matter (NM), B_{Λ} , is of considerable interest as it enables us to gain valuable information of the Λ N interaction, $v_{\Lambda N}$. Furthermore, the $\Lambda + NM$ system, i.e., NM with a Λ "impurity", is an interesting testing ground for nuclear many-body theories. In the theoretical analysis of B_{Λ} , two methods have been applied: the Brueckner reaction matrix method, and the Jastrow correlated function method (for a review, see [1]). ^{*} Supported by the Polish-U.S. Maria Skłodowska-Curie Fund under Grant P-F7F037P. ^{**} Address: Instytut Badań Jądrowych, Hoża 69, 00-681 Warszawa, Poland. Most of the existing calculations of B_{Λ} have used the reaction matrix method. Their results may be summarized as follows: - (i) Purely central AN potentials, fitted to Ap scattering and to A binding in A = 3, 4 hypernuclei, with hard cores of radius $c_{\Lambda} \gtrsim 0.4$ fm, and with suppression in odd-angular-momentum states lead to overbinding. The value of B_{Λ} , calculated with these potentials, is about 10 MeV larger than the semiempirical value $B_{\Lambda}(SE) \lesssim 30$ MeV [2]. - (ii) Because of the suppression of $\Lambda\Sigma$ conversion in NM, realistic ΛN interactions with coupling to the ΣN channel lead to values of B_{Λ} which agree with $B_{\Lambda}(SE)$ [3]. The Jastrow type calculations of B_{Λ} have been restricted to central, possibly spin dependent, ΛN interactions. (Suppression in odd-angular-momentum states requires the presence of a space exchange operator in $v_{\Lambda N}$, and has been treated in [4] (see also [5], [6]) only approximately.) So far, several central potentials $v_{\Lambda N}$ have been used in calculating B_{Λ} , both with the reaction matrix and Jastrow method. Values of B_{Λ} obtained with the Jastrow method turn out to be always much bigger than those obtained with the reaction matrix method. The purpose of our paper is to analyse the discrepancy between the values of B_{Λ} obtained by the Jastrow and Brueckner methods with semirealistic ΛN interactions. By semirealistic interactions we mean central, spin dependent ΛN potentials, fitted to Λp scattering and to Λ binding in A=3,4 hypernuclei, with hard cores $c_{\Lambda} \geqslant 0.4$ fm, and without suppression in odd-angular-momentum states. These interactions are not expected to reproduce the semi-empirical value of B_{Λ} . Hence, the present paper is of a methodological significance. Most of the existing Jastrow type calculations of B_{Λ} apply a low order cluster (LOC) expansion method (see, [4, 5, 7, 8]). The LOC approximation proves reasonable only in the case when it is possible to select the class of the trial functions so that all higher order clusters would yield negligible contributions to the energy. This is not possible for an arbitrary density (see, e.g. [9]). When the matter density is sufficiently large, certain subseries of the full cluster expansion consist of cluster terms, or diagrams, which give increasing contributions to the energy with increasing number of points. In this situation, the LOC approximation loses its validity and it is necessary to sum all the diagrams of these subseries. This may be accomplished by solving appropriate integral (chain) equations, as was shown by Fantoni and Rosati [10] who developed the powerful Fermi hypernetted chain (FHNC) method of summation of cluster integrals. This is the reason for which the chain summation method has been recently applied in calculating B_{Λ} [6, 11, 12]. However, these calculations do not seem to be satisfactory due to simplifications of various type. What we mean here is either approximating the expression for B_{Λ} [6, 12], or not applying a full optimization procedure [11, 12], or applying the chain method in its simplest version — the chain (CH) approximation [11]. One of the main accomplishments of the present paper is a chain type calculation of B_{Λ} , which appears to be more adequate than the former ones. Thus the full expression for B_{Λ} is calculated in the FHNC approximation by means of an optimization procedure. We apply the FHNC method for the impurity problem, described in detail in [13], hereafter referred to as DP. Our calculations are performed for a number of semirealistic ΛN potentials. The resulting FHNC values of B_{Λ} do not differ significantly from those obtained previously in the LOC approximation, and are much bigger than the values of B_{Λ} obtained with the same ΛN and NN interactions by applying the reaction matrix method. Consequently, the serious discrepancy between the Jastrow and Brueckner methods of calculating B_{Λ} remains an open problem. The paper is organized as follows. In Section 2, the Jastrow method of calculating B_{Λ} is outlined, and the expression for B_{Λ} in terms of radial distribution functions is derived. In Section 3, we apply the FHNC method of DP to calculate B_{Λ} . The Λ N potentials, and the NN potential as well as the form of the Λ N and NN correlation functions are specified. In Section 4, we compare our results for B_{Λ} with the results of other Jastrow type calculations. In Section 5, we outline the reaction matrix method of calculating B_{Λ} and present the resulting values of B_{Λ} obtained with the Λ N and NN potentials used in our FHNC calculations. In Section 6, we discuss possible sources of the discrepancy between the results obtained for B_{Λ} with the Brueckner and Jastrow methods. ## 2. The Jastrow method of calculating B_{Λ} B_{Λ} is defined by $$B_{\Lambda} = E_{\rm NM} - E_{\Lambda + \rm NM},\tag{2.1}$$ where $E_{\rm NM}$ and $E_{\Lambda+{\rm NM}}$ are the ground state energies of NM and of the $\Lambda+{\rm NM}$ system. Let us denote by H, Ψ_0 , and H, Ψ_0 the hamiltonians and the ground state wave functions of NM and of the $\Lambda+{\rm NM}$ system. We have $$E_{\rm NM} = \langle \Psi_0 | H | \Psi_0 \rangle / \langle \Psi_0 | \Psi_0 \rangle \leqslant \langle \Psi | H | \Psi \rangle / \langle \Psi | \Psi \rangle, \tag{2.2}$$ $$E_{\Lambda+NM} = \langle \Psi_0 | H | \Psi_0 \rangle / \langle \Psi_0 | \Psi_0 \rangle \leqslant \langle \Psi | H | \Psi \rangle / \langle \Psi | \Psi \rangle, \tag{2.3}$$ where the last parts of the two equations, with $\Psi(\Psi)$ being approximate trial functions of the NM(Λ +NM) ground state, express the variational principle. For B_{Λ} we have an approximate expression $$B_{\Lambda} \simeq \frac{\langle \Psi | H | \Psi \rangle}{\langle \Psi | \Psi \rangle} - \frac{\langle \Psi | H | \Psi \rangle}{\langle \Psi | \Psi \rangle} \tag{2.4}$$ which becomes exact for $\Psi \equiv \Psi_0$ and $\Psi \equiv \Psi_0$. If we vary Ψ for a fixed shape of Ψ , expression (2.4) for B_{Λ} attains its maximum for $\Psi \equiv \Psi_0$. On the other hand, if we vary Ψ for a fixed shape of Ψ , expression (2.4) for B_{Λ} attains its minimum for $\Psi = \Psi_0$. For arbitrary shapes of the trial functions Ψ and Ψ , expression (2.4) may be both bigger or smaller than B_{Λ} , in contradistinction to expressions (2.2) and (2.3) which have the properties of upper bounds on E_{NM} and $E_{\Lambda+NM}$. In the Jastrow method, we make the following Ansatz for Ψ and Ψ : $$\Psi(1, ..., A) = \prod_{j < k} f_{NN}(r_{jk}) \Phi(1, ..., A), \qquad (2.5)$$ $$\Psi(\Lambda, 1, ..., A) = \prod_{i} f_{N\Lambda}(r_{i\Lambda}) \varphi_{\Lambda}(\Lambda) \Psi(1, ..., A), \qquad (2.6)$$ where the arguments of the functions indicate the full sets of space, and spin-isospin coordinates of the respective particle. The Slater determinant Φ is an antisymmetrized product of single particle wave functions (products of spin-isospin functions and plane wave functions normalized in the periodicity box of volume Ω). The function $\varphi_{\Lambda}(\Lambda)$ is the Λ particle spin function multiplied by $\Omega^{-1/2}$, i.e., by the normalized plane wave function with zero momentum (in the ground state of non-interacting $\Lambda + NM$ system, the Λ particle has zero momentum). For the NY (Y = N, Λ) correlation functions, we assume a simple, state independent, parametric form. First, we fix the values of the free parameters in f_{NN} by minimizing the expectation value of the NM hamiltonian, Eq. (2.2). (In practice we use the results of other authors who performed this minimalization.) Then we fix the free parameters in $f_{N\Lambda}$ by maximizing expression (2.4) for B_{Λ} . This maximum value of (2.4) is our Jastrow method result for B_{Λ} . In our procedure, we use the same optimal NN correlation function f_{NN} in pure NM and in the $\Lambda+NM$ system. This is justified
for the following reason. The difference in f_{NN} in NM and in the $\Lambda+NM$, δf_{NN} , is of order 1/A. This difference introduces a change, δE_{NM} , in E_{NM} . Now, E_{NM} is proportional to A, but it attains a minimum for the optimal f_{NN} , $\delta E_{NM}/\delta f_{NN}=0$. Consequently δE_{NM} is proportional to $A\times A^{-2}=A^{-1}$, and the whole difference δf_{NN} may be disregarded. (This point is discussed in [5]; see also the comments after Eq. (4.26) of [14], and Appendix D of [15].) The expectation value of H may be expressed in terms of the one- and two-body distribution functions of the $\Lambda + NM$ system. $$\varrho \mathbf{g}_{N}(\mathbf{x}) = \langle \boldsymbol{\Psi} | \sum_{i} \delta(\mathbf{r}_{i} - \mathbf{x}) | \boldsymbol{\Psi} \rangle / \langle \boldsymbol{\Psi} | \boldsymbol{\Psi} \rangle, \qquad (2.7)$$ $$\varrho^2 g_{NN}(x_1, x_2) = \varrho^2 f_{NN}^2(x_{12}) \mathcal{G}_{NN}(x_{12})$$ $$= \langle \Psi | \sum_{i \neq j} \delta(\mathbf{r}_i - \mathbf{x}_1) \delta(\mathbf{r}_j - \mathbf{x}_2) | \Psi \rangle / \langle \Psi | \Psi \rangle, \qquad (2.8)$$ $$\Omega^{-1} \varrho \mathbf{g}_{\mathrm{N}\Lambda}(\mathbf{x}_{1}, \mathbf{x}_{\Lambda}) = \Omega^{-1} \varrho f_{\mathrm{N}\Lambda}^{2}(\mathbf{x}_{1\Lambda}) \mathcal{G}_{\mathrm{N}\Lambda}(\mathbf{x}_{1\Lambda})$$ $$= \langle \boldsymbol{\Psi} | \sum_{i} \delta(\boldsymbol{r}_{i} - \boldsymbol{x}_{1}) \delta(\boldsymbol{r}_{\Lambda} - \boldsymbol{x}_{\Lambda}) | \boldsymbol{\Psi} \rangle / \langle \boldsymbol{\Psi} | \boldsymbol{\Psi} \rangle, \tag{2.9}$$ where $\varrho = A/\Omega$ is the density of nucleons ($\varrho = 2k_{\rm F}^3/3\pi^2$, where $k_{\rm F}$ is the Fermi momentum of NM in units of h). Similarly, the expectation value of H may be expressed in terms of the one- and two-body distribution function of NM, $g_{\rm N}$ and $g_{\rm NN}$, defined by Eqs (2.7) and (2.8) with Ψ replaced by Ψ . For the difference in the two expectation values, Eq. (2.4), we get $$-B_{\Lambda} = \tilde{V}_{N\Lambda} + \Delta \tilde{V}_{NN} + \frac{1}{4} (\hbar^2 / 2M_N) \Delta \tau, \qquad (2.10)$$ where $$\tilde{V}_{NA} = \varrho \int d\mathbf{r} f_{NA}^2(\mathbf{r}) \mathcal{G}_{NA}(\mathbf{r}) \tilde{v}_{NA}(\mathbf{r}), \qquad (2.11)$$ $$\Delta \tilde{V}_{NN} = \frac{1}{2} \varrho^2 \Omega \int dr f_{NN}^2(r) \hat{\mathcal{G}}_{NN}(r) \tilde{v}_{NN}(r), \qquad (2.12)$$ $$\Delta \tau = \varrho \int d\mathbf{r} \Delta^{\mathbf{o}} [\mathbf{g}_{N}(\mathbf{r}) - \mathbf{g}_{N}(\mathbf{r})], \qquad (2.13)$$ where $\hat{\mathcal{G}}_{NN} = \mathcal{G}_{NN} - \mathcal{G}_{NN}$, and the effective two-body potentials are: $$\tilde{v}_{NN}(r) = v_{NN}(r) + \frac{1}{2} (h^2/M_N) \left[(\nabla f_{NN}(r)/f_{NN})^2 - \Delta f_{NN}(r)/_{JNN} \right], \tag{2.14}$$ $$\tilde{v}_{\mathrm{N}\Lambda}(r) = v_{\mathrm{N}\Lambda}(r) + \frac{1}{4} h^2 \left[(M_{\mathrm{N}} + M_{\Lambda})/M_{\mathrm{N}} M_{\Lambda} \right] \left[(\nabla f_{\mathrm{N}\Lambda}(r)/f_{\mathrm{N}\Lambda})^2 - \Delta f_{\mathrm{N}\Lambda}(r)/f_{\mathrm{N}\Lambda} \right], \tag{2.15}$$ where $v_{\rm NY}$ is the NY potential. (To simplify the formulae, we assume here that $v_{\rm NY}$ is of pure Wigner type.) Notice that for the Jastrow trial functions, Eqs. (2.5), (2.6), and for the Jackson-Feenberg form of the kinetic energy applied here, only one- and two-body distribution functions appear in our formulae. By Δ^{Φ} , we denote in (2.13) the Laplace operator acting on r which appears in the $|\Phi|^2$ component of the one-body distribution functions. In calculating the radial distribution functions, we apply the FHNC method described in detail in DP. In the FHNC method, we approximate the complete cluster expansion of the distribution function by hypernetted chains of cluster integrals. The summation of these hypernetted chains is accomplished by solving (numerically) the chain equations derived in DP. ## 3. Calculational procedure and FHNC results for B_{Λ} In our calculations, we have used the OMY [16] NN interaction, $$v_{NN} = \begin{cases} \infty, & r \leqslant c_{N}, \\ \frac{1}{2} (1 + P_{r}) \left\{ \frac{1}{2} (1 + P_{\sigma}) v_{NN}^{t}(r) + \frac{1}{2} (1 - P_{\sigma}) v_{NN}^{s}(r) \right\}, & r > c_{N}, \end{cases}$$ (3.1) where P_r and P_σ are the space and spin exchange operators, and $$v_{\text{NN}}^{t,s}(r) = -V_{\text{NN}}^{t,s} \exp\left[-\kappa_{t,s}(r-c_{\text{N}})\right].