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1In an earlier work a complex vector algebra for space-time was introduced to provide
an abstract alternative to the matrix based tensor-spinor formalisms now in use. By means
of.the notion of a conjugation, reflections as well as Lorentz rotations in spacetime find
simple expression. The investigation of Hermitian and complex symmetric operators provides
new insight into the principal correlation between the energy-momentum and Weyl tensors:

PACS numbers: 02.10.+w, 03.30.4+p

1. Introduction

In [1], it was shown how the familiar Gibbs-Heaviside vector algebra can be “complex-
ified”” to obtain a powerful complex vector algebra for use in spacetime. The present
work is the completion of the work begun in [I] in the sense that it shows how reflections
as well as rotations in spacetime find simple geometric expression; thus the full Lorentz
group finds more direct expression in complex vector algebra than in any other formalism.
The ideas for this work were generated by the author’s desire to simplify the algebraic
classification of 2nd order tensors of importance in physics, and by the related problem
of trying to find an abstract basis for the so-called spinor formalism [2], [3]. Complex
vector algebra, and its generalization [4] are interesting in their own right because they
provide an alternative conceptual framework upon which can be built the mathematical
and physical theories which today depend upon matrix-tensor-spinor formalisms for their
expression.

Ref. [1] should be considered a prerequisite for reading the present work, since nota-
tion and results from [1] will be used here with little or no comment.

In Section 1, we abstractly define the notion of a conjugation, and find that there
are two kinds of conjugations: proper and improper. Each proper conjugation defines
a unique inertial observer. The space vectors and space bivectors of an observer are,
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respectively, the real and imaginary vectors with respect to the conjugation which defines
that observer. Improper conjugations do not define inertial observers, but generate the
space reflections of observers.

In Section 2, it is shown that the composition of two conjugations in spacetime is
a Lorentz rotation, which suggests that a conjugation is equivalent to the notion of a reflec-
tion in spacetime. The relationship between the composition of conjugations and Lorentz
transformations provides a new basis for the classification of the homogeneous Lorentz
group [5, p. 21]; for example, the composition of two proper conjugations results in a proper
Lorentz rotation, the aggregate of which is a subgroup of the Lorentz group, called the
proper orthochronous Lorentz group SOT(3,1).

In Section 3, the relationship between Hermitian and anti-dual symmetric operators
is studied, and in particular the fundamental role played by the notion of a conjugation in
their definition. Each proper conjugation defines a unique positive definite Hermitian
metric, whereas improper conjugations define indefinite Hermitian metrics. A special
situation arises when the operation of conjugation commutes with an antidual symmetric
operator, and this is the basis for the so-called principal correlation between the energy-
-momentum tensor and a Weyl tensor [3).

In Section 4, the complex vector algebra is embedded in a larger algebra, the Dirac-
-Clifford algebra, in such a way that the elements of the complex vector algebra make-up
the even subalgebra, or Pauli algebra, of the abstract Dirac algebra. It is shown that on
the level of the Dirac algebra a proper conjugation defines a reflection with respect to a time-
-like Dirac vector, and an improper conjugation defines a reflection w.r.t a space-like
Dirac vector. An anti-dual symmetric operator, on the level of the Dirac algebra, is equiva-
lent to a tracefree vector operator [2, 3]. The fact that this vector operator will always
have a real space-like eigenvector is used to prove the existence of a principal correlation;
for it is just the improper conjugation generated by this space-like eigenvector which
commutes with the anti-dual symmetric operator. The section closes with a discussion of
a “boost” in complex vector algebra, and its representation as a 4 x4 matrix.

Finally, it is interesting to note that while the above mentioned principal correlation
finds its clearest expression on the level of the complex vector algebra, its existence has
only been proven on the level of the Dirac algebra. This suggests that perhaps neither
Ievel is the more fundamental, but rather that there is a fruitful interdependence that
needs to be more carefully examined.

2. Proper and improper conjugations

In [1] we defined the conjugation operator of an observer in terms of an orthonormal
rest frame {£,}. The purpose of this section is to give a generalized abstract definition
which later, in Section 4, will lead to the interpretation of a conjugation as a reflection
in spacetime.

