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Cosmological models with toroidal topology of 3-space in the co-moving frame are
obtained as exact solutions of the Einstein equations with sensible energy-stress tensor and
the Friedmannian behaviour of the scale factor. The red-shift is found to be isotropic in
spite of the model anisotropy.
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1. Introduction

The models studied till recently in the general relativistic cosmology have been both iso-
tropic and spatially homogeneous. The condition of isotropy at every point leads uniquely to
a certain metric form. This form contains a function R(¢) to be determined. For dust it is
the Friedman solution. But such universes explain neither the measured isotropy of the
black body radiation [1] nor the existence of galaxies of preferred sizes [2]. For these
reasons, more general cosmologies have been examined for both their classical and quantum
mechanical properties. In this paper we construct explicitly anisotropic, spatially inhomo-
geneous models with some properties, relating them to the real Universe. At the same
time we discuss how to introduce some other nonstandard features which may at first
sight contradict one’s intuition but need detailed quantitative analyses for final physical
judgement.

In these models we impose the toroidal topology of space sections (for the case of the
Einstein-Cartan theory a model of the same type was discussed in our group recently [3]).
We begin with the geometry of usual 2-surfaces and consider its generalisation to a geometry
on toroidal hypersurface in some fictitious four-dimensional flat space E* with the coordi-
nates x, y, z, u.
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2. Model 1

Using hypertorus equation
x4 yi4zitu? = b+ y? 42312 €Y}
we eliminate v from the expression for metric in E*
dli?> = dx®>+dy? +dz2 + du?.
The coordinate transformation
x = a(sin R+4)sin $cos ¢, y = a(sin R+ A) sin 3 sin ¢,
z = a(sin R+ A)cos 3, u=dcosR, 2)
leads to the metric in the physical curved 3-space
dl* = a®(dR*+(sin R+ A)? (d6% +sin? 9dg?)), )

where o = b*/4—a?, A = b/20, 0 < R, 0 < 7, 0 < ¢ < 27. To describe the whole space-
time we will use the co-moving frame of reference. Then

ds? = dr*—dI?, @

provided that units 87G = 1 = ¢ have been adopted.

Hypertorus parameters b/2 and « (the large and small radii respectively) are in general
functions of time. In this and the next models we assume that the scale factor o satisfies
the same equation as in the case of the Friedman solution for dust, i.e. a2 +2u0+1 =0
(- = 0/0or), while A is taken to be constant, then from the Einstein equations we have

sin R(3 sin R+2A) + 302
a’(sin R+ 4)* at’

& = Toyo) =

A

P2 2 @ = oZsin R+ A)

A(A+2 sin R)

a’(sin R+A4)* '

(1+a?)
aZ

&)

p1 =Ty =

The state equation takes the form p,+2p,+& = 3

. Here all the components of

energy-stress tensor refer to the orthonormal tetrad frame of basis 1-forms 6 = 4t,
99’ = adR, 0¥ = a(sin R+ A)d9, ' = asin I(sin R+ A)dg. Energy density is positive
for any observer. If 4 > 1 then the minimal value of difference /2« remains essentially
positive.
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3. Model 2(a)
Using another version of hypertorus equation
x2+y2+zz+“u2 - b(x2+y2)1/2 (6)
with the previous expression for metric in E4 (la) and transforming coordinates
= a(4+sin ysin 3 cos ¢, y = a(Ad+sinysinI)sin g, z = asinycosy,

u = acosy, )
we obtain
dl? = o?(dy>+sin? yd92+ (A +sin g sin 9)2dg?), ®
where 0 < x <27, 0<<9<n 0 o< 2m.
Spacetime in the co-moving frame of reference is again described by the metric (4),

and under the previous assumptions on the time dependence of « and 5/2, it follows from
the Einstein equations that.