$$ (3.2) The parameters of this potential are: $$c_{\text{N}} = 0.6 \text{ fm}, \quad \kappa_{t} = 3.6765 \text{ fm}^{-1}, \quad \kappa_{s} = 2.6272 \text{ fm}^{-1},$$ $$V_{\text{NN}}^{t} = 947.02 \text{ MeV}, \quad V_{\text{NN}}^{s} = 397.31 \text{ MeV}. \tag{3.3}$$ We chose the OMY potential, because it has been used in almost all Jastrow type calculations of B_{Λ} [4-8, 11]. For the NA interactions we use the potentials HNX, ENX, E'NX of Herndon and Tang [17], and the potential DW of Downs and Ware [18]. Our notation for the potentials is the same as in [19] (hereafter referred to as DH), e.g. HNX is the potential H of [17] with no exchange (x = 0). All these potentials have the following form: $$v_{N\Lambda} = \begin{cases} \infty, & r \leqslant c_{\Lambda}, \\ \frac{1}{2} \left(1 + P_{\sigma} \right) v_{N\Lambda}^{t}(r) + \frac{1}{2} \left(1 - P_{\sigma} \right) v_{N\Lambda}^{s}(r), & r \geqslant c_{\Lambda}, \end{cases}$$ (3.4) where $$v_{NA}^{t,s}(r) = -V_{NA}^{t,s} \exp\left[-\lambda(r-c_A)\right]. \tag{3.5}$$ The parameters of these potentials are given in Table I, which also contains the intrinsic range b, and the triplet and singlet well-depth parameters s_t , s_s . All these potentials have been used in several previous calculations of B_{Λ} . Parameters of v_{NA} TABLE I | UNA | c _A (fm) | λ
(fm ⁻¹) | b (fm) | V _{NA}
(MeV) | V _{NA} (MeV) | St | <i>S</i> _S | |-------------------|---------------------|--------------------------|--------|--------------------------|-----------------------|-------|-----------------------| | HNXa | 0.6 | 3.935 | 2.1 | 676.9 | 713.1 | 0.792 | 0.834 | | ENX ^a | 0.45 | 3.219 | 2.0 | 402.1 | 451.7 | 0.703 | 0.790 | | E'NX ^a | 0.45 | 3.219 | 2.0 | 378.7 | 459.5 | 0.662 | 0.803 | | DW^b | 0.4 | 3.219 | 1.9 | 330.9 | 330.9 | 0.578 | 0.578 | a Ref. [17]. b Ref. [18]. For the correlation functions, we assume the following form: $$f_{NY}(r) = \begin{cases} 0, & r \leqslant c_{Y}, \\ \left\{1 - \exp\left[-\alpha_{Y}(r - c_{Y})\right]\right\} \left\{1 + \beta_{Y} \exp\left[-\gamma_{Y}(r - c_{Y})\right]\right\}, & r > c_{Y}. \end{cases}$$ (3.6) This form of the NN correlation function was used by the Pisa group [20] in the NM calculation, in which the expectation value of the NM hamiltonian, in the FHNC approximation, with the OMY interaction was minimized with respect to the parameters of the NN correlation function, Eq. (3.6), under the subsidiary "average Pauli condition", $$\varrho \int d\mathbf{r} [1 - f_{\text{NN}}(\mathbf{r})] g_{\text{F}}(\mathbf{r}) = 0, \tag{3.7}$$ where $g_F(r)$ is the radial distribution function of noninteracting NM. The parameters of this correlation function (which we denote by f_{NN}^P), for $k_F = 1.366 \, \text{fm}^{-1}$, are given in Table II which also contains the value, $I_N(FHNC)$, of the normalization integral $$I_{N} = \varrho \int d\mathbf{r} [1 - g_{NN}(\mathbf{r})], \qquad (3.8)$$ for g_{NN} calculated in the FHNC approximation. The fact that the value of I_N is very close to one indicates a good accuracy of the FHNC approximation with the f_{NN}^P correlation function $(I_N = 1 \text{ for an exact } g_{NN})$. TABLE II 0.87 | Parameters | of f_{NN} and values o | t I _N (FHNC) | | |---|--------------------------|-------------------------------|-----------------------| | $\alpha_{\mathbf{N}}(\mathrm{fm}^{-1})$ | $eta_{ m N}$ | $\gamma_{ m N}({ m fm}^{-1})$ | I _N (FHNC) | | 2 5a | 0 884a | 2 0a | 1.06 | To test the sensitivity of the calculated value of B_{Λ} to the shape of f_{NN} , we have also used the NN correlation function f_{NN}^{MC} of Mueller and Clark [4] who minimized (at $k_{\rm F} = 1.366 \, {\rm fm}^{-1}$) the expectation value of the NM hamiltonian (with $v_{\rm NN}({\rm OMY})$) in the lowest (two-body) cluster approximation, with the subsidiary normalization condition $$\varrho \int d\mathbf{r} [f_{NN}^2(\mathbf{r}) - 1] g_F(\mathbf{r}) = 0, \tag{3.9}$$ which expresses the lowest (two-body) cluster approximation to the requirement, $I_N = 1$. The parameters of f_{NN}^{MC} , as well as the corresponding value of $I_{N}(FHNC)$, are given in Table II. The NN and N Λ interactions, and the NN and N Λ correlation functions described above, were used in calculating B_{Λ} according to Eq. (2.10). Since our interactions depend on spin and parity, we applied the properly modified form of expressions (2.11) and (2.12), given in Appendix C of DP. The main computational effort of this work consisted in determining $\mathscr{G}_{N\Lambda}$ and $\hat{\mathscr{G}}_{NN}$. The functions $\mathscr{G}_{N\Lambda}$ and $\hat{\mathscr{G}}_{NN}$ were determined by solving chain Eqs. (4.6) and (4.14) od DP, respectively. Both systems of chain equations, (4.6) and (4.14) of DP, require the knowledge of the radial distribution function in pure NM, $g_{NN} = f_{NN}^2 \mathcal{G}_{NN}$, which was determined by solving chain equations (A.5-8) of DP. Each of the three systems of chain equations was solved numerically by an iterative procedure. In the chain equations for the chain functions (denoted in DP by N_{mn}) in a given iteration, the link functions (denoted in DP by X_{mn}) resulting from the previous iteration were used. Consequently, the chain equations in a given iteration were systems of linear integral equations which were solved in terms of Fourier transforms. The $\Delta \tau$ part of