Recall that the complex vector algebra # =¥ @ # is the formal sum of the
space € of complex numbers of the form z = x+/y, and the complex 3-dim vector space
2, and has an abstract algebraic structure which is isomorphic to the algebra of Pauli
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matrices, as well as to the algebra of complex quaternions. A Pauli number P = z4+Be &P
consists of a complex scalar part ze € and a complex vector part Be &.

Definition 1. By a conjugation on the complex vector algebra 2, we mean an operator,
denoted by P, which satisfies: (i) Z = x—1Iy, (ii) P, P = P, +P,, (iii) P,P, = P,P,
(iv) P = P for all P,P,,P,€P.

The condition (7) in definition 1 shows that conjugation in 2 coincides with ordinary
complex conjugation when restricted to ¥. A Pauli number P will be said to be real or
imaginary w.r.t the conjugation P if

P=P or P=-pP 1)

respectively. Just as for complex numbers, Pauli numbers can always be decomposed
into real and imaginary parts w.r.t a given conjugation. Thus,

P =3 (P+P)+3(P—P) = 3 (P+P)~3 IUP+IP) = (PD, .+ I{PDim, @
where
{P)e=3(P+P) and <(P)y,= —-1(IP-IP).

We begin our study of conjugations in & with the following
Theorem 1. (i) Ao B= A-B and (ii) AxB= —AxB.
Proof: Recalling from [1, § 1], the definitions

A°B=3%(AB+BA) and AxB = 4 (AB—BA),

the proof of the theorem easily follows from the properties (ii) and (iii) of a conjugation
given in definition 1.

Corollary. (i) If A = A and B =B for A,Be ®, then A°B={A-B), and AxB
= JI(AXB)p,. (i) If A= —A, B= B, then AoB = KA oB),, and AxB = (AxB),,.

In the above corollary we have assumed that with respect to a given conjugation there
will always be real and imaginary vectors. The following lemma guarantees that a conjuga-
tion will always have non-trivial real and imaginary vectors.

Lemma 1. There exists non-trivial complex vectors 4, Be # such that 4 = 4 and
B= -B

Proof: Suppose that B # B for all complex vectors B # 0. Then for B # 0,

B+B = B+B = B+B,

which implies that B+B = 0, or B = —B. By letting 4 = IB we find that 4 = IB = Bl
== B = A, and so by our assumption 4 = 0, which in turn implies that B= —J/4 =0
which is a contradiction.

In [1, thm. 8], we established that a complex null vector can always be expressed in
the canonical form

N = /(1+E)E;, (3

where ¢ is a real scalar and E, and E, are orthonormal, i.e.,

EZ=E?=1 and E-E}=0.
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The following lemma strengthens this result and gives to what extent the canonical form
is unique.
Lemma 2. (i) There exists an orthonormal frame {E;} such that N = (1 +E,)E,.
@) If N = (1+E)E, = (1+E,)E, then E, = ¢**E,e~*" for some complex scalar « € %.
Proof: Using the canonical form (3), define E, = e¥*'1Ee " #¢E't and then calculate

(A1+E)E, = "2 51 + E)Eye™ V295 = B (1 + EE, = ®(1+E))E; = N.

The proof of part (ii) is a consequence of the fact that AXN = 0 iff 4 = BN for some
complex scalar B (see the corollary to thm 3 in [1]). Thus, suppose that E, = eEe™
and that

N = (1+E)E) = (1+e'Eje *)e’E,e™ = e*Ne ™™,

or, equivalently, e*N = Ne?. But this last equality is true iff 4 = aN, as follows from the
above remark.

Lemma 2 shows that a®omplex null vector determines an orthonormal frame which
is unique up to a light-like Lorentz rotation.

Using the above lemmas, we can now establish two important theorems characterizing
the existence of two kinds of conjugations in the complex vector algebra 2. But first
we give

Definition 2. A conjugation P will be said to be proper if it has no real null vectors,
i.e., N # N for all complex null vectors N e 4. If the conjugation P has a real null vector,
N = N, then the conjugation P is said to be improper.

We shall see in Section 4 that proper and improper conjugations correspond to reflec-
tions w.r.t a time-like and a space-like vector in space-time, respectively.