Ty = (€ +Pluyttay— P(Gup+ ViyVip)s ®
where ug, = 6;, V,, =62, and

N A 3a*  (A+3sin 9sin y)
"~ a*(A+sin 9siny)’ T o ' o*(A+sin9siny)

4 (10)

All components refer to the orthonormal frame 6 = dt, 0% = ady, 0® = a sin xd9,
89 = o(A+sin y sin 9)dp. If 4 > 3 (and it is just a restriction to hypertori with certain
relation of the radii) then local energy density is always positive. So the satisfaction of the
weak energy condition ensures that the minimal value of difference b/2 —« remains positive
(e(4—1) > 0) and it allows the existence of only sufficiently extended tori (i.e. b/2 > 3c).

4. Model 2(b)

In the scope of the previous model, we consider instead of (7) the following coordinate
transformations

x = a(A+cos g)cos ¢, y = a(A+ cos g)singp, z = asingsiné, u = asin gcos . (11)
The spacetime metric is rewritten as
ds? = dt*> —a?(t) (do? +sin? gdé* + (cos g+ A)*dg?). (12

We allow now the coordinates to range as follows: 0 < g, &, ¢ < 2=.
The metric may be rewritten as

ds? = dt*—e*Pugie),
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where @ = (cos g+ A)dp, 6* = sin d¢, and ¢' = dg and B,;; are functions of ¢ only.
The f matrix is diag (In «, In «, In «). In this form the metric resembles that of the Bianchi-
-type universes. But it admits an Abelian group G, (as in the Gowdy three-torus and three-
-handle vacuum universes [4]) acting on spacelike 2-surfaces (with Killing vectors o, and d,)
whereas homogeneous universes admit & group G, simply transitive on spacelike hyper-
surfaces.

From the previous analysis and requirements the topology of physical 3-space does
not follow uniquely. Local arguments do not give any information regarding the connectiv-
ity of spacetime (M, g) at large (see e.g. [5]). Any spacetime (M, g) is obtained from its
universal covering manifold M by identifying suitably the points in M (and such identifica-
tion usually lowers the dimension of its group of isometries) [6].

In order to understand the possible topology of the model with metric (12) we consider
metric of 2-torus with « and a4 being the small and large radii respectively

dI* = o*(dg?+(cos o+ A)dg?), (13)

where 0 < @, ¢ < 27 and the circles ¢ = 0 and ¢ = 27, as well as ¢ = 0 and ¢ = 2=,
are identified (@ changes along the large and ¢ along the small circumferences).

When ¢ = const in (12) in a fixed moment of time the metric has the form (13). If
we fix @ instead of &, the remaining 2-metric may be interpreted as the metric on 2-sphere

5

3/

Fig. 1. A 3-surface with toroidal topology embedded in E* with § suppressed. The 2-surfaces of fixed ¢

(which look like circles in the picture, because one dimension is suppressed) are actually 2-spheres of surface

area 4na? sin? g. The space-sections with & suppressed are 2-tori. The length of circles g = const is
2n(A+cos @)

with radius « and longitude ¢ (¢ being considered as latitude, running from one of the poles,
and passing at ¢ = 7 into another sheet). Thus we may allow & to range from 0 to 2.
The hypersurfaces ¢ = Oand ¢ = 2raswellas ¢ = O0and ¢ = 2n,and ¢ = Oand ¢ = 27,
are identical. (See Figs 1 and 2.)

From the Eipstein equations for the spacetime metric (12) we obtain 7, in the
form (9) where

A 3¢* A+3cosp
p =

=T g% LT 14
a*(A+cos ) a*  o*(A+cos @) (14)
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Under the previous conditions (including 4 > 3) T\, satisfies the weak energy condi-
tion. In 2(b) the components of T, refer to the orthonormal frame 6© = dt, 8 = adp,
0@ = g sin odé, 0 =a(4+cos o)dg.

The state equation takes the form

1+0?