B_{Λ} , Eq. (2.10), turned out to be very small (of the order of our numerical accuracy) and therefore have been neglected. Notice, that the corresponding τ term gives only a very small contribution to NM binding. Now, the $\Delta \tau$ term in (2.10) represents the change in τ caused by the presence of Λ in NM, and one expects it to be very small. The determination of B_{Λ} consists in finding the maximum value of expression (2.10) for B_{Λ} with respect to the parameters in $f_{N\Lambda}$. With $f_{N\Lambda}$ given by Eq. (3.6), it would require a search for a maximum in three-dimensional parameter space. The size of the computation of B_{Λ} for a given f_{NA} prevented us from such an extensive search, and led us to consider a restricted two-parameter version of expression (3.6) for $f_{N\Lambda}$ with $\alpha_{\Lambda} = \gamma_{\Lambda}$. To justify our procedure, let us mention that the one-parameter f_{NA} function (a special case ($\beta_A = 0$) of our two-param- ^a Ref. [20]. ^b Ref. [4]. eter function) was found by Clark and Mueller [5] to work almost as well as the more elaborate $f_{N\Lambda}$ function [4] in their Iwamoto-Yamada cluster expansion method of calculating B_{Λ} . Moreover, we know that an optimal three-parameter $N\Lambda$ correlation function of Eq. (3.6) would obviously lead to an even bigger value of B_{Λ} than our two-parameter function. All the calculations have been performed for $k_{\rm F} = 1.366 \, {\rm fm^{-1}}$ with the NN correlation function $f_{\rm NN}^{\rm P}$, and for comparison, also with $f_{\rm NN}^{\rm MC}$. Our results are shown in Table III. TABLE III FHNC results for B_{Λ} obtained for $k_{\rm F}=1.366~{\rm fm^{-1}}$ with the two-parameter $f_{\rm N\Lambda}$ with the indicated optimal values of $\alpha_{\Lambda}=\gamma_{\Lambda}$, and β_{Λ} | $v_{ extbf{N}\Lambda}$ | Inn | α_{Λ} (fm ⁻¹) | $eta_{f \Lambda}$ | $-\tilde{V}_{N\Lambda}$ (MeV) | $-\Delta \tilde{V}_{NN}$ (MeV | B_{Λ} (MeV) | |------------------------|-----|--|-------------------|-------------------------------|-------------------------------|---------------------| | HNX | P | 6.0 | -0.05 | 80.1 | -3.1 | 77.0 | | | MC | 6.5 | -0.10 | 80.0 | -3.9 | 76.1 | | ENX | P | 6.3 | -0.25 | 69.8 | -1.5 | 68.3 | | ENX | MC | 6.3 | -0.20 | 69.7 | -1.9 | 67.7 | | E'NX | P | 6.0 | -0.20 | 64.3 | -1.5 | 62.7 | | | MC | 6.0 | -0.20 | 64.2 | -2.0 | 62.2 | | DW | P | 5.5 | 0.05 | 44.7 | -1.1 | 43.6 | | | MC | 5.5 | 0.05 | 44.7 | -1.4 | 43.3 | We see that values of B_{Λ} obtained with f_{NN}^P are systematically larger than those obtained with f_{NN}^{MC} . We consider f_{NN}^P to be a better correlation function since it is optimized in the FHNC scheme and gives the value of I_N closer to one than f_{NN}^{MC} does. And by changing f_{NN}^{MC} into f_{NN}^P , we expect to improve the wave function Ψ , Eq. (2.5), of NM, and also the wave function Ψ , Eq. (2.6), of the $\Lambda + NM$ system. These simultaneous improvements lead to an increase in B_{Λ} , Eq. (2.4), which is practically equal to the decrease in $\Delta \tilde{V}_{NN}$. ## 4. Comparison with other Jastrow type calculations of B_{Λ} We start with the LOC calculations of B_{Λ} . In these calculations, only few leading terms in the cluster expansion of radial distribution functions (2.7-9) are taken into account. For comparison with our FHNC results, we choose the work by Mueller and Clark [4], [5], and by Ali, Grypeos, and Kargas [8]. Mueller and Clark [4] apply the Iwamoto-Yamada [21] cluster expansion, and for f_{NA} assume the form: $$f_{N\Lambda}(r) = \begin{cases} 0, & r \leqslant c_{\Lambda}, \\ \left\{1 - (c_{\Lambda}/r) \exp\left[-\tilde{\alpha}_{\Lambda}(r - c_{\Lambda})\right]\right\} \left\{1 + \tilde{\beta}_{\Lambda} \exp\left[-\tilde{\gamma}_{\Lambda}(r - c_{\Lambda})\right]\right\}, & r > c_{\Lambda}, \end{cases}$$ (4.1) with the subsidiary normalization condition (compare (3.9)): $$\varrho \int d\mathbf{r} [f_{NA}^2(\mathbf{r}) - 1] = 0. \tag{4.2}$$ For $v_{\rm NN}({\rm OMY})$ and with the NN correlation function $f_{\rm NN}^{\rm MC}$ (see Table II), they determine the parameters $\tilde{\alpha}_{\Lambda}$, $\tilde{\beta}_{\Lambda}$, $\tilde{\gamma}_{\Lambda}$ by maximizing B_{Λ} in the Iwamoto-Yamada approximation. The optimal values of $\tilde{\alpha}_{\Lambda} = \gamma$, $\tilde{\beta}_{\Lambda} = \mu$, $\tilde{\gamma}_{\Lambda} = \nu$ are given in Table III of [4]. (Throughout the present paper, we use results of their procedure (i).) Their results for B_{Λ} , denoted by $B_{\Lambda}^{\rm IY}$, are given in Table IV. Actually, Mueller and Clark consider NA potentials H, E, E' of [14], with suppression in odd angular-momentum states. (They treat the suppression TABLE IV Results of Jastrow type calculations of B_{Λ} in MeV at $k_{\rm F}=1.366~{\rm fm^{-1}}$ for OMY NN interaction (except for [12]) | Ref. | HNX | | ENX | E'NX | DW | |--|--|----|------|------|----| | The state of s | Β ⁰ Λ | 83 | 77 | 70 | 46 | | 4] | $B_{\Lambda}^{\mathrm{IY}}$ | 74 | 71 | 65 | 42 | | | $\mathscr{B}_{\Lambda}^{\mathrm{IY}}$ | 75 | 71 | 65 | 42 | | [8] | B_{Λ}^{0} | 89 | 80 | 74 | 48 | | | $egin{array}{c} B_{\Lambda}^0 \ \mathscr{B}_{\Lambda}^{\mathrm{IY}} \end{array}$ | 75 | 71 | 65 | 42 | | 11] | $B_{\Lambda}^{\mathrm{CH}}$ | 71 | 70 | 63 | 40 | | | ^ℬ Λ | 77 | 72 | 65 | 43 | | 6] | $\mathscr{B}_{\Lambda}^{ ext{FHNC}}$ | 80 | . 