Theorem 2, A conjugation P is improper iff there exists an orthonormal frame {E,}
such that E; = —E;, E; = E,, and E; = —E,.

Proof: The “if*” part of the theorem is easily established, for if there exists such an
orthonormal frame {E.}, then

N = (1+E)E; = E5(1+E}) = (1+E)E, = N.

To establish the “only if”’ part, suppose that N = (1 +E,)E, satisfies N = N. We
will need the following facts, which are easily established: E, o N = E; o N = 0,
E:=E3=1, NE, = E,N=N =N, and E, = E,. From the first fact it follows that
E, = aE;+BN. Using the 2nd and 3rd facts show that « = —1, and applying the fact

that E, = E, shows that § = 2s for some real scalar s. We now define E, = E, —sN,
and verify that

" =E,~SN = —E;+2sN—sN = —(E,—sN) = —E).
Now define E; = e**"E,e " and note with help of lemma 2 that
N =(1+E)E, = (1+E)E, = E5(1+E})) = N = (1+E))E,.
Since —E; < Ej = E, ° E} = 0, we can apply lemma 2 a second time and conclude that

" - -1/
b'l — e”z"’NE',e 1/2 oN and Elz — e1/2wNE12e l,Za)N.
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But this implies that E; = ¢“"E; = E;—~N, so that w = 0 and Ej = E,. Finally, we
check that

Ey = —IE\E, = IE}E| = IE\Ey = —E}

as is required, and the proof is complete.

Corollary. If {E,} is an orthonormal frame satisfying the conditions of theorem 2, then
N = (1+E,)E, satisfies N = 'N.

Theorem 3. A conjugation P is proper iff there exists an orthonormal frame {E,} such
that E, = E, for k = 1, 2, 3.

Proof: Suppose that E, = E,, and let N be any non-trivial null direction. Then we
must show that N # N. From [1, thm. 8}, we know that there exists a real number ¢ and
real (w.r.t P) orthonormal vectors A4,, A, such that N = e®(1 +4,)4,. We can now check
that

N = e?4,(1+4,) = e*(1-A4,)A4, # N.

To prove the “only if” part of the theorem, assume that P is proper. Then lemma 1
guarantees that we can find a complex vector 4 with A = 4. Furthermore, since P is
proper, A% # 0, and we can therefore define E, = 4/(4%)* so that E2 = 1 and
E, = +A/(A>)* = +4/(4®)* = +E,. To complete the construction, define the subspace

&t = {B:Bo E, = 0},

and note that &1 = &+. We can then apply the argument of lemma 1 to the subspace & and
conclude there exists a complex vector A’ € &7 such that 4 = A’. By continuing the
argument ag above, the construction is completed; we have constructed an orthonormal
frame {E,} satisfying the condition E, = 1+ E, for k = 1, 2, 3. Finally, we must check
the indeterminacy of signs: If the signs were (— + +) or (— + —), then the complex null
vector N = (1+E,)E, would satisfy N = N contradicting that P is proper. The only other
incorrect possibility is (— — —). For this case we would have I = E,E,E; = E E,E,
= E,E,E; = I = —I which is impossible!. Thus, we must have E, = E, for k=1,2, 3
as required.

Theorem 3 tells us that a proper conjugation in spacetime determines the rest frame
of an observer, see {1, §4]. The meaning of this last statement will be further discussed in
Section 4.

3. Conjugations and Lorentz rotations

In [1, thm. 9], it was established that a Lorentz rotation can always be put into the
canonical form

L(B) = “Be”€ C))

L ¥f condition (i) of definition 1 is not assumed, the case (— — —) becomes possible (when [ = I),
and can be used to define the operation of space reversion. If a Pauli number is unchanged under space
reversion, it is said to possess Time Symmetry.
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for some C e #. When a conjugation P is specified, we can decompose the Lorentz rota-
tion given in (4) into the composition of an imaginary Lorentz rotation followed by a real
Lorentz rotation. Precisely, we have

Theorem 4. A Lorentz rotation e€ can always be written in the form e€ = e%e® where
A=4and B= —-B.