E+2p=3—,
a

(15)

1+a? . .
- ) 1t is clear that T, satisfies the

(compare with the Friedman case, &g = 3

strong energy condition as a consequence of the state equation (15). When 4> 1, & and p

0

n

Fig. 2. Another representation of the 3-surface with toroidal topology. The 3-surface embedded in E+

with ¢ suppressed consists of two balls. The 2-surfaces of @ = const. (which look like circles again) are

actually 2-tori of surface area 4ma*(A4+cos @), As g ranges from 0 to 2z one moves outward from the

“north pole” of the hypersurface, through successive 2-tori (“shells™). The 2-surfaces ¢ = 0 and ¢ = 5
are identical :

do not depend on ¢ at all and in this case we come to the energy-stress tensor of anisotropic
fluid (probably better to be called a circular string to which the hypertorus is reduced).
In spite of the anisotropy of the space and the presence of pressure, the matter in the
model is moving geodesically (along the time-lines of synchronous frame of reference),
ie. from T/ = 0 it follows that u'u, = 0.
The volume of 3-space of the model
27 2x ®x/2
V=4{ [ [ o®sing(cos g+A)dpdede = 1610’5+ A) (16)
00 0

(the volume of 3-space in the closed Friedman solution is Vgg = 2n2a3).
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5. Open models

Similarly we may introduce open models. Here we will consider only the case
corresponding to (12). For simplicity we just transform n/2—p — ig, & — ia, & — if,
and the metric turns into

ds? = dt*—oa*(t) (do?®+sh?edE?+(A +chg)?dg?). an
Thus, the embeddjpg of the corresponding 3-space into E is realized by transformations
u= achpgcos{, z=oachgsiné, x=a(d+shg)cosep, y = a(4+shg)sin¢g. (18)
The intermediate case is realized by transformations
x=oa(lAd+p)cos g, y=oa(ld+p)sing, u=acosé, z=asin¢, a9
which lead to
ds? = dt* —a*(do*+dE* +(g+ A)*de?), (20)

but this is just the metric of the Friedman model with flat space-sections in cylindrical
coordinates {o+4, &, ¢}

6. Red-shift

Cosmological red-shift may be calculated by means of the general formula of Schrédin-
ger-Brill [7]:

r= M . (21)
(Uz - K)
Here
U, =U, =24 (22)

are vectors of 4-velocities of a source and a detector of radiation, which are co-moving
with matter, K is null vector connecting corresponding point on timelike lines. The latter
vector must satisfy the geodesic equation and be gradient of a scalar, because it represents
a generator of light cone, i.e. it belongs to a (null) normal congruence. Let us find all such
vectors which are on the cone with apex at ¢ = 0. It is clear that in this case & = const. and

K dx* = F(t)dt+f(e)deg+de. (23)
Since K is a null vector we have
K-K = F*—a"*[f2+(Ad+cos 0)"%], (24)

and from this one concludes that
f24+(A+cos 9)"? = N? = const.,

F=a"'N. 25)
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Different values of the constant N correspond to different choices of all possible initial

directions of the light ray from the point ¢ = 0, ¢ = @, = const. Substituting this result
to (21) we find finally:

a(t2)

r= —

a(ty)

being formally the same expression as in the Friedman universe. Thus we may conclude

that there is an effective isotropy of the red-shift in spite of anisotropy and toroidal sym-
metry of our models.

(26)

7. Reducing to Friedman’s case

Formal substitution 4 = 0 in (12) gives the Friedman metric for non-coherent dust,
but in nonstandard coordinates (S in such coordinates have been discussed in [8])
ds? = dt? —a?(dg? +sin? gd&? +cos? gdgp?). 27

The usual Friedman expression in spherical coordinates may be obtained from this metric
using transformations
@ = arc cos (sin y sin 9),
sin y cos 3
(cos? 0+cos? y sin? 9)*/2

¢ = arc sin

However the spacetime (12) with 4 = 0 is only locally equivalent to that of Friedman
coinciding with it after identification of the hypersurfaces m— ¢ and g. Similar transition
(and transformations) may be realized for the open models.
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