75 | 68 | 45 | | [12] | $B_{\Lambda}^{ ext{FHNC}}$ | 78 | 73 | 65 | 44 | | present | B_{Λ}^{0} | 74 | 70 | 64 | 43 | | calcul. | $B_{\Lambda}^{\mathrm{FHNC}}$ | 77 | 68 | 63 | 44 | in the approximation, in which the NA space exchange operator does not act on the correlation function.) The values of B_{Λ}^{IY} in Table IV have been obtained by rejecting the suppression effect (with the help of Table IV of [4]). Westhaus and Clark [22] (see also [5]) derived an expression for B_{Λ} alternative to (2.10), by assuming that Ψ in (2.6) is the exact wave function of NM ground state. With this assumption, definition (2.4) of B_{Λ} leads to: $$\mathscr{B}_{\Lambda} = -\varrho \int d\mathbf{r} f_{N\Lambda}^2(\mathbf{r}) \mathscr{G}_{N\Lambda}(\mathbf{r}) w_{N\Lambda}(\mathbf{r}), \tag{4.3}$$ where $$w_{\text{NA}}(r) = \tilde{v}_{\text{NA}}(r) + (\hbar^2/4M_{\text{N}}) \left[(\nabla f_{\text{NA}}(r)/f_{\text{NA}})^2 + \Delta f_{\text{NA}}(r)/f_{\text{NA}} \right]. \tag{4.4}$$ To derive Eq. (4.3), no assumption concerning the specific form of Ψ is necessary. However, if we want to use Eq. (4.3), we have to calculate \mathscr{G}_{NA} . And to do it, we have to know Ψ . Here, we make Ansatz (2.5) for Ψ , and calculate $\mathscr{G}_{N\Lambda}$ by applying cluster expansion. Now, Ψ given by (2.5) is not the exact ground state wave function of NM, and consequently expression (4.3) is an approximate one. We use the notation \mathscr{B}_{Λ} for expression (4.3), to visualize the difference between (4.3) and our original expression (2.10) for B_{Λ} . Notice that \mathscr{B}_{Λ} , in contradistinction to B_{Λ} , does not depend explicitly on v_{NN} . Results for \mathcal{B}_{Λ} , $\mathcal{B}_{\Lambda}^{IY}$, obtained with the Iwamoto-Yamada approximation to $\mathcal{G}_{N\Lambda}$, and with the ΛN and NN correlation functions of [4], are shown in Table IV. The paper by Ali, Grypeos, and Kargas [8] is based on the cluster expansion scheme of Aviles [23], applied to the Λ binding problem by Downs and Grypeos [7]. In the low order approximation (three points), used in [8], the cluster expansion scheme
of Aviles applied to the B_{Λ} problem coincides with the Iwamoto-Yamada approximation. For this reason, we denote the results of [8] with the superscript IY. The ΛN correlation function is determined in [8] by maximizing B_{Λ} in the lowest order of the cluster expansion (in this order $B_{\Lambda} = \mathcal{B}_{\Lambda}$), with the subsidiary healing condition, $$\kappa_{N\Lambda}^{I} = \varrho \int d\mathbf{r} (f_{N\Lambda} - 1)^2 = \text{const.}$$ (4.5) The Lagrange multiplier, which appears in the Euler equation for f_{NA} , is determined by maximizing the sum of the lowest and next order term in the cluster expansion of \mathcal{B}_{A} . The results of [8], denoted by \mathcal{B}_{A}^{IY} , obtained with the NN correlation function f_{NN}^{MC} (see Table II) are shown in Table IV. The use of f_{NN}^{MC} implies that the OMY NN interaction is assumed. Notice that for a given NA interaction, all the LOC results, B_{Λ}^{IY} and $\mathcal{B}_{\Lambda}^{IY}$, shown in Table IV are identical, except for a small (1 MeV) discrepancy between B_{Λ}^{IY} and $\mathcal{B}_{\Lambda}^{IY}$ in the case of the HNX interaction. Now let us turn to the recent calculations of B_{Λ} which apply the chain summation technique. The simplest chain summation is accomplished in the CH approximation. In this approximation, the summation is restricted to single chains built of the simplest links, without parallel connection of chains (see DP). The CH results for B_{Λ} and \mathcal{B}_{Λ} , B_{Λ}^{CH} and $\mathcal{B}_{\Lambda}^{\text{CH}}$, obtained in [11] and [15] for $v_{\text{NN}}(\text{OMY})$ with the Mueller-Clark form of f_{NA} , Eq. (4.1), and with $f_{\text{NN}}^{\text{MC}}$ (see Table II), are shown in Table IV. The reliability of these results appears to be less certain because they have been obtained without any optimization procedure, and with the very simple CH approximation. An FHNC calculation of \mathcal{B}_{Λ} has been performed by Barbato [6]. Her results, $\mathcal{B}_{\Lambda}^{\text{FHNC}}$, for NA potentials without suppression in odd angular momentum states are shown in Table IV. Among her results, we have selected those obtained with the Mueller-Clark form of f_{NA} , Eq. (4.1), and with $f_{\text{NN}}^{\text{MC}}$ (see Table II) corresponding to $v_{\text{NN}}(\text{OMY})$. Although Barbato performs a complete FHNC calculation, she uses the approximate expression (4.3), i.e., she calculates only \mathcal{B}_{Λ} but not \mathcal{B}_{Λ} . In a recent paper, Usmani [12] derives the FHNC equations for the \tilde{V}_{NA} and $\Delta \tilde{V}_{NN}$ parts of B_{Λ} , Eq. (2.10), which coincide with the corresponding equations of DP (he uses chain equations for \mathcal{G}_{NA} and $\hat{\mathcal{G}}_{NN}$ in the form denoted in DP as Eqs. (4.6) and (4.14)). The $\Delta \tau$ part of B_{Λ} is not considered in [12]. In his numerical calculation of B_{Λ} , Usmani uses the f_{NN}^{MC} form of the NN correlation function (with parameters given in Table II), and $f_{N\Lambda}$ in the form given in Eq. (4.1). The values of the parameters $\tilde{\alpha} = \gamma$, $\tilde{\beta}_{\Lambda} = \mu$, $\tilde{\gamma}_{\Lambda} = \nu$, quoted by Usmani, are the optimal parameters of [4] for the N Λ potential E, and their use for other N Λ potentials would be questionable. In [4], the NN correlation function f_{NN}^{MC} was adjusted to $v_{NN}(OMY)$. In [12], however, f_{NN}^{MC} is used inconsistently, together with the pure Wigner type potential of Tang and Herndon [24], which has a hard core radius $c_{\Lambda} = 0.45$ fm. Furthermore, the values of B_{Λ} at two different densities ϱ are calculated in [12] with unchanged correlation functions, whereas the optimal correlation functions change their shape with changing density. Nevertheless, the B_{Λ}^{FHNC} results obtained by Usmani for B_{Λ} at $k_{F} = 1.366$ fm⁻¹, shown in Table IV, approximately agree with the results of other calculations. Table IV also contains results of our own FHNC calculations (with f_{NN}^{P}) described in Section 4. It is instructive to consider the lowest order (two body) part of B_{Λ} , $$B_{\Lambda}^{0} = \varrho \int d\mathbf{r} f_{N\Lambda}^{2}(\mathbf{r}) \tilde{v}_{N\Lambda}(\mathbf{r}). \tag{4.6}$$ Values of B_{Λ}^{0} for all optimal correlation functions under consideration are given in Table IV (notice that $\mathcal{B}_{\Lambda}^{0} = B_{\Lambda}^{0}$). We see that B_{Λ} is determined predominantly by the lowest order cluster term B_{Λ}^{0} . Next order cluster terms, present in the LOC results, constitute only a correction to B_{Λ}^{0} , of