Proof: Since the composition of Lorentz rotations is itself a Lorentz rotation, and
since the square root of a Lorentz rotation is always well defined, we can define the real

part of the Lorentz rotation €€ by the equation e* = [¢%“]%, and then set ¢® = e~ 4¢°.
We then calculate €24 = €%, from which it follows that

e = € = efef = o4,

so that 4 = A4 as is required. To complete the proof, note that

eBeP = e~ AeCefe4 = 1,
which implies that B = —B as is required.
It is a well known fact that the composition of two reflections in Euclidean space
generates a rotation; we see in the next theorem that the composition of two conjugations

in spacetime is a Lorentz rotation.

Theorem 5. 1If P and P are conjugations in the complex vector algebra 2, then L(B) = B
defines a Lorentz rotation.

Proof: By definition [1, def. 9], a Lorentz rotation preserves the complex inner product
A < B. Thus, we need only verify the steps

L(4)oL(B)= AcB=AcB=A-B=AoB

by using the properties of a conjugation given in definition 1.

Corollary. There exists a complex vector C such that (i) B = eBe™C, (ii) B = ¢“Be™C
and (iif) C = C = "°C.

Proof: Since B is a Lorentz rotation, (i) follows immediately. (ii} follows by substi-
tuting B for B in part (i). To see (iii), first set B = C in part (i), which shows that c=c
Taking the conjugation of this last equality w.r.t P gives C = C. Setting B = C in part (i),
gives

e€Ce*=C=C sothat €C = Ce,

from which it follows that C = «C for some complex scalar «. Finally, by calculating
C = C = «C = @C, we can conclude that « = e'’

The following theorem tells to what extent a Lorentz rotation e relating the conjuga-
tions P and P is arbitrary. But first we will need the

Lemma. If C = C = —C and B = ¢°Be™°, then C = } n/4 for some 4 € & where
A*=1land A=4=4A.
Proof: B = ¢°Be™C implies that

B = B = ¢Be~€ = ¢*CBe™ %€,
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But this is possible only when e*“ = +1 or, equivalently, when
cosh(2C) = +1 and sinh(2C) =0,

which has the solutions C = } knJA4 for integers k and where 42 = 1. Without loss of
generality; we may choose the non-trivial solution ¥ = 1. We then check that C = —4 nI4
= —37ld, so that A = A4 = A.
Theorem 6.1f B = €°Be™C, then either Cis of the form (i) C. = ¢4 or (i) C = (¢p+4n)A
where ¢ is real and 4 = 4 = A4 with 42 = 1, or, (iii) C = N = N = N where N> = 0.
Proof: From the corollary to theorem 5, C = e = C. Defining = etrc,
we can easily check that

C“ = e—l!z!GC = el/ZIGC — C“.

By an argument similar to that used to prove the previous lemma, it can be shown that
C is either of the forms (i) or (if), or, (ii}) C = N where N = N = N and N2 = 0.
Theorem 6 can be used as basis for the classification of the Lorentz group [5, p. 21].
To gain more insight into the relationship between the conjugations P and P, we prove
Theorem 7. Let B = ¢®*Be™** for real ¢ and where 4 = 4 = 4, A2 = 1. Suppose
that De %, and define D’ = ¢** De™%%4, Then D= D iff D' = D’.
Proof: Suppose that D’ is given as in the theorem. Then it is easy to calculate

5! — eéABIe—@d — e¢Ae—l/2¢A5ell2¢Ae-¢A = el/2¢A5e—1/2¢A’
from which the theorem easily follows.

Corollary. The conjugation P is proper (improper) iff the conjugation P is proper
{improper).

Proof: If {E,} is an orthonormal frame of the conjugation P satisfying E, = +E,
for k = 1, 2, 3, then {E,} is an orthonormal frame of the conjugation Psatisfying E; = +E,
where E, = e*®4E,e™ 4,

Definitton 3. If P and P are the proper conjugations of inertial observers, then ¢®4 is
said to be the proper Lorentz rotation relating the observers P and P. The aggregate of all
proper Lorentz rotations form a subgroup of the Lorentz group, called the proper ortho-
chronous Lorentz group SO(3,1). (Note that proper conjugations are never related by
Lorentz rotations of the form e where N = N = N and N2 = ().

