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The problem of finding the covariantly constant chromomagnetic field, which mini-
mizes the real part of the energy density, as obtained in the one-loop approximation, is solved
for the SU(N) gauge groups in the N — oo limit.
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1. Introduction

1t has been pointed out [1] that the real part of the energy density of a covariantly
constant Yang-Mills field, when calculated in the one-loop approximation, may be nega-
tive, i.e. lower than the corresponding quantity for the perturbative vacuum. The physical
relevance of this observation is not clear (cf. e.g. Ref. [2] and the caveats in Ref. [3]), but
work has been done looking for covariantly constant fields minimizing the real part of the
energy density in the one-loop approximation. S8avvidy [1] found the solution for the SU(2)
gauge group. Flyvbjerg [4] derived some auxiliary formulae for arbitrary gauge groups,
solved the SU(3) and SU(4) cases and pointed out a difficulty, which occurs for SU(N)
groups with N > 4.

In this paper we find the solution for the SU(N — o0) groups. As a byproduct we also
find the solutions for N = 6, 8, 12 and 20.

2. Minimization of the one-loop energy density

As shown in Ref. [4], the real part of the energy density of a covariantly constant
chromomagnetic field for the SU(¥) group, when evaluated in the one-loop approximation
with a suitable renormalization prescription, reads:
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Here the summation extends over all pairs of charge conjugated gluons. Selfconjugated
gluons are excluded, The parameter H, may be interpreted as the field seen by the gluon
pair a. For N < 4 the N(N—1)/2 parameters H, may be chosen independently and

N(N )
E= BT Ey, 2.2)
where
1,

Eo = - 9'—6;5 Ho (2.3)

is the minimum of a single term in the sum (2.1). The corresponding field
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o = uexp 1iNg® (2.4)

For N > 4 formula (2.2) breaks down, because the parametets H, are no more inde-
pendent [4]. We will translate the problem of finding the parameters H, minimizing expres-
sion (2.1) with the constraints imposed by the covariant constancy of the field into a prob-
Iem in mechanics. There is a one to one correspondence between the gluon pairs included
in the summation (2.1) and positive weight vectors of the gauge group. Each weight vector
may be written in the form

a = Z xa,ieb (2‘5)

where x, ; are the additive quantum numbers (corresponding to a complete set of commut-
ing generators) and e; are Cartesian unit vectors. For a covariantly constant field (cf. [4])

«El‘x = Zxa,iH", (2.6)

where the vectors H; may be arbitrarily chosen. For the SU(N) group,however, it is possible
to introduce N quarks so that each gluon may be considered as a qq pair. Since the quantum
numbers x; are additive and change sign under charge conjugation, each vector a from
formula (2.5) can be considered as the difference of two out of N vectors corresponding
to quarks. The vectors corresponding to quarks

g =Y x. @.7)
are related only by the constraint

Y ¢, = 0. (2.8)

Since it is always possible to make the substitution ¢; — g;+a to enforce (2.8) without
affecting the differences H,, we may chose N independent vectors g¢; so as to minimize
expression (2.1). Thus the problem of finding the set of vectors H, satisfying the constraints
(2.6) and minimizing expression (2.1) reduces to the following problem in mechanics:
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Find the equilibrium distribution of N points in ordinary three dimensional space,
if each pair contributes to the total energy

V(r) = p*r? <—~1~— + M In r) 2.9

BFrA\Ng T a2 ) :
where r is the distance between the two points in the pair.

The potential (2.9) has a minimum at r = H,, given by formula (2.4). Therefore, the
equilibrium configuration for N = 2, 3, 4 corresponds to setting respectively.: the two points
at the ends of a section of length H,, the three points at the vertices of an equilateral triangle
with side length H, and the four points at the vertices of a regular tetrahedron with edge
length H,. In each case all the distances are H, and formula (2.2) holds. For N > 4 it is
no more possible to have all the distances equal Hj.

For N large it is convenient to use a density of points in space. The normalization is

{e(rd®r = N. (2.10)
The minimum of
E = [ e(r)e(r)V(ri—r)d’r d’r, (2.11)
with the constraint (2.10) implies that the potential
V(r) = [ o(r)V(r,—r))d’r, (2.12)

must be constant in all the region, where g(r) > 0 and be not smaller than this constant
in the remaining part of space. A distribution, which satisfies this condition is!

N
e(r) = e o(r—ro), (2.13)
nry
where
ro = L e'*H,, (2.14)
The corresponding real part of the energy density is
Je N? N?
E = *~ —E, = 0.824 —E,. 2.15
5 5 Bo 7 Eo (2.15)

The distribution of the vectors H, is isotropic in space, with the distribution in length

dn N
d};’ = 5H, for 0<H, < (2.16)
a o

and zero otherwise.

1 Analogous solutions can be found for some finite N. In particular, pulting the N points at the
centres of the faces of a regular polyhedron, we can adjust the size of the polyhedron so that the resultant
radial force on one of the points equais zero. Then by symmetry the radial forces acting on all the other
points and all the tangential forces vanish and the configuration is stationary. Besides the known solution
for N = 4 this approach yields configurations of minimum energy for N = 6, 8, 12 and 20.
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3. Discussion

The solution (2.13)-(2.16) yields by construction a minimum of the one-loop energy
density. We have no complete proof that this is an absolute minimum, but there are strong
arguments in favour of this conjecture. Using the fact that the force derived from the
potential (2.9) is a concave function of x at fixed y and z, one shows easily that in equilib-
rium all the N points must be within a sphere of radius H,. Thus the result

o(r) =0 for |r|> H, (3.1)

holds rigorously for arbitrary N. We have also proved that for N — oo nothing is gained
by changing from a spherically symmetrical distribution to a distribution with axial sym-
metry only. Among spherically symmetrical distributions vanishing for |r| > @, where
a is some constant, we found that for ¢ ~ r* the minimum corresponds to « — o and
a — ry thus to solution (2.13). Also substituting for ¢ a linear combination of two é-func-
tions nothing is gained. It is plausible that the only distribution, which is not better approxi-
mated by a combination of two delta functions than by one delta function is a delta func-
tion.

On the other hand, very different distributions correspond to only slightly higher
values of the energy density. Thus e.g. putting N/4 points in each vertex of a regular tetra-
hedron with edge length H,, which corresponds to

dn N 3N
= — §(0)+ —— - , 3.2
J, = 300 7 o~ Ho) (32)
one finds
NZ
E = 0.750 > E,, 3.3)

which agrees with (2.15) within ten per cent. Consequently, quantum fluctuations are likely
to mix widely different background fields configurations.

After this paper has been written, the preprint [5] has reached us, where the same
minimum for N — oo was-found. What remains new in our paper, is the mechanical
analogy, which we found of great heuristic value, and the arguments in favour of the
absolute character of the minimum.
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