an order of magnitude of 10%. Higher order terms present in the CH and FHNC results are much smaller. Thus, for the class of correlation functions considered, and at the equilibrium density of NM ($k_{\rm F} = 1.366 \, {\rm fm}^{-1}$), the LOC approximation turns to be adequate. ## 5. B_{Λ} calculated with the reaction matrix method The starting point in the reaction matrix method of calculating B_{Λ} (see [1] for a review) is Eq. (2.1) in which both $E_{\rm NM}$ and $E_{\rm NM+\Lambda}$ are expressed in terms of the Brueckner reaction matrices $K_{\rm NN}$ and $K_{\rm N\Lambda}$. Following the systematic approach in terms of the number of hole lines, worked out for pure NM (see [25] for a recent review), we group the contributions to B_{Λ} (energy diagrams) according to the number of interacting particles (number of hole lines). In the low-order Brueckner method (LOB), only diagrams with two hole lines are considered usually with the "standard choice" of pure kinetic single particle (s.p.) energies in the reaction matrix equation. In this "standard" LOB the self-consistent expression for $B_{\Lambda} = -V_{\Lambda}$ ($V_{\Lambda} =$ s.p. potential of zero momentum Λ) is: $$-B_{\Lambda} = V_{\Lambda} = 4 \sum_{\mathbf{k}_{N}}^{<\mathbf{k}_{F}} (\mathbf{k}_{N} \mathbf{k}_{\Lambda} = 0 | K_{N\Lambda} | \mathbf{k}_{N} \mathbf{k}_{\Lambda} = 0), \tag{5.1}$$ with the reaction matrix equation (for $k_N < k_F$): $$K_{\mathrm{NA}}|\mathbf{k}_{\mathrm{N}}0) = v_{\mathrm{NA}}|\mathbf{k}_{\mathrm{N}}0) + \sum_{\mathbf{p}_{\mathrm{N}}}^{\mathbf{k}_{\mathrm{N}}} \sum_{\mathbf{p}_{\mathrm{A}}} \frac{v_{\mathrm{NA}}|\mathbf{p}_{\mathrm{N}}\mathbf{p}_{\mathrm{A}}\rangle (\mathbf{p}_{\mathrm{N}}\mathbf{p}_{\mathrm{A}}|\mathbf{k}_{\mathrm{NA}}|\mathbf{k}_{\mathrm{N}}0)}{e_{\mathrm{N}}(\mathbf{k}_{\mathrm{N}}) + V_{\mathrm{A}} - \varepsilon_{\mathrm{N}}(\mathbf{p}_{\mathrm{N}}) - \varepsilon_{\mathrm{A}}(\mathbf{p}_{\mathrm{A}})},$$ (5.2) where $\varepsilon_{\rm Y}$ is the kinetic energy of Y, and $e_{\rm N}$ the nucleon s.p. energy ($e_{\rm N}=\varepsilon_{\rm N}+V_{\rm N}$, where $V_{\rm N}$ is the nucleon s.p. potential). To simplify our formulae, we assume here that $v_{\rm NA}$ is central, of the pure Wigner type. Calculation of B_{Λ} , according to Eqs (5.1) and (5.2), have been performed in DH and [26] with practically identical results. Here, we shall rely on the calculation of DH which we are going to modify before comparing the resulting values of B_{Λ} with the Jastrow method results. (The calculations in DH were done at $k_{\rm F} = 1.35 \, {\rm fm}^{-1}$, and the Jastrow calculations reported in the previous sections were done at $k_{\rm F} = 1.366 \, {\rm fm}^{-1}$. To correct this difference we multiply all the DH results by $(1.366/1.35)^3$ before discussing them here.) The self-consistent standard LOB value of B_{Λ} depends only indirectly on the NN interaction, v_{NN} , through the dispersive effect, i.e., the appearance of the nucleon s.p. energy $e_{N}(k_{N})$ in Eq. (5.2). It was found in DH that B_{Λ} is not very sensitive to changes in the shape of $e_{N}(k_{N})$, as long as the average value of $e_{N}(k_{N})$ in the Fermi sea, \bar{e}_{N} , remains unchanged. Consequently, we may replace $e_{N}(k_{N})$ in Eq. (5.2) by \bar{e}_{N} (in DH, this approximation was called the choice (iii) of the s.p. nucleon potential). In the LOB theory of NM, the expression for the energy per nucleon in NM, $-\varepsilon_{vol}$, is $$-\varepsilon_{\text{vol}} = \bar{\varepsilon}_{\text{N}} + \bar{V}_{\text{N}}/2 = (\bar{e}_{\text{N}} + \bar{\varepsilon}_{\text{N}})/2, \tag{5.3}$$ i.e., we have for \bar{e}_{N} : $$\bar{e}_{N} = -\left[\frac{3}{5} \varepsilon_{N}(k_{\rm F}) + 2\varepsilon_{\rm vol}\right]. \tag{5.4}$$ In the LOB calculation of B_{Λ} at a given value of $k_{\rm F}$, it is sufficient to assume a given value of $\varepsilon_{\rm vol}$. There is no need to specify $v_{\rm NN}$. The tacit assumption concerning $v_{\rm NN}$ is here that in the LOB theory of NM it leads to the assumed value of $\varepsilon_{\rm vol}$. TABLE V LOB values of B_{Λ} (in (MeV) and of $\kappa_{\rm N\Lambda}$ at $k_{\rm F}=1.336\,{\rm fm}^{-1}$ | $v_{ m NA}$ | $B_{\Lambda}(\mathrm{DH})$ | к <mark>N</mark> A | $B_{\Lambda}(OMY)$ | Uncertainty in $B_{\Lambda}(OMY)$ | |-------------|----------------------------|--------------------|--------------------|-----------------------------------| | HNX | 56.7 | 0.23 | 59.5 | 46–73 | | ENX | 61.1 | 0.12 | 62.8 | 49–77 | | E'NX | 55.7 | 0.12 | 57.3 | 45–70 | | DW | 36.5 | 0.09 | 37.7 | 29–46 | In DH, the assumed value of $\varepsilon_{\rm vol}$ was the empirical value of $\varepsilon_{\rm vol}(\rm EMP)=15.8~\rm MeV$. (The resulting self-consistent values of B_{Λ} , denoted as $B_{\Lambda}(\rm DH)$, are shown in Table V.) On the other hand, in the Jastrow calculations of B_{Λ} , discussed in the previous sections, the OMY potential $v_{\rm NN}$ was used. This potential, when used in the LOB theory of NM,
leads to $\varepsilon_{\rm vol}(\rm OMY)=8.2~\rm MeV$ at $k_{\rm F}=1.366~\rm fm^{-1}$ [27]. Hence, to make a meaningful comparison between the LOB and Jastrow results for B_{Λ} , we should use the value of $\varepsilon_{\rm vol}=8.2~\rm MeV$ as the input in the LOB calculations, instead of the value of 15.8 MeV used in DH. The resulting values of B_{Λ} , denoted as $B_{\Lambda}(\rm OMY)$, are shown in Table V. The values of $B_{\Lambda}(OMY)$ have been obtained in the following way. To get the self consistent value of B_{Λ} , one solves the K matrix equation, Eq. (5.2), for a few values of $V_{\Lambda} = -\Delta_{\Lambda} (\Delta_{\Lambda})$ is the gap in the s.p. Λ spectrum. For each Δ_{Λ} , one obtains with the help of Eq. (5.2) a value of $B_{\Lambda} = f(\Delta_{\Lambda})$. Self-consistency is achieved when $B_{\Lambda} = f(B_{\Lambda})$. In DH, the curve $B_{\Lambda} = f(B_{\Lambda})$ was approximated by a straight line, $$B_{\Lambda} = \kappa_{\text{N}\Lambda} [\Delta_{\Lambda} - B_{\Lambda}(\text{DH})] + B_{\Lambda}(\text{DH}), \tag{5.5}$$ with the slope $$\kappa_{N\Lambda} = \partial B_{\Lambda} / \partial \Delta_{\Lambda}. \tag{5.6}$$ The values of the derivatives $\partial B_{\Lambda}/\partial \Delta_{\Lambda}$ obtained in DH are shown in Table V. It may be easily shown (see, e.g., [28] for similar considerations in pure NM) that $\kappa_{N\Lambda}$ in Eq. (5.6) is equal to the N Λ wound integral. Now, let us estimate the inaccuracy of the LOB method of calculating B_{Λ} . The LOB method is the first step in the hole-line expansion. In pure NM, simple considerations suggest (see [25], [29]) that by introducing into a diagram an additional independent hole line, we change its contribution to $E_{\rm NM}$ by a factor of order $\kappa_{\rm NN}$ (the NN wound integral) which plays the role of the smallness parameter in the hole-line expansion method. The same considerations applied to diagrams which contribute to B_{Λ} suggest that by introducing an additional nucleon hole-line, we change its contribution to B_{Λ} by a factor of the order of $\kappa_{\rm NN}$ or $\kappa_{\rm NA}$, depending on the location of the additional hole-line. Consequently, we expect that the order of magnitude of $|B'_{\Lambda}/B_{\Lambda}({\rm LOB})|$ is determined by $\kappa_{\rm NN}$ and $\kappa_{\rm NA}$. By B'_{Λ} we denote the first correction to $B_{\Lambda}({\rm LOB})$ in the hole-line expansion, i.e., the contribution to B_{Λ} from the interaction of the Λ particle and two nucleons (diagrams with the Λ particle line and two independent nucleon hole-lines). For the OMY potential, we have $\kappa_{\rm NN}=0.22$ at $k_{\rm F}=1.366$ fm⁻¹ [27]. This value of $\kappa_{\rm NN}$ is slightly smaller than $\kappa_{\rm NA}({\rm HNX})$, and is bigger than the $\kappa_{\rm NA}$ values for the other NA potentials, shown in Table V. To be on the safe side, we use the estimate $B_{\Lambda}'\sim\pm\kappa B_{\Lambda}({\rm LOB})$, where κ is the bigger one of the two wound integrals, $\kappa_{\rm NN}$ and $\kappa_{\rm NA}$. The resulting estimated upper and lower limits of $B_{\Lambda}({\rm LOB})+B_{\Lambda}'$ are shown in the last column of Table V. #### 6. Discussion The striking feature of the results described in the last two sections is, that the Jastrow results for B_{Λ} are much bigger than Brueckner results. The biggest discrepancy occurs for the ΛN potential HNX with the biggest hard core radius, and with the biggest strength parameters s. We do not know how to explain this discrepancy, and restrict ourselves to the following comments. To remove a similar discrepancy in the case of pure NM, it was essential to go in the reaction matrix method beyond the LOB approximation, and consider at least the contribution to $E_{\rm NM}$ of the three-hole-line diagrams (Day [25]). The corresponding first correction to $B_{\Lambda}({\rm LOB})$ is the sum of the contributions of all B_{Λ} diagrams with two nucleon- -hole lines, denoted by B'_{Λ} in Section 5. Our estimate of the order of magnitude of B'_{Λ} leads us to the expected ranges of $B_{\Lambda}(LOB) + B'_{\Lambda}$, shown in Table V, whose upper limits agree with the Jastrow results of Table IV (notice that the Jastrow values of B_{Λ} do not have any strict lower bound character). The problem, however, is that the existing estimates of B'_{Λ} suggest that B'_{Λ} is negative, and a negative B'_{Λ} would increase the discrepancy between B_{Λ} (Jastrow) and B_{Λ} (Brueckner). B'_{Λ} consists of two parts: the rearrangement energy $B_{\Lambda R}$, and the three-body cluster energy $B_{\Lambda S}$. For the rearrangement energy, we have the approximate expression derived in [30] $$B_{\Lambda R} = -\kappa_{NN} B_{\Lambda}(LOB), \tag{6.1}$$ which clearly shows that $B_{\Lambda R}$ is negative. To calculate the three-body cluster energy, $B_{\Lambda 3}$, we have to solve the ΛNN Bethe-Faddeev equation, what is a very serious numerical problem. So far, $B_{\Lambda 3}$ has been calculated only in case of simplified separable Puff type [31] potentials $v_{N\Lambda}$ and v_{NN} [32]. The result for $B_{\Lambda 3}$ of [32] is negative, and is supported by an earlier simple estimate [33] based on the method applied by Moszkowski [34] in pure NM. However, in view of the numerical difficulties in determining $B_{\Lambda 3}$, it certainly would be desirable to have more results for $B_{\Lambda 3}$. It should be reminded that also in the case of pure NM, the early estimates of E_{NN3} , the three-hole-line contributions to E_{NM} . could not remove the discrepancy between the Brueckner and Jastrow method results for E_{NM} . The discrepancy disappeared only after the recent extensive calculations by Day (see [25]) produced values of E_{NM3} significantly different from the earlier results. Obviously, the LOB method of calculating B_{Λ} is burdened with the problem of the proper choice of the s.p. energies in the K matrix equation. To get an idea about the values of $B_{\Lambda} = \tilde{B}_{\Lambda}$, which one would obtain without any selfenergy insertions into hole lines $(e_{\rm N} = \varepsilon_{\rm N}, V_{\Lambda} = 0 \text{ in Eq. (5.2)})$, we have applied the linear extrapolation, Eq. (5.5), and obtained: $\tilde{B}_{\Lambda}({\rm HNX}) \simeq 88 \text{ MeV}$, $\tilde{B}_{\Lambda}({\rm ENX}) \simeq 78 \text{ MeV}$, $\tilde{B}_{\Lambda}(E'{\rm NX}) \simeq 72 \text{ MeV}$, and $\tilde{B}_{\Lambda}({\rm DW}) \simeq 47 \text{ MeV}$. One may show that \tilde{B}_{Λ} is equal to the lowest order Jastrow value of B_{Λ}^{0} if the N Λ correlation function coincides with the corresponding part of the Bethe-Goldstone N Λ wave function. In pure NM, an analogical theorem concerning $E_{\rm NM}$ was shown by Wong [35]. A look at Table IV shows that the B_{Λ}^{0} values of [4] and [8] approximately agree with the above values of \tilde{B}_{Λ} . Now, the N Λ correlation functions of [4] and [8] have an overshoot and thus are similar to the Bethe-Goldstone wave function. This is not the case with the optimal $f_{\rm N}_{\Lambda}$ of our calculation and here we do not find such an agreement between B_{Λ}^{0} and \tilde{B}_{Λ} . The