We state without proof

Theorem 8. Let B = ¢*'™Be %" — 4B4 where A = A = 4 and 42 = 1. Suppose
that De &, and define D' = ADA. Then D=D < D' =D < D' = D.

Corollary. P is proper (improper) iff P is improper (proper). Theorem 8 and its corollary
show that the space reflections of an observer P are generated by improper conjugations P,

B = ABA. ©)

It follows from (5) that the space reflections of an observer P are Lorentz rotations in
spacetime.
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4. Hermitian operators

Let P be a conjugation in the complex vector algebra #.

Definition 4. (A, B) = A o B for all 4, Be &, is said to be the Hermitian metric of the
conjugation P. (See Ref. [6, p. 243].)

Theorem 9. (A, B) is positive definite (indefinite) iff P is proper (improper).

Proof: Suppose P is proper. Then there exists an orthonormal frame {E;} such
that E, = E, (recalling thm. 3). Letting 4 = o*E, we see that

(A, 4) = AcA=d'9 >0 for A#0.

Suppose now that P is improper. Then, by theorem 2, there exists an N such that N = N.
But then we have

(N, NN =NoN=NoN=0 for N#O,

$0 (4, B) is indefinite.
By the unitary space of an observer with the proper conjugation P, we mean the vector
space & together with the pos. def. Hermitian metric (4, B) = 4 o B.

We wish now to establish the connection between anti-dual symmetric operators
and Hermitian operators [6, p. 268]. Anti-dual symmetric operators were studied in [2, 3],
and are defined by the property

T(A)oB=A-T(B) for A,BeA. 6

Definition 5. By the Hermitian operator of the anti-dual symmetric operator T(B),
we mean the operator H(B) = T(B). Note that in the definition of an Hermitian operator
we have used the conjugation P; a different Hermitian operator would be specified by
H'(B) = T(B), where we are using the conjugation P. To see that H(B) is Hermitian in the
usual sense, we check that-

(H(4),B) = T(A) o B = A+ T(B) = A T(B) = (4,-H(B)), )

so that H = H*, where H* is the adjoint of H w.r.t the Hermitian metric (4, B) = 4 o B.
The Hermitian operator H(B) is (self)dual in the sense that

H(BB) = T(BB) = BT(B) = BH(B) for fe4%.

Dual operators, and in particular, dual symmetric operators were systematically studied
in [2], resulting in the equivalent of what is known as the Petrov classification of the Weyl
tensor [7]. Dual symmetric (w.r.t the complex metric 4 - B) operators satisfy the property
that

S(A)oB=A-S(B) foral A4,Be%, 8)

which is the analogue of the condition (6) for an anti-dual symmetric operator.

The equivalent of an anti-dual symmetric operator, the energy-momentum tensor,
has been studied in the literature in a variety of matrix, tensor, and spinor formalisms, for.
example [8], [9]. However, a new result uncovered in [3] is that the algebraic classification
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of an anti-dual symmetric operator is equivalent to the classification of a dual symmetric
operator once a principal correlation has been found. The notion of a principal correlation
of an anti-dual symmetric operator T(B) is intrinsically tied up with the notion of a conjuga-
tion.

Definition 6. A conjugation P is said to be compatible with T(B) if TG) = T(B) for
all Be #.

Definition 7. If a conjugation P is compatible with T(B), then the Hermitian operator
H(B) = T(B) is said to be a principal correlation of T(B).

It will be shown in the next section that there always exists an improper conjugation
P which is compatible with T(B), and hence T(B) will always have at least one principal
correlation H(B) = T(B). A ppl. cor. is always dual symmetric, i.e.,

- e ~ N
H(A)oB=T(A)oB=A0T(B) = A-T(B) = A - T(B) = A+ H(B).

Thus, H not only has the symmetry of a Hermitian operator (7), but is also symmetric
w.r.t the complex metric (8). Translating this into a statement about the eigenvectors
and values of H(B), we find that

(}‘i_}‘j)ci °oC; = (ll"zj)ci hd C} =0, ®
where H(C,) = 1,C, for k = 1, 2, 3 (the eigenvectors and values of H(B) need not be all
distinct [2]). Finally, note the relationship

T(Cy) = H(CY) = 1, (10)

between the eigenvectors and values of 7" as an anti-dual symmetric operator, and the
eigenvectors and values of H. The relationships (9) and (10) are the basis for the algebraic
classification of T'by way of its ppl. cor. H, and (10) corrects an oversight made in [3, p. 598].

5. The Dirac-Clifford splitting of spacetime

As has been pointed out in {1, §4], the complex vector algebra can be embedded in
a larger algebra, the Dirac-Clifford algebra, in such a way that the elements of 2 become
the even subalgebra, or the Pauli subalgebra of the Dirac algebra 2. The best way to carry
out this embedding is to express some orthonormal basis {E,} of the complex vector
algebra in terms of the orthonormal basis {¢,} of a Dirac-Clifford algebra, i.c.,

Ek = €€y = €, N €9 f()r k= 1, 2, 3 and I= E1E2E3 = €p€1€,¢€3, (11)
where the Minkowski metric of spacetime is determined by the condition
e=1=—¢l = ~e = —é2

Relationship (11) in effect “splits”” or factors the 8(real)-dim. complex vector algebra &
into a larger 16(real)-dim. Dirac-Clifford algebra 2. It is well-known that a Clifford algebra
can be embedded as an even subalgebra in the next higher dimensional Clifford algebra,
but the theory is usually shrouded in matrix representations [10]. This reliance on matrix
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representations is a heavy notational burden which clouds rather than enlightens the
abstract essence of a theory which is fully capable of standing on its own feet without
the matrix crutch [4].

Let us now show that when the complex vector algebra & is considered to be a sub-
algebra of the Dirac algebra 2, then a conjugation P in £ can be uniquely expressed in
terms of an inner automorphism in 9.

Theorem 10. (i) If P is a proper conjugation, then there exists a time-like Dirac
vector @, € @, with @2 = 1, such that B = ~daoBa, for all Be &. (if) If P is an improper
conjugation, then there exists a space-like Dirac vector a, € 2, with ¢? = ~1, such
that B = a,Ba,.

Proof: (/) Suppose P is a proper conjugation. Then by theorem 3, there exists an
orthonormal frame {E,} such that E, = E, for k = 1, 2, 3. Let us now split & along the
orthonormal vectors E, by writing

E, = a;ay = a, A a, wWhere a2 =1 = —a2 = —al = —d?,

to get an orthonormal frame {a,} of the Dirac algebra 9, the same as was done in (11).
Then for all B = f*E, € ®, it is easy to check that

B = —a,Ba, = —aoﬂ"E,‘ao = —Bkaoakaoao = B* Ey,

as is required.

(i) Suppose now that an improper conjugation P is given. Then, by theorem 2, there
exists an orthonormal frame {E,} such that E, = E,, E, = —E,, and E; = —E,. Splitting
2 along E, gives an orthonormal frame {a,} of 2 such that E, = g,a, = —doa, = aAd,.
For B = B*E,, we find that

B = a,Ba; = BlEl“‘BzEz—BsEa:
as is required.
If, following Markus [10, p. 279), we define the mapping r: 2, — Z,,

r(v) = —ava'  where ae€®, and da*#0, (12)

then a reflection in {a}* is the negative of an inner automorphism in the Clifford algebra 2.
To relate the action of the mapping r(v) to the conjugation P that it defines, write B = b,
A bye . Then

= —r(b,) A r(by) = —<{ab,a"'aba™ '), = —a(b; A by)a”* = —aBa™'. 13)

A conjugation P can also be considered to be the main anti-automorphism on an
appropriately defined Clifford algebra: In the case of a proper conjugation P, the Clifford
algebra is generated by an orthonormal frame {E,} of vectors satisfying E, = E, for
k=1,2, 3 and



519

In the case of an improper conjugation P, the Clifford algebra is generated by an ortho-
normal frame {F,} where F, = F; = E,, F, = F, = IE,, and F; = F; = IE,, and

Fi=1=-F}=-F}

{10, p. 199]. Note that a conjugation in £ is not the main anti-automorphism when conside-
red on the level of the Dirac algebra 2 2.