important problem of determining the optimal correlation functions, in particular the function f_{NA} , has been solved in the present paper in a simplified way. The assumed parametric form of f_{NA} and f_{NN} might be not sufficiently flexible, and it might be a source of inaccuracy in our resulting FHNC values of B_A . In principle, one should determine f_{NA} by functional maximalization of B_A^{FHNC} , similarly as it has been done in the pure Fermi system by Lantto and Siemens [36]. The error of our FHNC result caused by neglecting elementary diagrams depends on the shape of the correlation functions. With our correlation functions f_{NA} and f_{NN} , this error is not expected to be significant at the density considered ($k_{\rm F}=1.366~{\rm fm^{-1}}$). Namely, in the case of pure NM at this density, elementary diagrams appear to give relatively small contributions for the type of the $f_{\rm NN}$ function used in the present paper [20]. Actually, as we noticed in Section 4, all the higher order cluster terms, beyond those considered in the LOC approximation, are very small for our optimal correlation functions. Similarly, a possible state dependence of the correlation functions is not expected to introduce essential changes into our FHNC results for B_{Λ} , for our simple two-body interactions. According to estimates by the Pisa group [37], the state dependence of the correlation functions in the case of pure NM should change the energy per nucleon by not more than 2 MeV. But obviously, conclusions based on the analogy¹ with pure NM should be tested in the B_{Λ} problem. It appears that the best way of resolving the problem of the discrepancy between the Jastrow and Brueckner method of calculating B_{Λ} would be to consider a model case of simple central ΛN and NN hard core potentials of the pure Wigner type. In this model case one should calculate B_{Λ} with both methods. In particular in the Brueckner method, one should calculate accurately the three-hole-line contributions. And in the Jastrow method one should determine carefully the optimal correlations. Furthermore, one should also calculate the radial distribution functions with the Brueckner method, and compare them with the Jastrow distribution functions. One of the authors (W.P.) expresses his gratitude to Professor M. Ristig for his kind interest in this work and for the hospitality extended to him during his stay at the
Institute for Theoretical Physics of the University at Cologne, financed by the Minister für Wissenschaft und Forschung des Landes Nordrhein-Westfalen under Grant No. 06/0604/68511. He also would like to thank S. Fantoni for making the optimal nucleon-nucleon correlation function available and for his instructive suggestions connected with solving hypernetted-chain equations. Furthermore, he would like to thank T. Chakraborty and P. M. Lam for discussions. The authors are grateful to J. W. Clark, M. Johnson, and R. Panoff for their FHNC nuclear matter program. #### REFERENCES - [1] J. Dąbrowski, Nukleonika 23, 875 (1978). - [2] J. Pniewski, D. Ziemińska, in *Kaon Nuclear Interaction and Hypernuclei*, Proceedings of the Scminar, Zvenigorod, 1977, Izdatelstvo Nauka, Moscow 1979, p. 33. - [3] J. Rożynek, J. Dąbrowski, Phys. Rev. C 20, 1612 (1979). - [4] G. Mueller, J. W. Clark, Nucl. Phys. B7, 227 (1968). - [5] J. W. Clark, G. Mueller, Nuovo Cimento 64B, 217 (1969). - [6] E. Barbato, reprint INFN/BE-79/4, Pisa 1979. - [7] B. W. Downs, M. E. Grypeos, Nuovo Cimento 44B, 306 (1966). - [8] S. Ali, M. E. Grypeos, B. Kargas, Phys. Rev. C 14, 285 (1976). - [9] V. R. Pandharipande, H. A. Bethe, Phys. Rev. C 7, 1312 (1973). ¹ At the equilibrium density of NM, the binding energy per nucleon ε_{vol} is equal to the nucleon separation energy. Consequently, in both the problems of ε_{vol} and of B_{Λ} , we are calculating separation energies. In case of pure NM, it is the separation energy of a nucleon on the top of the Fermi sea of nucleons. In case of the B_{Λ} problem, it is the separation energy of the Λ particle from the zero momentum state. - [10] S. Fantoni, S. Rosati, Nuovo Cimento 25A, 593 (1975). - [11] W. Piechocki, J. Dąbrowski, 1979 International Conference on Hypernuclear and Low Energy Kaon Physics, Jabionna, Sept. 11-14, 1979, Contributed Papers, Institute of Nuclear Research, Warsaw, August 1979, p. 18, and Nukleonika 25, 602 (1980). - [12] Q. N. Usmani, Nucl. Phys. A340, 397 (1980). - [13] J. Dąbrowski, W. Piechocki, Ann. Phys. (N. Y.) 126, 317 (1980). - [14] J. Dąbrowski, W. Piechocki, J. Rożynek, P. Haensel, Acta Phys. Pol. B10, 83 (1979). - [15] W. Piechocki, Ph D thesis, Inst. of Nucl. Res., Warsaw 1980 (in Polish). - [16] T. Ohmura, M. Morita, M. Yamada, Prog. Theor. Phys. 15, 222 (1956). - [17] R. C. Herndon, Y. C. Tang, Phys. Rev. 159, 853 (1967). - [18] B. W. Downs, W. E. Ware, Phys. Rev. 133, B133 (1964). - [19] J. Dąbrowski, M. Y. M. Hassan, Phys. Rev. C1, 1883 (1970). - [20] S. Fantoni, private communication. - [21] F. Iwamoto, M. Yamada, Prog. Theor. Phys. 17, 543 (1957). - [22] P. Westhaus, J. W. Clark, Phys. Lett. 23, 109 (1966). - [23] J. B. Aviles, Ann. Phys. (N. Y.) 5, 251 (1958). - [24] Y. C. Tang, R. C. Herndon, Phys. Lett. 18, 42 (1965). - [25] B. D. Day, Nucl. Phys. A238, 1 (1979). - [26] D. M. Rote, A. R. Bodmer, Nucl. Phys. A148, 97 (1970). - [27] S. O. Backman, J. W. Clark, W. J. Ter Louw, D. A. Chakkalakal, M. L. Ristig, Phys. Lett. 41B, 247 (1972). - [28] C. Mahaux, Nucl. Phys. A163, 299 (1971). - [29] B. D. Day, Rev. Mod. Phys. 39, 719 (1967). - [30] J. Dąbrowski, H. S. Köhler, Phys. Rev. 136, B162 (1964). - [31] R. D. Puff, Ann. Phys. 13, 317 (1961). - [32] A. Daniluk, J. Dąbrowski, Acta Phys. Pol. B11, 675 (1980). - [33] A. Daniluk, J. Dąbrowski, Acta Phys. Pol. B6, 317 (1975). - [34] S. A. Moszkowski, Phys. Rev. 140, B283 (1965). - [35] C. W. Wong, Phys. Rev. C 3, 1087 (1971). - [36] L. J. Lantto, P. J. Siemens, Phys. Lett. 68B, 308 (1977); Nucl. Phys. A317, 55 (1979). - [37] R. Guardiola, A. Polls, S. Fantoni, S. Rosati, Nuovo Cimento 44, 414 (1978).