Let us now consider the anti-dual symmetric operator T(B), given in (6), on the level
of the Dirac algebra 9. First, note that we can define a trace-free symmetric ¢t: 2, — 9, by

tay=20," T(v A a), (14)

as discussed in [2, §3], and where we are using the notion of the vector derivative d,, as
discussed in [3]. The operator T(B) can be expressed in terms of #(b) by the relationship

T(a A b) =1 (a A b)-3,1(v) = L1 [1(a) A b+a A ¢(b)], (15)

and thus the study of anti-dual symmetric operators T(B) on # is equivalent to the study
of trace-free symmetric vector operators #(b) on 9.

A well-known property of #{(v) is that #{v) will always have at least one real space-like
eigenvector, that is

t(a,) = 1,4, where g, €9, and a} = —1,

[8]. This property can be used to establish

Lemma. Let r(v) be the reflection generated by the eigenvector ¢, as defined in (12).
Then tr(v) = rt(v) for all ve 2,.

Proof: First note that since ¢ is symmetric, ¢: {a,}* - {a,}", as follows from

b-a, =0<«1t(b) -a, =b-t(a) =1ba =0.
Thus, for v = v||+v, €9,, we find that
tr(v) = tr(v))+1tr(vy) = —t(v))+1(vy),
and, similarly
rt(v) = rt(v))+ri(v) = —t(vy)+1(vy),

and hence fr(v) = rt(v) for all ve P, as was to be proved.

We can now prove, as promised at the end of the last section, that T(B) always has
a principal correlation,

Theorem 11. Let P be the improper conjugation in 2 generated by a space-like eigen-
vector a, of ¢, as given in thm. 10 (ii). Then H(B) = T(B) is a principal correlation of T.

? The operation of space reversion, discussed in the preceding footnote, is the main anti-automor-
phism when considered on the level of the Dirac algebra.
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Proof: We need only show that the conjugation P is compatible with 7, i.e., we must

show that Ta?) = T(B).Let B = a A be?, = #. Then. by using (15), (13), and the above
lemma, we can verify the steps

—
T(a.A b) = —T[r(a) A r(b)] = =5 [tr(a) A r(b)+r(a) A tr(b)]

= —1[rta) A r(b)+r(a) A rt(b)] = L [K(@) A b+a A 1(b)]
r__._J
= T(a A b).

Finally, let us see how the usual representation of a “boost” as a 4 x4 matrix 4,° can
be obtained using complex vector algebra. Let P and P be the proper conjugations defining
two inertial observers, and let {E,} be an orthonormal rest frame of P, i.e., E, = E, for
k = 1,2,3. Then by using theorem 7 and its corollary, the conjugation P and P are related
by

B = ¢*"Be % where A=A = A and 4% =1,
and an orthonormal rest frame of P is given by
E; = L(E) = e'/?¢4E,e 12 ¢4

Without loss of generality we can choose E, = 4.
To find the matrix representation of the boost in the Pauli algebra &, we first calculate

L(E)) = E;, L(E,) = ¢**'E, = cosh (¢)E,+IE; sinh (¢)

and
L(E;) = €**'E, = cosh (¢)E; —IE, sinh (¢),

from which it follows that

1 0 0
L;=1|0 cosh(¢) Isinh(¢)|= L(E)-E,
0 —Isinh(¢) cosh(¢)

To find the matrix represéntation of the boost in the Dirac algebra 2, note that
e, = e¥?Eig o795 where E, = e, and E, = eje,, and calculate

e, = e?Fley = cosh (¢)ey +sinh (¢)ey,
e, = e*F'e, = cosh (¢)e; +sinh (¢)e,,

e; =e, and e = e,
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from which it follows that

cosh¢ sinh¢ O
sinh¢ cosh¢ O
0 0 1
0 0 0

A0 =

-0 O O

I am indebted to the hospitality extended to me in these hard times by the Institute
of Theoretical Physics, Wroclaw, and to its Director, Prof. J. Lopuszanski. I would
also like to acknowledge the improvement of Theorem 8 by the referee.
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